当前位置:文档之家› 奥数 容斥原理(例题+详解)

奥数 容斥原理(例题+详解)

奥数 容斥原理(例题+详解)
奥数 容斥原理(例题+详解)

容斥原埋

在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。

例1、桌上有两张圆纸片A、B.假设圆纸片A的面积为30平方厘米,圆纸片B的面积为20平方厘米.这两张圆纸片重叠部分的面积为10

平方厘米.则这两张圆纸片覆盖桌面的面积由

容斥原理的公式(1)可以算出为:|A∪B|=30+20-10=40(平方厘米)。

例2、求在1至100的自然数中能被3或7整除的数的个数。

分析解这类问题时首先要知道在一串连续自然数中能被给定整数整除的数的个数规律是:在n个连续自然数中有且仅有一个数能被n整除.根据这个规律我们可以很容易地求出在1至100中能被3整除的数的个数为33个,被7整除的数的个数为14个,而其中被3和7都能整除的数有4个,因而得到

解:设A={在1~100的自然数中能被3整除的数},

B={在1~100的自然数中能被7整除的数},则

A∩B={在1~100的自然数中能被21整除的数}。

∵100÷3=33…1,∴|A|=33。

∵100÷7=14…2,∴|B|=14。

∵100÷21=4…16,∴|A∩B|=4。

由容斥原理的公式(1):|A∪B|=33+14-4=43。

答:在1~100的自然数中能被3或7整除的数有43个。

例3、求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?

分析如果在1~100的自然数中去掉5的倍数、6的倍数,剩下的数就既不是5的倍数也不是6的倍数,即问题要求的结果。

解:设A={在1~100的自然数中5的倍数的数},

B={在1~100的自然数中6的倍数的数},

数.为此先求|A∪B|。

∵100÷50=20,∴|A|=20

又∵100÷6=16…4,∴|B|=16

∵100÷30=3…10,

∴|A∩B|=3,

|A∪B|=|A|+|B|-|A∩B|=20+16-3=33。

答:在1~100的自然数中既不是5的倍数又不是6的倍数的数共67个。

我们也可以把公式(1)用于求几何图形的面积.这时,A和B是平面上的两个点集(即点的集合),都是几何图形.|A|,|B|,…分别表示A的面积,B的面积,…。

例4、设下面图中正方形的边长为1厘米,半圆均以正方形的边为直径,求图中阴影部分的面积。

答:阴影面积为0.57平方厘米。

上面的例子是把一组事物按两种不同的性质来分类后,求具有其中一种性质的元素个数问题.如果把一组事物按三种不同性质来分类后,求具有其中一种性质的元素个数的公式该是什么样的呢?我们仍用图形来说

明它具有与公式(1)类似的公式:

|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|,(2)

其中A∪B∪C=A∪(B∪C),A∩B∩C=A∩(B∩C).

右图中三个圆A、B、C分别表示具有三种不同性质的集合,并如图用M1、M2、M3、…、M7表示由三个圆形成的内部互不重叠的部分所含元素的个数,可见:

|A∪B∪C|=M1+M2+…+M7

=(M1+M4+M6+M7)+(M2+M4+M5+M7)+(M3+M5+M6+M7)-[(M4+M7)+(M5+M7)+(M6+M7)]+M7=|A|+|B|+|C|-|A∩B|-|B∩C|-|A∩C|+|A∩B ∩C|,

即公式(2)成立。

事实上这个规律还可推广到按多种性质来分类的情形.设集合M中的每个元素至少具有t种性质中的一种,用n1表示各个具有1种性质的集合中的元素个数的和,n2表示各个具有2种性质的集合中元素个数的和,…,n t表示具有t种性质的集合中元素的个数,则集合M中元素的个数m为:

m=n1-n2+n3-n4+…±n t

最后一项当t为偶数时取“-”号,否则取“+”号。

容斥原理公式及运用

容斥原理公式及运用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理

如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

7-7-5 容斥原理之最值问题.教师版

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进 来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次, 多加了1次. 2.再排除:A B C A B B C A C ++---

