当前位置:文档之家› TiO2光催化原理和应用(仅供参考)

TiO2光催化原理和应用(仅供参考)

TiO2光催化原理和应用(仅供参考)
TiO2光催化原理和应用(仅供参考)

TiO2光催化原理及应用

一.前言

在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术。

自然界中,植物、藻类和某些细菌能在太阳光的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。

半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太阳光作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。

二.TiO2的性质及光催化原理

许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。

TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板钛矿的光催化性能和稳定性最差,基本没有相关的研究和应用。而锐钛矿型和金红石型均属四方晶系,两种晶型都是由相互连接的TiO6八面体组成的,每个Ti原子都位于八面体的中心,且被6个O原子围绕。两者的差别主要是八面体的畸变程度和相互连接方式不同。金红石和锐钛矿晶胞结构的差异也导致了这两种晶型物化性质的不同。从热力学角度看,金红石是相对最稳定的晶型,熔点为1870℃;而锐钛矿是二氧化钛的低温相,一般在500℃~600℃时转变为金红石。二氧化钛晶型转变的实质是晶胞结构组成单元八面体的结构重排。金红石晶型结构中原子排列更加致密,密度、硬度、介电常数更高,对光的散射也更大。因此,金红石是常用的白色涂料和防紫外线材料,对紫外线有非常强的屏蔽作用,在工业涂料和化妆品方面有着广泛的应用。锐钦矿的带隙宽度为稍大于金红石的,光生电子和空穴不易在表面复合,因而具有更高的光催化活性能够直接利用太阳光中的紫外光进行光催化降解,而且不会引起二次污染。因此,锐钛矿是常用的处理环境污染方面问题的光催化材料。

TiO2的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而跃迁至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+)。

如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,生成超氧自由基·O2-;而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成羟基自由基·OH;·OH和·O2-的氧化能力极强,几乎能够使各种有机物的化学键断裂,因而能氧化绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等物质。反应过程如下:

TiO2+ hv → h+ +e-

h+ + OH-→ ·O H

h+ + H2O →·OH + H+

e- + O2→·O2-

H2O + ·O2-→ HO2· + OH-

2HO2·+e-+H2O→H2O2+OH-

H2O2 + e- → ·OH+OH-

H2O2 + ·O2-→ ·OH+H+

·OH + dye →···→ CO2 + H2O

·O2-+ dye →···→ CO2 + H2O

当然也会发生,光生电子与空穴的复合:

h+ + e-→ 热能

由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。羟基自由基是含有一个未成对电子自由基,这使得它几乎能跟水中的几乎所有机污染物和大部分的无机污染物反应。它与污染物的反应速度非常快,反应速度仅仅受限于羟基自由基在水中的扩散速度。羟基自由基与污染物的反应机理主要包括在不饱和的双键、三键上的加成反应,氢取代和电子的转移。很多研究表明,羟基自由基在光催化降解的过程中起主导作用。虽然超氧自由基、单基态氧和双氧水的氧化电位低于羟基自由基,但是他们在降解的过程中也起到不可或缺的作用。TiO2光催化主要通过生成的含氧自由基与水中的污染物反应,达到降解的目的,并且最终产生对环境无害的水、二氧化碳、氮气等。TiO2光催化可以同时产生带正电荷的空穴以及带有负电荷的电子,这使得催化体系既有氧化能力又有还原能力。所以剧毒的三价砷(砒霜的有效成分就是三价砷)可以被氧化成低毒的五价砷,对人有害的六价铬被还原成无毒的三价铬。

TiO2作为光催化剂它具有以下几个优点:

1. 把太阳能转化为化学能加以利用。

2. 降解速度快,光激发空穴产生的·OH是强氧化自由基,可以在较短的时间内成功的分解包括难降解有机物在内的大多数有机物。

3. 降解无选择性,几乎能降解任何有机污染物。

4. 降解范围广,几乎对所有的污水都可以采用。

5. 具有高稳定性、耐光腐蚀、无毒等特点,并且在处理过程中不产生二次污染;有机污染物能被氧化降解为CO2和H2O,并且其对人体无毒。

6. 反应条件温和,投资少,能耗低,用紫外光照射或暴露在太阳光下即可发生光催化化学反应。

7. 反应设备简单,易于操作控制。光催化反应具有稳定性,一般情况下,负载TiO2光催化剂能多次使用,不影响反应效果,催化作用持久长效。

三.TiO2的应用领域

TiO2能有效的将废水中的有机物、无机物氧化或还原为CO2、PO43-、SO42-、NO3-、卤素离子等无机小分子,达到完全无机化的目的。染料废水、农药废水、表面活性剂、氯代物、氟里昂、含油废水等都可以被TiO2催化降解。而且TiO2具有杀菌效果,这种特性几乎

是无选择性的,包括各种细菌和病毒。

·OH起主导作用的反应较复杂:·OH既可以与表面Ti缔合成Ti4+HO·来氧化表面污染物,也可以扩散到液相中来氧化污染物:对于二者共同作用来说,表面氧化反应和液相氧化反应应该是同时进行的。这可归结为反应物、中间体与产物在催化剂表面上进行的竞争吸附导致反应位置由催化剂表面向液相中转移。

