当前位置:文档之家› 25HZ轨道电路故障处理及日常维护

25HZ轨道电路故障处理及日常维护

25HZ轨道电路故障处理及日常维护
25HZ轨道电路故障处理及日常维护

题 目:25HZ 轨道电路故障处理及日常维护 专 业: 自动化

目录

摘要................................................................ I 第1章前言 (1)

1.1 轨道电路概述22222222222222222222222221

1.1.1 轨道电路作用及构成22222222222222222221

1.1.2 轨道电路的原理2222222222222222222221

1.1.3 轨道电路分类22222222222222222222221

1.1.4 轨道电路的工作状态22222222222222222222 第2章 25Hz轨道电路 (1)

2.1 25Hz轨道电路概述22222222222222222222221

2.1.2 25Hz相敏轨道电路的发展22222222222222221

2.1.2 25HZ轨道电路的特点2222222222222222222 2.2 97型25 Hz相敏轨道电路的运用特性 (2)

2.2.1 97型25 Hz相敏轨道电路范围222222222222222

2.2.2 97型25 Hz相敏轨道电路主要特点2222222222222

2.2.3 97型25 Hz相敏轨道电路主要技术指标22222222223

2.2.4 97型25 Hz相敏轨道电路工作原理2222222222224 第3章 25Hz轨道电路的组成 (5)

3.1 25Hz轨道电路设备的基本组成 (5)

3.2 97型25 Hz相敏轨道电路的元器件 (5)

第4章 25HZ轨道电路的故障处理及日常维护 (7)

4.1 轨道电路的处理程序 (7)

4.2 97型25HZ相敏轨道电路故障查找方法 (7)

第5章常见故障的分析与判断 (9)

5.1 常见故障的判断方法 (9)

5.2 常见故障案例 (13)

第6章轨道电路的日常维护与常见仪表的使用 (15)

6.1 轨道电路的日常维护工作 (15)

6.2 仪表的使用 (16)

结束语 (17)

致谢 (18)

参考文献 (19)

摘要

轨道电路使用97型25Hz相敏轨道电路。在使用中为了加强对轨道电路的认识与理解,为站内轨道电路发生故障能够提供理论依据以及处理故障的快速有效的方法。

本文研究了道电化区段的轨道电路使用25HZ轨道电路的必要性,25HZ轨道电路的工作原理及使用各部件的用途。

总结并研究97型25Hz相敏轨道电路室内外故障的种类、查找顺序、一般规律和具体方法。特别详细阐述了在查找短路故障中采用的电压表法、欧姆表法和卡流表法。

并且本文对轨道电路中可能发生的典型进案例进行了故障分析。

关键字:工作原理轨道电路故障查找方法

第1章前言

使用的轨道电路就是97型25 Hz相敏轨道电路,通过这次对轨道电路的技术指标及相关技术标准,轨道电路的工作原理各部件的相关联作用来研究故障处理应该从什么地方入手,及日常维护工作将在什么地方需要多注意。

1.1 轨道电路概述

1.1.1轨道电路作用及构成

轨道电路是铁路信号自动控制的基础设备。利用轨道电路可以自动检测列车、车辆的位置,控制信号机的显示;通过轨道电路可以将地面信号传递给机车,从而可以控制列车运行。轨道电路是以铁路线路的两根钢轨作为导体,两端加以电气绝缘或电气分割,并接上送电和受电设备构成的电路。

1.1.2轨道电路的原理

当两根钢轨完整,且无车占用,即轨道电路空闲时,电流通过两根钢轨和轨道继电器,使轨道继电器吸起,前接点闭合,信号开放。当列车占用轨道电路时,电流通过机车车辆轮对,轨道电路被分路。由于轮对电阻比轨道继电器电阻小得多,使电源输出电流显著加大,限流电阻上的压降随之增加,两根钢轨间的电压降低,流经轨道继电器的电流减少到它的落下值,使轨道继电器落下,后接点闭合,信号关闭。同时,当轨道电路发生断轨、断线时,同样会使轨道继电器落下。

1.1.3轨道电路分类

1、按轨道电路的工作方式分为开路式和闭路式轨道电路。闭路式轨道电路能够检查轨道电路的完整性,所以目前信号设备中多采用闭路式轨道电路。

2、按牵引电流通过方式分为单轨调和双轨条轨道电路。双轨条轨道电路工作比单轨条轨道电路稳定可靠,极限长度基本上可以满足闭塞分区长度的要求,但成本高。电气化区段多采用双轨条轨道电路。