《三集合容斥原理》

三集合容斥原理 华图教育梁维维 我们知道容斥原理的本质是把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复的一种计数的方法。之前我们叙述过了两集合容斥原理,下面我们来看一下三集合容斥原理,相对于两集合容斥原理而言,三集合容斥原理的难度有所增加,但总体难度适中,所以三集合容斥原理在国家公务员考试中出现的频率较高,在其他省份考试以及各省份联考当中也时有出现,下面我们了解一下三集合容斥原理的公式。 三集合容斥原理公式: 三者都不满足的个数。 总个数- = + - - - + + =| | | | | | | | | | | | | || |C B A C B C A B A C B A C B A 有些问题,可以直接代入三集合容斥原理的公式进行求解。 【例1】如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?( ) A.15 B.16 C.14 D.18 【解析】依题意,假设阴影部分的面积为x,代入公式可得:64+180+160-24-70-36+x=290,解得x=16,正确答案为B选项。 近几年,直接套用三集合公式的题目有所减少,开始出现条件变形的题目,往往告诉大家“只满足两个条件的共有多少”这样的信息,看似无法直接套用公式,其实只要掌握本质,仍然可以直接套用公式。 【例2】(2012河北-44)某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?() A. 148 B. 248

四年级奥数容斥原理

四年级奥数容斥原理 数学是思维的体操,问题是数学的心脏!四年级(高年级)数学思维训练 第4课包容与排斥——包容与排斥原理 知识点我们以前遇到过这样的问题吗:从左边看,小明排在第8位,从右边看,小明排在第15位,这一排有多少人?这个问题就是小明是否被反复算计了。如果计算结果没有重复且没有遗漏,则需要排除重复计数。这种计数方法是宽容和排斥的原则,也称为重叠问题。要解决这样的问题,我们还可以用韦恩图来分析定量关系小明有1人 8人,15人 。通常,首先计算所有涉及的量,然后排除重叠部分。我们可以计算出不重复和不遗漏的数量:8+15-1=22(人) 经典范例 例1: 4 (2)班有28名中国兴趣小组的参与者,29名数学兴趣小组的参与者,12名两个小组的参与者,这个班有多少人参加过语文或数学兴趣小组? 先画一个维恩图分析定量关系,然后用包含和排除的方法计算

数学变成了一件非常轻松愉快的事情!你发现了吗? - 1- 四年级(高年级)数学思维训练 模仿训练 学校文艺组的每个学生至少能弹一架钢琴和手风琴。众所周知,有24个人会弹钢琴,17个人会拉手风琴,8个人会两种乐器。文艺小组有多少人? 经典示例 示例2:一家餐厅有40道招牌菜,其中妞妞吃了15道,丁丁吃了9道,两个人都吃了4道。有多少招牌菜没有吃过?首先计算他们吃了什么,然后计算他们没吃什么。 模仿练习 在参加采摘活动的46人中,只有18人采摘了樱桃,7人采摘了樱桃和杏子,6人既不摘樱桃也不摘杏子,有多少人采摘了杏子? 数学会让你成为一个好的发现孩子! - 2- 数学是思维的体操,问题是数学的心脏!四年级(高年级)数学思维训练 经典例题

小学奥数之容斥原理

五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是 解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。 3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

容斥原理问题

容斥原理问题——基础学习 一、解答题

2、两个集合容斥原理例1:四年级一班有54人,定阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订阅《小学生优秀作文》的有45人每人至少订阅一种读物,订阅《数学大世界》的有多少人?() A.13 B.22 C.33 D.41 【答案】B 【解题关键点】设A={定阅《小学生优秀作文》的人},B={订阅《数学大世界》的人},那么A∩B={同时订阅两本读物的人},A∪B={至少订阅一样的人},由容斥原则,B= A∪B+A∩B-A=54+13-45=22人。 【结束】 3、两个集合容斥原理例2:五年级有122名同学参加语文、数学考试,每个至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。语文、数学都优秀的有多少人?() A. 30 B.35 C.57 D.65 【答案】A

【解题关键点】此题是典型的两个集合的容斥问题,因此,可以直接有两个集合的容斥原理得到,语文和数学都优秀的学生有65+87-122=30人。 【结束】 4、两个集合容斥原理例3:学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。这个文艺组共有多少人?()A.25 B.32 C.33 D.41 【答案】C 【解题关键点】设A={会拉手提琴的},B={会弹电子琴的},因此A∪B ={文艺组的人},A∩B={两样都会的},由两个集合的容斥原理可得:A∪B=A+B- A∩B=24+17-8=33。 【结束】 5、两个集合容斥原理例4:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人,问多少个同学两道题都没有答对?()A.1 B.2 C.3 D.4 【答案】C 【解题关键点】有两个集合的容斥原理得到,至少答对一道题的同学有25+23-15=33人,因此两道题都没有答对的同学有36-33=3人。 【结束】