现已发现有300多种有机物可被光催化分解,而且美国环保局公布的114种有机物均被证实可通过光催化氧化降解矿化。可采用TiO2光催化处理的有机废水及有机物的种类如下:染料废水:甲基橙、甲基蓝、罗丹明-6G、罗丹明B、水杨酸、羟基偶氮苯、水杨酸、分散大红、含磺酸基的极性偶氮染料等。农药废水:除草剂、有机磷农药、三氯苯氧乙酸、2,4,5-三氯苯酚,DDVP、DTHP、DDT等等。表面活性剂:十二磺基苯磺酸钠、氯化卞基十二磺基二甲基胺、壬基聚氧乙烯苯、乙氧基烷基苯酚等。氯代物:三氯乙烯、三氯代苯、三氯甲烷、四氯化碳、4-氯苯酚、2-氯代二苯并嗯英、7-氯代二苯并二嗯英、多氯代二苯并二嗯英、四氯联苯、氟里昂、五氟苯酚、氟代烯烃、氟代芳烃等。油类:水面漂浮油类及有机污染物。

许多无机物在TiO2表面也具有光化学活性,早在1977年就有科学研究人员用TiO2悬浮粉末光解Cr2O72-,将其还原为Cr3+。利用二氧化钛催化剂的强氧化还原能力,可以将污水中汞、铬、铅、以及氧化物等降解为无毒物质。TiO2光催化剂能将CN-氧化为OCN-,再进一步反应生成CO2、N2和NO3-的过程,如TiO2光催化法从Au(CN)4中还原Au,同时氧化CN-为NH3和CO2的过程,二氧化钛光催化用于电镀工业废水的处理,不仅能还原镀液中的贵金属,而且还能消除镀液中氰化物对环境的污染,是一种有实用价值的处理方法。

在保洁除菌方面的研究,Matsunaga在1958年首先发现二氧化钛(TiO2)在金卤灯照射下,能有效杀灭乳干嗜酸菌、酵母菌和大肠杆菌等细菌。进一步研究还发现,在光催化反应过程中产生的高氧化性羟基自由基(·OH),可有效破坏细菌的细胞壁和凝固病毒的蛋白质,从而灭活它们。并且,这种杀菌效果几乎是无选择性的,包括各种细菌和病毒。因此,从20世纪90年代以来,日本在其实施的环境空气恶臭管理法的推动下,大力开展大气除臭、净化、防污、抗菌、防霉、防雾等工作。与此同时,日本学者Fujishima等人研究发现在玻璃、陶瓷表面涂上一层TiO2透明薄膜,经光照后,表面具有灭菌、除臭和防污自洁功能,从而开辟了光催化剂薄膜功能材料研究这一新领域。

3.1室内有害挥发性有机物的治理

随着物质生活的提高,居室装修和家用电器、家具的大量使用,室内挥发性有害有机化合物(V olatile organic compounds ,VOCs)的释放源在不断的增多,人类进入到以“室内空气污染”为标志的第三污染时期,室内空气污染已被列为全球四个关键的环境问题之一。室内VOCs的危害大,许多慢性疾病的高发与之相关,而VOCs成分复杂且难以分离,以往以除尘为主的空气净化手段不能给予有效的治理,开展室内VOCs的新的治理方法研究必

将成为预防医学新的热点。喷涂在材质表面的纳米TiO2,在紫外线的照射下能转化空气中VOCs。实际上,经普通玻璃后,室内阳光的紫外线几乎为零,所以单纯的TiO2转化室内空气中VOCs,需要紫外光源的辅助。随着掺杂技术的发展,TiO2-NCP的激发波长红移,使室内VOCs 的PCO过程可在可见光下进行,TiO2-NCP能有效地分解室内醛系物、苯系物、硫醇、酮类和氮氧化物等VOCs。

近几年来,在众多的非金属掺杂方法中,氮掺杂因为对可见光的量子效应高、价格低廉、制备工艺简单而被研究的最多,N-TiO2对难降解的苯系物的降解效果显著地高于无掺杂TiO2。N-TiO2在拓宽光催化响应波长的同时,极大地提高了催化活性。前几年,包括Ag、Cu、Fe、Sn、Cd、Cr等金属和某些稀土元素掺杂到纳米TiO2中被广泛研究,并检验其对VOCs的降解能力。金属离子掺杂TiO2降解VOCs的反应速率受温度,湿度,光的波长和强度,氧气浓度,污染物的浓度和催化剂用量等多种因素影响。

湿度太大和太小都不利于甲醛的分解,35%是最佳降解湿度;空气中的氧气含量越高降解效果越好,使用254 nm光照射优于365 nm。从成本和工艺角度考虑,Fe离子掺杂更具实用价值,理论上Fe3+替代TiO2八面体晶格中的Ti4+,能拓宽TiO2的可见光响应区间,并抑制(e--h+)的简单复合。掺Fe的纳米TiO2,以室内甲苯为实验对象,甲苯的分解效率明显增大。

3.2.饮用水中有机有害物的深处理

随着工农业生产的发展所带来的持续不断的污染物排放和急剧增大的富营养化,融入自然水循环体系中的有害物质必将对人类饮用水的安全造成严重的冲击。这些有害物质包括难降解的永久性有机污染物(persistent organic pollutants,POPs)、涵盖蓝藻毒素的自然有机物(natural organic matters ,NOMs)、与农资相关的含N化合物、涉水器材释放的塑化剂、以及现行水处理的消毒副产物(disinfection By-product, DBPs)等等。而除去水中毒害大的这些微量有害物质,是饮水处理的难题。最近几年,针对饮用水中的两类问题相对较大的有机有害物—POPs和NOMs,不少人尝试采用TiO2-NCP技术进行深处理研究。