3、按相邻钢轨线路的分割方法分绝缘节式和无绝缘节式轨道电路。

4、按信号电流性质分直流、和交流;连续式和脉冲式供电等几种。我国目前应用的有:50Hz轨道电路、25Hz相敏轨道电路、微电子交流计数轨道电路和移频轨道电路(有4信息、8信息、18信息和UM71、ZPW2000)。

1.1.4轨道电路的工作状态

根据轨道电路的基本要求,在设计、计算和研究时,应分析以下三个状态:

1.调整状态是轨道电路空闲、线路完整,受电端正常工作时的轨道电路状态;其最不利条件是参数的变化是通过轨道继电器的电流最小,即电源电压最小,钢轨阻抗最大而道渣电阻最小。

2.分路状态是两条钢轨间被列车车轮对或其他导体连接,使轨道电路受电端设备能反映轨道被占用的轨道电路状态;其最不利条件是参数的变化是通过轨道继电器的电流最大,即电源电压最大,钢轨阻抗最小而道渣电阻最大。

3.断轨状态是轨道电路的钢轨被折断时,轨道电路受电端设备能反映钢轨断轨的轨道电路状态;其最不利条件是参数的变化是通过轨道继电器的电流最大,除了与电源电压最大,钢轨阻抗最小有关系外,还与断轨地点和道渣电阻大小有关。

第2章 25Hz轨道电路

2.1 25Hz轨道电路概述

2.1.1 25Hz相敏轨道电路的发展

1.国外25Hz相敏轨道电路的使用情况。

原苏联和日本于20世纪60年代初研制成功。

2.国内25Hz相敏轨道电路的发展。

⑴我国于1978年底,开始研制25Hz相敏轨道电路。

⑵97型25Hz相敏轨道电路

1997年进行了改进,为区别旧型称为97型。

⑶微电子相敏接受器25Hz相敏轨道电路

⑷适配器型25Hz相敏轨道电路

⑸分路不良区段研制的3V化、UI型

2.1.2 25HZ轨道电路的特点。

25 Hz相敏轨道电路采用了二元二位轨道继电器,该继电器具有可靠的频率选择性和相位选择性,故不需设滤波器,就能满足“故障—安全”要求,因而可以设计成连续供电式轨道电路,做到设备简单、工作稳定、应变速度快、便于维修、防雷性能良好;

采用集中调相,只需要根据轨道电路长度调节供电电压;

由于轨道电源消耗功率小,而且25HZ时钢轨阻抗值较低,所以在功率消耗和轨道电路的传输长度方面有一定优势。

2.2 97型25 Hz相敏轨道电路的运用特性

2.2.1 97型25 Hz相敏轨道电路范围

1. 适用于钢轨内牵引总电流不大于800A,钢轨内不平衡牵引电流不大于60A的交流电气化牵引区段的站内及预告的轨道区段。

2. 适用于非电气化牵引区段的站内及预告的轨道区段

2.2.2 97型25 Hz相敏轨道电路主要特点

1. 提高了绝缘破损防护性能;

2. 取消不设扼流变压器的送、受电端;

3. 扼流变压器经等阻线与钢轨连接;

4. 电源屏的优化配置;

5. 二元二位继电器的优化:

后点压力由原0.147 N增到0.196 N。返还系数由原0.5增至0.55。消除了因翼片碰撞外罩,而造成卡阻的可能故障。

6 .增加扼流变压器的类型;

7.极限长度延长;

8提高了系统抗干扰能力。

2.2.3 97型25 Hz相敏轨道电路主要技术指标

⑴适用于钢轨连续牵引总电流不大于800 A、不平衡电流不大于60 A的交流电气化区段的站内和预告区段的轨道电路。不设扼流变压器时,也可用于电气化区段内无电力机车行驶和非电气化区段的站内和预告区段的轨道电路。

⑵50Hz电压为160V~260V范围内钢轨阻抗不大于0.62∠42°km/Ω、道碴最小电阻不小于0.6Ω2km,在极限长度范围内,能可靠地满足调整和分路的要求,并能实现一次调整。

⑶单受的轨道电路若不带无受电分支和为增设非轨道电路用的扼流变压器时,极限长度为:

带双扼流变压器和无扼流变压器均为1.5 km 。

⑷ 一送多受的轨道电路,以标准的0.06 Ω分路电阻在区段内任意点分路时,保证至少有一个轨道继电器可靠释放。

⑸ 每段轨道电路最多可设四个扼流变压器(包括空扼流变压器)。

⑹ 能实现叠加或预叠加电码化。

⑺ 在无迂回回路的条件下,任何故障均有可靠的分路检查。

2.2.4 97型25 Hz 相敏轨道电路工作原理

25Hz 轨道电路的信号电源是由铁磁分频器供给25Hz 交流电,以区分50Hz 牵引电流,接受器采用二元二位轨道继电器,该继电器的轨道线圈由送电端25Hz 轨道电源经轨道传输后供电,局部线圈则由25Hz 局部分频器电源供电。轨道继电器工作时,从轨道电路取得较少的功率而大部分功率是通过局部线圈取自局部电源,因而轨道电路的控制距离可以延长,且只有轨道继电器上的轨道线圈电压Ug 和局部线圈电压Uj 之间的相位角接近或等于90°时,转矩最大,是翼片绕轴旋转,带动接点动作,否则,翼片不能旋转,不能带动接点动作。所以,25Hz 轨道电路既有对频率的选择性(区别开电力牵引电流)又有相位的选择性。当轨道线圈和局部线圈电源电压满足规定的相位要求时,GJ 吸起,轨道电路处于调整状态,即表示轨道电路空闲。当列车占用时,轨道电路被分路,GJ 落下。若频率、相位不对时,GJ 也落下。因而,其抗干扰性能较强,广泛应用于交流电力牵引区段。

25Hz 相敏轨道电路的原理图如下所示:

BE 25

II

I 1A I

II

10A R x 5 4 3 2 1

25Hz

110V

4 3 2 1 25Hz 220V 4 3 2 1

50Hz 220V 10A

BE 25 5

4 2 3 1 局部分频器 轨道分频器 HF QBF 室外 室内 室外 BG 25

BG 25

在图中,25Hz电源屏(轨道分频器和局部分频器)由室内分别供给出25Hz轨道电源和局部电源。轨道电源由室内供出,通过电缆供何室外,经由送电端25Hz轨道电源变压器(BG25).送电端限流电阻(RX),送电端25Hz扼流变压器(BE25)钢轨线路.受电端25Hz扼流变压器(BE25),受电端25Hz轨道中继变压器(BG25)电缆线路,送回室内,经过防雷硒堆(Z),25Hz防护盒(HF)给二元二位继电器(GJ)的轨道线圈供电。局部线圈的25Hz电源由室内供出,当轨道线圈所得电源满足规定的相位要求时,二元二位继电器JRJC1-70/240吸起,轨道电路处于工作状态,仅之二元二位继电器JRJC-70/240落下,轨道电路处于不工作状态。

第3章 25Hz轨道电路的组成

3.1 25Hz轨道电路设备的基本组成

1.送电端设备构成:送电扼流变压器BE25、轨道变压器BG25、电阻R0、保险RD1、保险RD2。

2.受电端设备构成:受电扼流变压器BE25、轨道变压器BG25、电阻R0、保险RD1、防雷FB、防护盒FH、25HZ轨道继电器GJ(JRJC1-70/240)。

另外25HZ轨道电路的轨道电源和局部电源分别由独立的轨道分频器和局部分频器给轨道继电器的轨道线圈和局部线圈供电。

3.2 97型25 Hz相敏轨道电路的元器件

1.电源变压器(BG25)

25Hz相敏轨道电路中作为送电端供电变压器或受电端JRJC1-70/240二元二位轨道继电器的匹配变压器。当用于送电端时作为供电变压器,根据轨道电路的类型和不同长度供以不同电压。用作中继变压器时,为使二元二位轨道继电器的高阻抗与轨道的低阻抗相匹配,其变比是固定的,与扼流变压器连接时,变比采用1/13.89(Ⅰ次采用220V端子,Ⅱ次测采用Ⅲ1、Ⅲ3 即15.84V端子),无扼流变压器直接与轨道连接时,变比采用1/50 (Ⅰ次采用220V端子,Ⅱ次测采用Ⅲ1、Ⅱ3 ,连接Ⅱ4 ~Ⅲ2即4.4V端子)。

2. 电端限流电阻(RX)

限流电阻作用1. 保护送电设备,试送电变压器不致在钢轨被列车分路时,因电流过大而烧毁。提高轨道电路的灵敏度。

3. 扼流变压器(BE25)

扼流变压器在轨道电路中的作用是用以构通牵引电流。同时配合送电端供电变压器、受电端匹配变压器和JRJC二元二位轨道继电器等设备构成97型25 Hz相敏轨道电路系统。

4. 25Hz防护盒(HF)