四年级奥数讲义容斥原理

四年级数学讲义 奥数:容斥原理(1) 教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。 2、培养学生的逻辑思维和数学思考能力。 3、培养学生良好的书写习惯。 一、教学衔接 二、教学内容 (一)知识介绍 容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。 容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。 (二)例题精讲 例1、一个班有48人,班主任在班会上问: “谁做完语文作业?请举手!”有37人举手。又问:“谁做完数学作业?请 举手!”有42人举手。最后问:“谁语文、数学作业都没有做完?”没有人 举手。求这个班语文、数学作 业都完成的人数。 【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。所以,这个班语文、数作业都完成的有:79-48=31人。 例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对? 【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。所以,两题都答得不对的有36-33=3人。 例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人? 【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。 例4、1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个? 【分析与解答】从1到100的自然数中,减去5或6的倍数的个数。从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。因此,是6或5的倍数的个数是16+20-3=33个,既不是5的倍 Nab Nb Na

小学奥数教程之容斥原理

学习奥数的优点 1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。 2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思 维更敏捷,考虑问题比别人更深层次。 3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。可以养成坚韧不拔的毅力 4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。 容斥原理 学生姓名授课日期 教师姓名授课时长 知识定位 容斥原理中的知识点比较简单,是计数问题中比较浅的一支。这个知识点经常和 数论知识结合出综合型题目。这个原理本身并不是很难理解,不过经常和数论知 识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。 1.充分理解和掌握容斥原理的基本概念 2.利用图形分析解决容斥原理问题 知识梳理 授课批注: 本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论 知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念 定义 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A|表示有限集A 的元素个数。求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数, 用式子可表示成:|A∪B| = |A| + |B| - |A∩B|, 我们称这一公式为包含与排除原理,简称容斥原理。图示如右:A 表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分, 记为:A∩B,即阴影面积。 用法: 包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行: 第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数) 二.竞赛考点 1.容斥原理的基本概念 2.与数论相结合的综合型题目 例题精讲 【试题来源】 【题目】 在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。其中6人买了汽水,6人买了可乐,4人买了果汁,有3人既买了汽水又买了可乐,1人既买了汽水又买了果汁,2人既买了可乐又买了果汁。问: (1)三样都买的有几人? (2)只买一样的有几人? 【答案】0,4 【解析】(1)设三样都买的学生有a人,那么6+6+4-3-1-2+a=10,解得a=0,所以没有人三种东西都买了. (2)去冷饮店的学生中除了买一样的外,只有买两样东西的,因为买两样东西的有3+1+2=6(人),所以买一样东西的学生有10-6=4(人). 【知识点】容斥原理 【适用场合】当堂例题 【难度系数】3

容斥原理

容斥原理(Inclusion–exclusion principle),是指在计数时,必须注意无一重复,无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 公式 也可表示为 设S为有限集,,则 两个集合的容斥关系公式:A∪B=A+B-A∩B(∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C 详细推理如下: 1、等式右边改造={[(A+B-A∩B)+C-B∩C]-C∩A}+A∩B∩C 2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C 3、等式右边()里指的是下图的1+2+3+4+5+6六部分: 那么A∪B∪C还缺部分7。 4、等式右边[]号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分,减去B∩C(即5+6两部分)后,还多加了部分4。 5、等式右边{}里减去C∩A(即4+5两部分)后,A∪B∪C又多减了部分5, 则加上A∩B∩C(即5)刚好是A∪B∪C。 2严格证明 对于容斥原理我们可以利用数学归纳法证明: 证明:当时,等式成立()。 假设时结论成立,则当时, 所以当时,结论仍成立。因此对任意,均可使所证等式成立。 3原理1

如果被计数的事物有A、B两类,那么,A类B类元素个数总和=属于A类元素个数+属于B类元素个数—既是A类又是B类的元素个数。(A∪B=A+B-A∩B) 例1一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 分析 依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B 类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。 答案 15+12-4=23 试一试 电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。两个频道都没看过的有多少人? 100-(62+34-11)=15 4原理2 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和=A 类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。(A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C) 例1 某校六⑴班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 分析:参加足球队的人数25人为A类元素,参加排球队人数22人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。注意:这个