在全球性的环境污染指标中,POPs倍受关注,自然水循环体系是POPs存在的主要场所之一。水中的POPs危害大、难处理,危险性在日益增大。目前我国的城市用水、水库、江河和湖海都能检出POPs,水生生态系统中有多种POP的水平处于在全球数值范围的高端;其中河流和沿海水域的多氯联苯和滴滴涕已对当地居民构成健康风险,所以消除水中POPs的意义很大。吸附/PCO的协同作用是水中POPs净化的一个极为重要的有效且经济的手段;在PCO处理中,TiO2-NCP比多相催化臭氧氧化、电催化氧化等较为温和且“零”废物产生, 虽然目前很多研究还停留在实验室水平,但却展示出了巨大的应用潜力。TiO2-NCP 的PCO甚至能分解掉难分解的POPs中间产物,如苯酚、氯苯和甲苯等。负载在玻璃上的纳米二氧化钛薄膜光催化反应器,对微量有机污染物的处理,在2~3小时内,总有机污染物的去除率达到45%~63%;光催化过程?OH的生成量与有机物的去除效率呈正相关;在

日本二氧化钛光催化剂技术的应用现状和前景-可见光下的应用

日本二氧化钛光催化剂技术的应用现状和前景 【新华社东京1999年12月19日电】(记者张可喜)综述:日本二氧化钛光催化剂技术的应用现状和前景 二氧化钛(锐钛矿型二氧化钛),作为一种新的光催化剂,以其神奇的功能,近来在日本备受垂青,应用它制造的种种新产品相继问世,作为一种新的工业技术,正在日本兴起。 偶然发现的神奇功能 最初发现二氧化钛的催化剂效应的是日本的两位学者本多健一和藤岛昭。1969年,东京大学研究生院2年级研究生藤岛昭在导师本多健一副教授的指导下进行一项实验:用二氧化钛和白金作电极,放在水中,用光一照射,即使不通电,也能够把水分解为氧气和氢气。 二氧化钛的这种氧化分解功能被称为“本多—藤岛效应”。但是,随着实验、研究的加深,他们又发现,这种方法生产氢效率太低,难以成为大量生产氢能的技术。于是,这项研究成果就被搁置起来。4年前,藤岛教授有机会同来自东陶公司的客座研究员渡部俊也在另外一个科研项目中进行合作研究氧化钛的功能。一次,在交换意见时,渡部提出:“如果大量生产氢能不行,那么,把它应用在分解微量的有害化学物质方面,如清除厕所便器上的黄色污垢怎么样?” 二氧化钛确有这种功能。它在受到太阳光或荧光灯的紫外线的照射后,内部的电子就会发生激励。其结果,就产生了带负电的电子和带正电的空穴。电子使空气或水中的氧还原,生成双氧水,而空穴则向氧化表面水分子的方向起作用,产生氢氧(羟)基原子团。这些都是活性氧,有着强大的氧化分解能力,从而能够分解、清除附着在氧化钛表面的各种有机物。二氧化钛不仅有强大的氧化分解能力,而且还有自身不分解、几乎可永久性地起作用以及可以利用阳光和荧光灯的光线等优点。 这就是二氧化钛作为光催化剂在工业上得到应用的起点。 极其广泛的用途 目前,日本的企业、大学和政府科研机关都在积极地对二氧化钛的光催化剂功能进行应用开发。它的用途集中在环境保护和卫生医疗等领域。 这一技术首先被应用在高楼大厦、高速公路两旁的隔音墙、街道路灯等装置上。阳光(紫外线)的照射就能够清除积落在上面的尘埃和污染物质,如氧化氮、硫化物、氯化物等,不仅节省用以清扫的人力和财力,而且自然地净化了环境。东陶公司于1998年首先应用二氧化钛光催化剂制成厨房和浴池用瓷砖、汽车的喷涂材料。它的氧化分解功能使瓷砖和车身得以经常保持清洁。 把含有二氧化钛光催化剂的喷涂材料喷涂在公路表面,沾在路面的氧化氮便被分解为硝酸离子,下雨时被雨水冲洗掉,从而消除了氧化氮对环境的污染。“光催化剂公路”目前已经在千叶县进入试验阶段。 还可以把光催化剂涂敷在无纺布、玻璃和陶瓷等上,使之具有防污、脱臭、杀菌等性能。 东京大学尖端科学技术研究中心把非晶质状的二氧化钛光催化剂事先混入氯乙烯等树脂材料中,燃烧时它就会吸附氯等有害物质,落在地面,遇到阳光,

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

光催化原理、应用

广州和风环境技术有限公司 https://www.doczj.com/doc/ee4920073.html,/ 光催化原理、应用及常见问题 更多有关废气处理核心技术,请百度:和风环境技术。接下来和风带领大家认识一下。 随着全球工业化进程的加速,环境污染问题日益严重,环境治理已受到世界各国的广泛重视,其中政府在环境治理方面投入了巨大的人力、物力和财力对环境净化材料和环境净化技术的研究和产业化提供支持,其中,光催化材料和光催化技术占有重要的地位。TiO2是一种常用的光催化材料,具有活性高、稳定性好,几乎可以无选择地将有机物进行氧化,不产生二次污染,对人体无害,价格便宜等诸多优点,成为最受重视和具有广阔应用前景的光催化材料。 光催化材料在紫外光或太阳光的作用下,激发价带上的电子(e-)跃迁到导带,在价带上产生相应的空穴(h+),光生空穴与光催化材料表面的水反应,生成羟基自由基,而光生电子与光催化剂表面的氧反应,生成超氧负离子。羟基自由基和超氧负离子具有较强的氧化还原电位,可将挥发性有机物氧化分解成无害的CO2和H2O,达到净化空气、分解挥发性有机物的目的。二氧化钛光催化材料在光照下能一直持续释放自由基,对挥发性有机物进行氧化分解,而自己不发生变化,具有长期活性。

广州和风环境技术有限公司 https://www.doczj.com/doc/ee4920073.html,/ 1、光催化反应原理 羟基自由基和超氧负离子是除氟之外,最强的氧化剂,但是氟对人体和环境有着巨大的危害,在很多场合不再使用。 2、常温催化材料 光催化材料是一种常温催化材料,可在室温及稍高温度下进行反应(通常低于65℃)。提高光催化材料性能的途径有三个:一个是降低纳米催化材料粒子的粒径,目的在于提高光催化材料的比表面积;二是通过金属掺杂、过渡金属掺杂和非金属离子掺杂改变半导体催化剂的性质来提高光催化性能;三是通过表面修饰和敏化,改变半导体催化剂的表面的形貌和结构,而引起表面性能的优化。 3、光催化材料应用中的影响因素 湿度的影响:光催化反应中,羟基自由基来源于水,所以必须保持有一定的湿度才能持续产生羟基自由基;在闭环的光催化反应中,已经证实随着水的不断消耗,光催化性能在不断的下降。 氧分量的影响:光催化反应中,超氧负离子来源于氧,所以在21%含量的

光催化剂的发展前景与突破

光催化剂的发展前景与突破 一、解决人类生存的重大问题 光催化学科是催化化学、光电化学、半导体物理、材料科学和环境科学等多学科交叉的新兴研究领域。光催化剂的研究应用一旦获得突破,将可以使环境和能源这两个二十一世纪人类面临的重大生存问题得以解决。 利用太阳能光催化分解水制氢H2O →H2 + ?O2 彻底解决能源问题利用环境光催化C6H6 + 7 ? O2 → 6 CO2 + 3H2O 彻底解决污染问题光催化以其室温深度反应和可直接利用太阳光作为光源来驱动反应等独特性能而成为一种理想的环境污染治理技术和洁净能源生产技术。 二、光催化研究领域急需解决的重大科技问题 目前以二氧化钛为基础的半导体光催化存在一些关键科学技术难题,使其广泛的工业应用受到极大制约,而这些问题的解决有赖于深入系统的基础研究。 最突出的问题在于: (1)量子效率低(~4%) 难以处理量大且浓度高的废气和废水,难以实现光催化分解水制氢的产业化。 (2)太阳能利用率低 由于TiO2半导体的能带结构(Eg=3.2eV)决定了其只能吸收利用紫外光或太阳光中的紫外线部分(太阳光中紫外辐射仅占~5 %)。 (3)多相光催化反应机理尚不十分明确

以半导体能带理论为基础的光催化理论难以解释许多实验现象,使得改进和开发新型高效光催化剂的研究工作盲目性大。 (4)光催化应用中的技术难题 如在液相反应体系中光催化剂的负载技术和分离回收技术,在气相反应体系中光催化剂的成膜技术及光催化剂活性稳定性问题。 上述关键问题也是目前国内外光催化领域的研究焦点,围绕这些问题开展进一步的研究不仅可望在光催化基础理论方面获得较大的突破,而且有利于促进光催化技术真正能在上述众多领域得到大规模广泛工业应用。 三、光催化领域的最新研究进展 近年来,光催化的基础与应用研究发展非常迅速,特别是在可见光诱导的新型光催化剂的研究、提高光催化过程效率的研究和光催化功能材料的研究等方面都取得了重要进展。 1、可见光诱导的光催化剂研究方面取得重大突破 采用固相合成、过渡金属离子和非金属离子掺杂、金属-有机络合物、表面敏化、半导体复合等多种方法,制备出了一系列新型非二氧化钛系或二氧化钛基可见光光催化材料,这些材料在可见光的照射下,能将H2O分解为H2和O2,或能有效降解空气、水中的有机和无机污染物。 2、为解决多相光催化过程效率偏低的问题,近年从提高催化剂自身的量子效率和改进反应过来程条件两个方面开展了大量的研究工作,取得了重要进展。 采用离子掺杂、半导体复合、纳米晶粒制备、超强酸化等方法,提高光生载流子的分离效率和抑制电子-空穴的重新复合,在一定程度上改善了光催化剂的量子效率。 3、光催化材料超亲水性的发现,开辟了光催化研究和应用的新领域 利用光催化膜的超亲水性和强氧化性等特性,研制开发出一系列光催化功能材料,如光催化自清洁抗雾玻璃、光催化自清洁抗菌陶瓷和光催化环保涂料等。这些功能材料已开始在建筑材料领域应用。与之相应的光催化膜功能材料的基础研究也有大量的文献报道。 4、超分散性及可见光活性实现突破 河南工业大学李道荣教授开发出了超分散性及可见光活性纳米二氧化钛光

光催化原理及应用

姓学号:0903032038 合肥学院 化学与材料工程系 固 体 物 理 姓名:杜鑫鑫 班级:09无机非二班 学号:0903032038 课题名称:光催化原理及应用 指导教师:韩成良