容斥原理练习题解析版

容斥原理练习题 【练习 1】47 名学生参加数学和语文考试,其中语文得分 95 分以上的 14 人, 数学得分 95 分以上的 21 人,两门都不在 95 分以上的有 22 人.问:两门都在 95 分以上的有多少人? 【解析】如图,用长方形表示这47 名学生, A 圆表示语文得 分95 分以上的人数,B 圆表示数学得95 分以上的人数,A 与 B 重合的部分表示两门都在95 分以上的人数,长方形内两圆外的部分表示两门都不在95 分以上的人数. 由图中可以看出,全体人数是至少一门在95 分以上的人数与两门都不在95 分以 上的人数之和,则至少一门在95 分以上的人数为: 47 - 22 = 25 (人).根据包含排除法,两门都在95 分以上的人数为:14 + 21 - 25 = 10 (人). 【练习 2】某班有 42 人,其中 26 人爱打篮球,17 人爱打排球,19 人爱踢足球, 9 人既爱打篮球又爱踢足球,4 人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人? 【解析】由于全班42 人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42 人.根据包含排除法, 42 =(26 + 17 + 19)-(9 + 4 + 既爱打篮球又爱打排球的人数)+ 0 ,得到既爱打篮球又爱打排球的人数为: 49 - 42 = 7 (人). 95分以上的 数学95分以上的 B 不在 两门95分以上的 语文95分以上的 A 两门都

【练习 3】四(二)班有48 名学生,在一节自习课上,写完语文作业的有30 人,写完数学作业的有20 人,语文数学都没写完的有6 人. (1)问语文数学都写完的有多少人? (2)只写完语文作业的有多少人? 【解析】(1)由题意,有48 - 6 = 42 (人)至少完成了一科作业,根据包含排除原理,两科作业都完成的学生有:30 + 20 - 42 = 8 (人). (2)只写完语文作业的人数=写完语文作业的人数-语文数学都写完的人数,即30 - 8 = 22 (人) 【练习 4】某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34 人,手中有黄旗的共有26 人,手中有蓝旗的共有18 人.其中手中有红、黄、蓝三种小旗的有6 人.而手中只有红、黄两种小旗的有9 人,手中只有黄、蓝两种小旗的有4 人,手中只有红、蓝两种小旗的有3 人,那么这个班共有多少人? 【解析】如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:(34+ 26 +18)-(9+ 4 + 3)- 6 ? 2 = 50 (人). A B C

2013高中数学奥数培训资料之容斥原理

2013高中数学奥数培训资料之容斥原理(内部资料) §24容斥原理 相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。 容斥原理:以表示集合A中元素的数目,我们有 ,其中为n个集合称为A的阶。 n阶集合的全部子集数目为。 例题讲解 1.对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例如,集合 的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。 那么,对于n=7。求所有子集的“交替和”的总和。 2.某班对数学、物理、化学三科总评成绩统计如下:优秀的人数:数学21个,物理19个,化学20个,数学物理都优秀9人,物理化学都优秀7人。化学数学都优秀8人。这个班有5人任何一科都不优秀。那么确定这个班人数以及仅有一科优秀的三科分别有多少个人。 3.计算不超过120的合数的个数

4.1992位科学家,每人至少与1329人合作过,那么,其中一定有四位数学家两两合作过。 5.把个元素的集合分为若干个两两不交的子集,按照下述规则将某一个子集中某些元素 挪到另一个子集:从前一子集挪到后一子集的元素个数等于后一子集的元素个数(前一子集的元素个数应不小于后一子集的元素个数),证明:可以经过有限次挪动,使得到的子集与原集合相重合。 6.给定1978个集合,每个集合都含有40个元素,已知其中任意两个集合都恰有一个公共元,证明:存在一个元素,它属于全部集合。 7.在个元素组成的集合中取个不同的三元子集。证明:其中必有两个,它们恰有一个公共元。

容斥原理公式及运用

容斥原理公式及运用 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩

B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B ∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩ A=45-25-22-24+12+9+8=3人。

第14讲 小升初奥数容斥原理

容斥原理 一、两量重叠问题 求两个集合并集的元素的个数,从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“ ”读作“并”,相当于中文“和”或者“或”的意思;符号“ ”读作“交”,相 当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理. 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素 个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 一、两量重叠问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数. 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次, 多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.