光催化原理及应用 引言:目前,全球性环境污染问题受到广泛重视。光催化反应可对污水中的农 药、染料等污染物进行降解,还能够处理多种有害气体;光催化还可应用于贵金属回收、化学合成、卫生保健等方面。光催化反应在化工、能源及环境等领域都有广阔的应用前景。本文论述了主要光催化剂类型及光催化技术的应用研究成果。 关键词:光催化、应用、发展、环境、处理 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。 在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。 例如TiO 2 是一种半导体氧化物,化学稳定性好(耐酸碱和光化学腐蚀), 无毒,廉价,原料来源丰富。 TiO 2 在紫外光激发会产生电子-空穴对,锐钛 型TiO 2 激发需要3.2 eV的能量,对应于380 nm左右的波长。光催化活性高(吸收紫外光性能强;能隙大,光生电子的还原性和和空穴的氧化性强)。因此其广泛应用于水纯化,废水处理,有毒污水控制,空气净化,杀菌消毒等领域。 主要的光催化剂类型: 1.1 金属氧化物或硫化物光催化剂 常见的金属氧化物或硫化物光催化剂有TiO,、ZnO、WO 3、Fe 2 O 3 、ZnS、CdS 和PbS等。其中,CdS的禁带宽度较小,与太阳光谱中的近紫外光段有较好的匹配性,可以很好地利用自然光源,但容易发生光腐蚀,使用寿命有限。TiO,具

纳米光催化TIO2的应用领域及现状

自1972 年, a.fujishima和k. honda在n型半导体tio2电极上发现了水的光电催化分解作用之后,国内外的研究人员对tio2产生了深厚的兴趣。tio2氧化活性较高,化学稳定性好,对人体无毒害,成本低,无污染,应用范围广,因而最受重视,是目前应用最广泛的纳米光催化材料,也是最具有开发前途的绿色环保型催化剂。应用领域纳米tio2 能处理多种有毒化合物,包括工业有毒溶剂、化学杀虫剂、木材防腐剂、染料及燃料油等,迄今详细研究过的有机物达100种以上。此外,tio2光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使hg2+被还原成hg而沉积在tio2表面;此法同样适用于铅。tio2光催化可能降解的无机污染物还有氰化物,so2、h2s、no和no2等有害气体也能被吸附在tio2表面,在光的作用下转化成无毒无害物质。 1.空气净化当前解决空气污染主要有物理吸附法(活性炭)、臭氧净化法、静电除尘法、负氧离子净化法等,但是这些方法自身都有着难以克服的弊端,所以一直难以大范围地推广使用。与其相比,利用纳米光催化tio2净化空气则有如下优点:降解有机物的最终产物是co2和h2o,没有其它毒副产物出现,不会造成二次污染;纳米微粒的量子尺寸效应导致其吸收光谱的吸收边蓝移,促进半导体催化剂光催化活性的提高;纳米材料比表面积很大,增强了半导体光催化剂吸附有机污染物的能力。利用纳米光催化tio2治理空气污染已经得到广泛应用,国内外都出现了很多产品,例如纳米空气净化器、中央空调净化模块、光触媒涂料等,市场前景非常广阔。 2.水处理传统的水处理方法效率低、成本高、存在二次污染等问题,污水治理一直得不到好的解决。纳米技术的发展和应用很可能彻底解决这一难题。研究表明,纳米tio2能处理多种有毒化合物,可以将水中的烃类、卤代烃、酸、表面活性剂、染料、含氮有机物、有机磷杀虫剂、木材防腐剂和燃料油等很快地完全氧化为co2、h2o等无害物质。此外,纳米tio2在降解毛纺染料废水、有机溴(或磷)杀虫剂等到方面也有一定效果。无机物在tio2表面也具有光化学活性。例如,废水中的cr6+具有较强的致癌作用,在酸性条件下,tio2对cr6+具有明显的光催化还原作用。在ph 值为2.5的体系中,光照1h 后,cr6+被还原为cr3+。还原效率高达85% 。迄今为止,已经发现有3000多种难降解的有机化合物可以在紫外线的照射下通过纳米tio2或zno而迅速降解,特别是当水中有机污染物浓度很高或用其他方法很难降解时,这种技术有着明显的优势。德国开发出了利用阳光和光催化剂对污水进行净化的装置,每小时可净化100-150升水。虽然利用纳米光催化tio2进行水处理目前还未得到广泛应用,但我们可以看出它未来的应用前景必将非常广阔。 3.杀菌消毒纳米tio2的杀菌作用是利用光催化产生的空穴和形成于表面的活性氧类与细菌细胞或细胞内的组成成分进行生化反应,使细菌头单元失活而导致细胞死亡,并且能使细菌死亡后产生的内毒素分解。研究表明:将tio2涂覆在陶瓷、玻璃表面,经室内荧光灯照射1小时后可将其表面99%的大肠杆菌、绿脓杆菌、金黄色葡萄球菌等杀死。目前国外新型无机抗菌剂的开发与抗菌加工技术进展较快,已经形成系列化产品,其中tio2高催化活性纳米抗菌剂是市场前景最好的品种。日本在tio2光催化抗菌材料研究与应用起步较早,日本东陶等多家公司开发的光催化tio2抗菌瓷砖和卫生洁具已经大量投放市场。日本将今后发展的目光投向欧美国际抗菌产品市场,预计海外市场将是其国内市场的10倍,他们也极其关注中国抗菌塑料近年来的迅猛发展,纷纷抢滩中国市场。应用现状在当今世界性的环境污染问题越来越受到各国政府重视的情况下,利用纳米材料进行环境治理已经成为各国高科技竞争中的一个热点。在纳米光催化方面日本、美国等国家均投入巨资开展研究与开发工作,并大力推动其产业化,目前已有多种产品出现,其中所使用的纳米光催化材料绝大多数都是tio2。

氧化钛光催化分解甲醛原理

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全,2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为eV,当纳米TiO2接受波长为nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:(1)吸收相波长为nm以下的光能,使表面发生光激发而产生光致电子和正的空穴。 (2)在受光照射而产生的电子-空穴中,电子消耗于空气中氧的还原,空穴则将吸附物质氧化,分解这些吸附物质的作用。如下图1: 导带 O2

光催化材料在环境保护中的应用

光催化材料在环境保护中的应用 谭强150110115 摘要:光催化材料对于环境的保护有着深远的意义,近几年来,光催化降解污染物发展成为了一种节能、高效的绿色环保新技术。综述了光催化材料的反应机理和种类,阐述了影响光催化反应的条件和提高反应的效率等问题以及其在环保领域的应用,并提出了其今后的发展方向和前景的展望。同时又介绍了光催化材料的特点及发展历程,对光催化纳米材料在处理水污染、治理大气污染、控制噪声污染等方面的应用进行了综合性的评述。作为新功能材料,它也存在着一些局限性,例如:催化效率不高,催化剂产量不高,部分催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到它隐含的巨大发展潜力和市场利用价值,作为处理环境污染的一种方式,它凭借零二次污染,能源消耗为零,自发进行无需监控等一些优势必将居于污染控制的鳌头。 关键字:光催化材料应用催化效率环境保护 引言 光催化是半导体材料的独特性能之一 , 主要应用于环境保护方面。光催化材料是指通过该材料、在光的作用下发生的光化学反应所需的催化剂,世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。1972年Fujishima 等人发现了TiO2微粒经过光的照射能使水发生氧化还原反应并生成氢气,是光催化反应研究的开始。特别是在近年来由于日益严重的污染状况 , 有机物的光催化降解研究受到了非常大的重视。经过了近30年来的研究 ,特别是对光催化降解有机污染物的研究,使光催化在环境保护方面取得了比较大的进展。 由于经济的发展迅速,造成了环境的很大污染,迫使人们不断寻求方便快捷的处理污染的方法。通过不断研究,已发现有3000多种难降解的有机化合物可以在紫外线的照射下通过纳米 TiO 来迅速降解。特别是在水中有机污染物浓度较低或者用其它方法很难降解时,该技术就更显示出其更明显的优势和价值。 1.光催化材料的反应机理

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

光催化的原理

光催化原理 光催化净化是基于光催化剂在紫外线照射下具有的氧化还原能力而净化污染物。 光催化原理 半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带(ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。由于半导体的光吸收阈值与带隙具有式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。 光催化应用技术 利用光催化净化技术去除空气中的有机污染物具有以下特点: 1直接用空气中的氧气做氧化剂,反应条件温和(常温常压) 2可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。 3半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。光催化净化技术具有室温深度氧,二次污染小,运行成本低和可望利用太阳光为反应光源等优点,所以光催化特别合适室内挥发有机物的净化,在深度净化方面显示出了巨大的应用潜力。 常见的光催化剂多为金属氧化物和硫化物,如TiO2, ZnO,CdS,WO3等,其中TiO2的综合性能最好,应用最广。自1972年Fujishima和Honda发现在受辐照的TiO2上可以持续发生水的氧化还原反应,并产生H2以来,人们对这一催化反应过程进行了大量研究。结果表明,TiO2具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst”。光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“ 本多· 藤岛效果” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多,其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛 TiO 2 光触媒的广泛应用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839 年, Becquere 就发现了光电现象, 然而未能对其进行理论解释。直到1955 年, Brattain 和Gareet才对光电现象进行了合理的解释, 标志着光电化学的诞生。1972 年, 日本东京大学Fu jishmi a和H onda研究发现[ 3] , 利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30 年里, 人们在光催化材料开发与应用方面的研究取得了丰硕的成果。 以二氧化钛为例, 揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制; 采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围; 通过在其表面沉积贵金属纳米颗粒可以提高电子- 空穴对的分离效率, 提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步, 然而受认知手段与认知水平的限制, 目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用, 亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面, 现有光催化材料的光响应范围窄, 量子转换效率低, 太阳能利用率低, 依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件, 也是光催化材料研究者所需要解决的首要任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形

光催化原理

光催化原理 光催化的原理: 1.光催化净化的基本原理是什么? (1)它是一种利用新型的复合纳米高科技功能材料的技术。 (2)它一种是低温深度反应技术,光催化剂纳米粒子在一定波长的光线照射下 受激生成电子一空穴对,空穴分解催化剂表面吸附的水产生氢氧自由基,电子使 其周围的氧还原成活性离子氧,从而具备极强的氧化一还原作用,将光催化剂表面的各种污染物摧毁。 mm 伽的w啊轴刊蛉恳Mtn抽iok甜1■自翊HI II住萨轉棉割愉沛抽齢讨堰闵鋼離曲毗n 總需旳擁. 2. 光催化净化的技术特征? (1)低温深度反应: 光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常规的催化氧化方法亦需要几百度的高温。

(2)净化彻底: 它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。 (3)绿色能源: 光催化可利用太阳光作为能源来活化光催化剂,驱动氧化一还原反应,而且光催 化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。(4)氧化性强: 大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO , H0的氧化性高 于常见的臭氧、双氧水、高锰酸钾、次氯酸等。 (5)广谱性: 光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114 种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。 (6)寿命长: 理论上,催化剂的寿命是无限长的。 3. 光催化空气净化器基本净化流程