例1、两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米? 举一反三、有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那 么这两个图形盖住桌面的面积是多少平方厘米。 例2、实验小学六年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这 个班有多少人参加了语文或数学兴趣小组? 举一反三、一个班48人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没 完成语文作业;一种是语文、数学作业都完成了.已知做完语文作业的有37人;做完数学作业的有42人.这些人中语文、数学作业都完成的有多少人? 图3 2厘米 4厘 米

容斥原理公式及运用完整版

容斥原理公式及运用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】??一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】??某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

行测答题技巧:容斥原理之三者容斥问题

行测答题技巧:容斥原理之三者容斥问题 中公教育考试研究院宋丽娜:容斥原理是行测数学运算中常考知识点。容斥原理是指在计数时,必须注意无一重复,且无遗漏。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 例1:一个班级的学生数学和语文每人至少喜欢其中一种,其中喜欢数学课的有49人,喜欢语文课的有52人,二者都喜欢的有21人,则这个班级有多少人? 中公点拨:本题就是一个容斥问题,解决此问题的方法就是先算:49+52=101(把含于某内容中的所有对象的数目先计算出来),然后再把计数时重复计算的数目排斥出去即: 101-21=80人,则整个班级的人数就有80人。 三者容斥问题是行测数学运算中常考也相对较复杂的容斥问题。所谓三者容斥是指在题干中有三种集合(集合就是具有共同属性所以元素的的整体,例如上题中喜欢数学的人构成一个集合)。 三者容斥问题有一个基本公式:A,B,C代表三个集合,则有 A∪BUC=A+B+C-A∩B-A∩C-B∩C+ A∩B∩C 这个公式表达的含义是,A+B+C再减去两两相交之后,中间E(即A∩B∩C)这部分被减没

了。而容斥原理的基本思想是计数时不重复不漏掉,故要再加回来,所以又加了一个A∩B∩C。例2. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人。篮球和排球都喜欢的多少人? 中公教育解析:由题意可画图如下: 则有上述公式可知: 58+68+62-45-33-篮球和排球都喜欢+12=100人 故喜欢篮球和排球的人有22人。 例3. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。结果显示:其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人,还有5人三种球都不喜欢,则篮球和排球都喜欢的多少人?

举一反三- 四年级奥数 - 第35讲 容斥原理

第35讲容斥原理 一、专题简析: 容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。 容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。 Nab Nb Na 二、精讲精练: 例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。又问:“谁做完数学作业?请举手!”有42人举手。最后问:“谁语文、数学作业都没有做完?”没有人举手。求这个班语文、数学作业都完成的人数。 练习一 1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人?

2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人? 例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对? 练习二 1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。那么,有多少人两个小组都没有参加?

2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。两种报纸都没有订阅的有多少人? 例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人? 练习三 1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。两样都会的有多少人? 2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。问这两种棋都会下的有多少人?

小学数学六年级奥数《容斥原理(1)》练习题(含答案)

小学数学六年级奥数《容斥原理(1)》练习题(含答案) 一、填空题 1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有 人. 2.有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是 平方厘米. 3.在1~100的自然数中,是5的倍数或是7的倍数的数有 个. 4.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为 人. 5.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 人. 6.在1至10000中不能被5或7整除的数共有 个. 7.在1至10000之间既不是完全平方数,也不是完全立方数的整数有 个. 8.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有 人. 9.分母是1001的最简真分数有 个. 10.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有 人,最多有 人. 二、解答题 11.某进修班有50人,开甲、乙、丙三门进修课、选修甲这门课的有38人,选修乙这门课有的35人,选修丙这门课的有31人,兼选甲、乙两门课的有29人,兼选甲、丙两门课的有28人,兼选乙、丙两门课的有26人,甲、乙、丙三科均选的有24人.问三科均未选的人数? 12.求小于1001且与1001互质的所有自然数的和. 13.如图所示,A 、B 、C 分别代表面积为8、9、11的三张不同形状的纸片,它们重叠放在一起盖住的面积是18,且A 与B ,B 与C ,C 与A 公共部分的面积分别是5、3、4,求A 、B 、C 三个图形公共部分(阴影部分)的面积. 6