光催化剂

光催化剂概述 第一篇 通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。 光催化技术是在20世纪70年代诞生的基础纳米技术,在中国大陆我们会用光触媒这个通俗词来称呼光催化剂。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 世界上能作为光触媒的材料众多,包括二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)、二氧化锆(ZrO2)、硫化镉(CdS)等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。在早期,也曾经较多使用硫化镉(CdS)和氧化锌(ZnO)作为光触媒材料,但是由于这两者的化学性质不稳定,会在光催化的同时发生光溶解,溶出有害的金属离子具有一定的生物毒性,故发达国家目前已经很少将它们用作为民用光催化材料,部分工业光催化领域还在使用。 二氧化钛是一种半导体,分别具有锐钛矿(Anatase),金红石(Rutile)及板钛矿(Brookite)三种晶体结构,其中只有锐钛矿结构和金红石结构具有光催化特性。 二氧化钛是氧化物半导体的一种,是世界上产量非常大的一种基础化工原料,普通的二氧化钛一般称为体相半导体以与纳米二氧化钛相区分。具有Anatase或者Rutile结构的二氧化钛在具有一定能量的光子激发下[光子激发原理参考光触媒反应原理]能使分子轨 道中的电子离开价带(Valence band)跃迁至导带(conduction band)。从而在材料价带形成光生空穴[Hole+],在导带形成光生电子[e-],在体相二氧化钛中由于二氧化钛颗粒很大,光生电子在到达导带开始向颗粒表面活动的过程中很容易与光生空穴复合,从而从宏观上我们无法观察到光子激发的效果。但是纳米的二氧化钛颗粒由于尺寸很小,所以电子比较容易扩散到晶体表面,导致原本不带电的晶体表面的2个不同部分出现了极性相反的2个微区-光生电子和光生空穴。由于光生电子和光生空穴都有很强的能量,远远高出一般有机污染物的分子链的强度,所以可以轻易将有机污染物分解成最原始的状态。同时光生空穴还能与空气中的水分子形成反应,产生氢氧自由基亦可分解有机污染物并且杀灭细菌病毒。这种在一个区域内2个微区截然相反的性质并且共同达到效果的过程是纳米技术典型的应用,一般称之为二元论。该反应微区称之为二元协同界面。

二氧化钛光催化原理讲解学习

TiO2光催化氧化机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、CO 2和H 2 O等无害物质。 反应过程如下: 反应过程如下: TiO2+ hv → h+ +e- (3) h+ +e-→热能(4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6) e- +O2→ O2- (7)O2 + H+ → HO2·(8) 2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye→···→ CO2 + H2O (12) 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。 Ti02光催化氧化的影响因素 1、试剂的制备方法 常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

纳米光催化tio2的应用领域及现状

纳米光催化tio2的应用领域及现状 自1972年,A.Fujishima和K.Honda在n型半导体TiO2电极上发现了水的光电催化分解作用之后,国内外的研究人员对TiO2产生了深厚的兴趣。TiO2氧化活性较高,化学稳定性好,对人体无毒害,成本低,无污染,应用范围广,因而最受重视,是目前应用最广泛的纳米光催化材料,也是最具有开发前途的绿色环保型催化剂。应用领域纳米TiO2能处理多种有毒化合物,包括工业有毒溶剂、化学杀虫剂、木材防腐剂、染料及燃料油等,迄今详细研究过的有机物达100种以上。此外,TiO2光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使Hg2+被还原成Hg而沉积在TiO2表面;此法同样适用于铅。TiO2光催化可能降解的无机污染物还有氰化物,SO2、H2S、NO和NO2等有害气体也能被吸附在TiO2表面,在光的作用下转化成无毒无害物质。1.空气净化当前解决空气污染主要有物理吸附法(活性炭)、臭氧净化法、静电除尘法、负氧离子净化法等,但是这些方法自身都有着难以克服的弊端,所以一直难以大范围地推广使用。与其相比,利用纳米光催化TiO2净化空气则有如下优点:降解有机物的最终产物是CO2和H2O,没有其它毒副产物出现,不会造成二次污染;纳米微粒的量子尺寸效应导致其吸收光谱的吸收边蓝移,促进半导体催化剂光催化活性的提高;纳米材料比表面积很大,增强了半导体光催化剂吸附有机污染物的能力。利用纳米光催化TiO2治理空气污染已经得到广泛应用,国内外都出现了很多产品,例如纳米空气净化器、中央空调净化模块、光触媒涂料等,市场前景非常广阔。2.水处理传统的水处理方法效率低、成本高、存在二次污染等问题,污水治理一直得不到好的解决。纳米技术的发展和应用很可能彻底解决这一难题。研究表明,纳米TiO2能处理多种有毒化合物,可以将水中的烃类、卤代烃、酸、表面活性剂、染料、含氮有机物、有机磷杀虫剂、木材防腐剂和燃料油等很快地完全氧化为CO2、H2O等无害物质。此外,纳米TiO2在降解毛纺染料废水、有机溴(或磷)杀虫剂等到方面也有一定效果。无机物在TiO2表面也具有光化学活性。例如,废水中的Cr6+具有较强的致癌作用,在酸性条件下,TiO2对Cr6+具有明显的光催化还原作用。在pH值为2.5的体系中,光照1h后,Cr6+被还原为Cr3+。还原效率高达85%。迄今为止,已经发现有3000多种难降解的有机化合物可以在紫外线的照射下通过纳米TiO2或ZnO而迅速降解,特别是当水中有机污染物浓度很高或用其他方法很难降解时,这种技术有着明显的优势。德国开发出了利用阳光和光催化剂对污水进行净化的装置,每小时可净化100-150升水。虽然利用纳米光催化TiO2进行水处理目前还未得到广泛应用,但我们可以看出它未来的应用前景必将非常广阔。3.杀菌消毒纳米TiO2的杀菌作用是利用光催化产生的空穴和形成于表面的活性氧类与细菌细胞或细胞内的组成成分进行生化反应,使细菌头单元失活而导致细胞死亡,并且能使细菌死亡后产生的内毒素分解。研究表明:将TiO2涂覆在陶瓷、玻璃表面,经室内荧光灯照射1小时后可将其表面99%的大肠杆菌、绿脓杆菌、金黄色葡萄球菌等杀死。目前国外新型无机抗菌剂的开发与抗菌加工技术进展较快,已经形成系列化产品,其中TiO2高催化活性纳米抗菌剂是市场前景最好的品种。日本在TiO2光催化抗菌材料研究与应用起步较早,日本东陶等多家公司开发的光催化TiO2抗菌瓷砖和卫生洁具已经大量投放市场。日本将今后发展的目光投向欧美国际抗菌产品市场,预计海外市场将是其国内市场的10倍,他们也极其关注中国抗菌塑料近年来的迅猛发展,纷纷抢滩中国市场。应用现状在当今世界性的环境污染问题越来越受到各国政府重视的情况下,利用纳米材料进行环境治理已经成为各国高科技竞争中的一个热点。在纳米光催化方面日本、美国等国家均投入巨资开展研究与开发工作,并大力推动其产业化,目前已有多种产品出现,其中所使用的纳米光催化材料绝大多数都是TiO2。 纳米光催化tio2的应用领域及现状:1.日本日本对于纳米TiO2光催化的研究较早,现在已有多家日本公司生产出了多种纳米光催化的实用产品,见表1:表1日本前十大催化公司及其主要产品公司名称