集合整体重复型公式巧解容斥原理问题

行测数学运算技巧:三集合整体重复型公式巧解容斥原理问题 一、介绍三集合整体重复型核心公式 在三集合题型中,假设满足三个条件的元素数量分别是A、B和C,而至少满足三个条件之一的元素的总量为W。其中,满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,可以得到以下两个等式: W=x+y+z A+B+C=x×1+y×2+z×3 二、典型的三集合整体重复型的题目讲解 例1、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(2004年浙江公务员考试行测第20题) A. 15人 B.16人 C.17人 D.18人 【答案】A 解析:此题有两种解法可以解出: 解一:分别设只参加英语和语文、英语和数学、语文和数学小组的人为x、y、z,则只参加英语小组的人为17-5-x-y,只参加语文小组的人有30-5-x-z,只参加数学小组的人有13-5-y-z,则只参加三个小组中的一个小组的人和只参加其中两个小组的人和三个小组都参加的人的总和为总人数,即17-5-x-y+30-5-x-z+13-5-y-z+x+y+z+5=35。则求x+y+z=15,所以只参加一个小组的人数的和为15。 解二:套用三集合整体重复型公式: W=x+y+z A+B+C=x×1+y×2+z×3 35=x+y+5 17+30+13=x×1+y×2+5×3 解得:x= 15,y=15

例2、某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影全看过,20人一部也没有看过,则只看过其中两部电影的人数是( )(2009年江苏公务员考试行测A类试卷第19题) A. 69 B.65 C.57 D.46 【答案】D 解析:本题也是一道典型的三集合整体重复型题目,直接套用三集合整体重复型公式: W=x+y+z A+B+C=x×1+y×2+z×3 这里需要注意的是W=105,而非125, 105=x+y+24 89+47+63=x×1+y×2+24×3 两个方程,两个未知数,解出y=46,这里y表示只看过两部电影的人数,即所求。 例3、某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试?准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?(2010年国家公务员考试行测第47题) A. 120 B.144 C.177 D.192 【答案】A 解析:本题的特征也很明显,直接套用公式,只是要注意的是,题目中最后问的是接受调查的总人数,我们求出W之后,还需要再加上不参加其中任何一种考试的那15个人, W=x+46+24 63+89+47=x×1+46×2+24×3 通过解方程,可以求出W=105,这只是至少准备参加一种考试的人数,所以接受调查的总人数为105+15=120。 例4、某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?(2011 年国家公务员考试行测试卷第74题) A. 37 B.36 C.35 D.34

六年下册奥数试题-容斥原理(一)全国通用(含答案)

第9讲容斥原理(一) 森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有80种鸟类。狮子大王又派大象去统计野兽的种类数,蝙蝠听说又统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有60种兽类。最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类140种。”这个统计正确吗? 同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是139种。”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。例如:请看下图,在长为30厘米,宽为20厘米的长方形铁板上钻了一个半径为5厘米的圆孔,请问:阴影部分的面积是多少平方厘米? 这个图形是一个不规则图形,如果我们直接计算很难,由上图容易看出阴影面积加圆面积恰好等于长方形面积,而长方形面积与圆的面积都很好计算,因而有:阴影面积=20×30-5×5×π=600-25π(平方厘米)。 由此我们得到排除法:两个分量之和等于总量,当计算一个分量时,可用总量减去另一个分量。即若A+B=C,则A=C-B。请看下面的例题。 例1 一个班有学生48人,每人至少参加跑步、跳高两项比赛中的一项。已知参加跑步的有37人,参加跳高的有40人,请问:这两项比赛都参加的学生有多少人? 分析:两项比赛都参加的学生人数,就是参加跑步人数、参加跳高人数重复的部分,排除掉重复部分,所得的就是全体参赛人数,也就是全班学生人数。 解答:设两项比赛都参加的有人,那么 (37+40)-=48 =29 说明:通过上题我们发现,解答这类问题最好先画图,它可以帮助我们分析数量关系。另外我们还发现在解答问题时可以分两步进行:第一步先把两类数量加在一起,即都“包含”进。37+40=77,第二步再减掉一个班有学生48人,这个数量,即“排除”,就可以求出正确答案了。77-48=29。还可以这样计算:40-(48-37)=29人。你能讲出道理吗?请你想一想,你还能再列出一种算式吗? 想一想:如果全班有3人哪一个比赛项目都不参加,将会得出什么结果? 说明:一般地,假设具有性质A的事物(人)有A个,具有性质B的事物(人)有B 个,既具有性质A,又具有性质B的事物(人)有AB个,至少具有A、B中一种性质的事物(人)有个,那么:=(A+B)-AB。这个关系式可用下图表示:

相关主题
文本预览
相关文档 最新文档