(精选)半导体材料光催化作用的机理

半导体光催化机理 纳米二氧化钛主要有二种晶体结构,即:锐钛矿和金红石。它们的结构基本单位都是TiO 6八面体,其结构如图1-1所示。二种结构的不同在于八面体的扭曲程度和连接形式。锐钛矿结构由TiO 6八面体通过共边组成,而金红石结构则由共顶点且共边组成。利用纳米TiO 2为光催化剂,在溶液或空气中发生多相光催化降解污染物的反应过程大致包括以下几个主要步骤[5]: 1)TiO 2在光的照射下,被能量大于或等于其禁带宽度的光子所激发,产生具有一定能量的光生电子(e -)和空穴(h +); 2)光生电子(e -)和空穴(h +)在TiO 2颗粒的内部以及界面之间的转移或失活; 3)光生电子(e -)和空穴(h +)到达TiO 2粒子表面并与其表面吸附物质或溶剂中的物质发生相互作用,即发生氧化还原反应,从而产生一些具有强氧化性的自由基团(?OH ,O 2-)和具有一定氧化能力的物质(H 2O 2)。 4)上述产生的具有强氧化性的自由基团和氧化性物质与被降解污染物充分作用,使其氧化或降解为CO 2与H 2O 。 Fig. 1-1 Ti -O 6 octahedron 图1-1 钛氧八面体 H OH Organic h e +— E g O 2O 2-H 2O OH +2-water 2 2Compounds CO 2 2VB CB sun hv + - ·OH Fig. 1-2 Schematic diagram of photocatalytic degradation on semiconductor photocatalysts (TiO 2) [6]

图1-2 半导体光催化反应原理示意图(TiO 2 )[6] 以锐钛矿TiO 2光催化材料为例,当TiO 2 光催化剂受到大于其禁带能量的光 照射时,在其内部和表面都会产生光生电子和光生空穴。一部分光生电子和光生空穴参与光催化反应,另外一部分光生电子与空穴会立即发生复合,以热量的形式散发出去。如果二氧化钛中没有电子和空穴俘获剂,储备的光能在几毫秒的时间内就会通过光生电子和空穴的复合以热能的形式释放出来,或以其它形式散发掉;如果在二氧化钛的表面或者体相中有俘获剂或表面缺陷态时,能够有效阻止光生电子和空穴的重新复合,使电子和空穴有效转移,从而能在催化剂表面发生一系列的氧化-还原反应,将吸收的光能转换为化学能。如图1-2所示[6,7]。以下是一些具体的化学反应式: TiO 2 + h→ h vb+ + e cb- (1-1) h vb + + e cb -→ heat (1-2) h vb + + H 2 O →·OH + H+ (1-3) h vb + + OH-→·OH (1-4) e cb - + O 2 →O 2 -· (1-5) O 2-· + O 2 -· + 2H+→H 2 O 2 + O 2 (1-6) O 2-· + H+→HO 2 · (1-7) HO 2· + H+ + e cb -→H 2 O 2 (1-8) H 2O 2 + h→2·OH (1-9) H 2O 2 + e cb -→·OH + OH- (1-10) 上面的反应式子中,羟基自由基(·OH)和超氧离子自由基(·O 2 -)都有很强 的氧化性,无论它们在气相还是在液相中,都能将一些有机或无机物质氧化,因此,一般认为,·OH和·O 2 -是光催化氧化中主要的也是最重要的活性基团,可 以氧化包括自然界中生物难以转化的各种有机物污染物并使之最后降解成CO 2 、 H 2 O和无毒矿物。对反应的作用物几乎没有选择性,在光催化氧化反应过程中起着决定性作用。而且由于它们的氧化能力强,氧化反应一般不会停留在中间步骤,因而一般不会产生中间副产物。故这种深度氧化的过程在处理环境污染物中具有很大的应用前景,例如:水中的无机、有机污染物卤代烃、芳烃、染料、杀虫剂和除草剂等物质均可根据此原理进行降解除去。但是它们的最大缺点之一是对反应物没有选择性,一定程度上制约了其发展。

相关主题
文本预览
相关文档 最新文档