HF2-25型防护盒用于97型25Hz相敏轨道电路,是由电感线圈和电容组成的L、C串联谐振电路,线圈电感为0.845H,电容为12uF。

谐振频率为50Hz对50Hz呈串联诣振相当于15Ω电阻,对于干扰

电流起着减小轨道线圈上的干扰电压作用。对25Hz信号电流相当于16uf 电容,起着减小轨道电路传输衰耗和相移的作用。

1. 减少JRJC型轨道继电器上50 Hz牵引电流的干扰电压。

2.对25 Hz信号频率的无功分量进行补偿。

3. 减少25 Hz信号在传输中的衰耗和相移,使轨道线圈电压和局部线圈电压产生较好的相位差,保证JRJC型轨道继电器正常工作。

5.二元二位继电器

25Hz相敏轨道电路的接收器采用二元二位继电器,属于交流感应式继电器,是据电磁所建立的交变磁场与金属转子中感应电流之间相互作用的原理而动作的。JRJC -72/240型继电器由带轴翼板、局部线圈、轨道线圈和接点组四大部分组成,安装在铸铝合金支架内,活动部分来用滚珠轴承双重防护,可靠性更高,便翼板转动灵活,耐久。

当通以规定颇率的电流,且局部线图电压超前轨道线圈电压的角度0°<θ<180°时,翼板抬起,使继电器的前接点闭合,当相角差为理想角时,处于最佳收起状态,当局部线圈或轨道线图断电时,依靠翼板和附件的重量使接关处于落下状态,由其动作原理可知,该继电器具有可靠的频率选择性和相位选择性,因而对轨道绝缘破损和外界牵引电流或其他频率的电流干扰可靠地进行防护,满足了轨道电路抗电气化干扰的要求。

6JWXC-H310继电器

JWXC-H310型插入式无极缓动继电器是专为97型25 Hz相敏轨道电路配套研制的,配合系统其他器材解决冲击干扰引起轨道继电器误动,危及行车安全等问题。

第4章 25HZ轨道电路的故障处理及日常维护

4.1 轨道电路的处理程序

轨道电路发生故障时的处理程序:

1.在行车室(信号楼)确认故障现象;

2.影响行车时立即停用;未影响时联系要点处理;

3.判断故障范围;

4.处理故障,先室内后室外;

5.消点恢复使用。

4.2 .97型25HZ相敏轨道电路故障查找方法

轨道电路从性质上分类,可分为开路和短路故障.从发生地点分类,可分为室内和室外故障.查找顺序应当先室内后室外.

4.2.1 查找轨道电路室内故障

当不能直观判断故障点是否在室内时,利用万用表首先测量分线盘送电和受电端子,如果正线送点端子有110V电压或侧线送电端子有220V电压,说明室内送电部分良好,反之说明室内送电部分故障..如果受电端子电压高于平时正常电压,说明室内受电端子有断线故障,如果受电端子比平时正常电压明显下降,应甩开受电端子进行测量,如果电压升高,故障点在室内,还应测量局部线圈和防雷硒堆部分是否正常,如果甩开受电端子测电压仍然低为室外故障,应及时去室外查找.

4.2.2 查找轨道电路室外故障

1.查找室外故障一般规律为;

1、查找轨道电路室外故障的一般规律

查找轨道电路室外故障的一般规律可依据以下六句口诀进行:

轨道故障莫惊慌,查找方法测“压”、“流”。“压”、“流”单高朝受走,“压”、“流”双低向送行。延此方向去查找,故障就在突变处。口诀中提到的“压”、“流”分别指轨面电压和轨条电流。

如果在测量中,发现有“压”高、“流”低的现象,可判断为开路故障。查找开路故障原理见图3。

断开点

图3 查找开路故障原理图

如果在测量中,发现有“流”高、“压”低的情况,可判断为短路故障。查找短路故障原理图见图4。

I

I

短路点

图4 查找短路故障原理图

上诉六句口诀要深刻理解,做到灵活应用。

2. 查找开路故障

开路故障也称断线故障。发生开路故障时,其现象是送电端电压上升,回路电流下降。由于回路电流下降,送端电阻两端电压下降。开路故障可能发生在电缆、扼流变压器、轨道变压器、适配器以及器材之间的连接线;也可能发生在钢轨、钢丝绳引接线、钢轨接续线等。查找开路故障,可使用交流电压表,根据轨道电路实际配线,自电源端开始逐段测量有无电压,根据电压数值变化情况进行分析判断。这种方法可称为电压表法。

3、查找短路故障

短路故障也称混线故障。发生短路故障时,其现象是送电端电压下降,回路电流上升。由于回路电流上升,送端电阻两端电压上升。短路故障可能发生在电缆、扼流变压器、轨道变压器、适配器以及这些器材之间的连接线;也可能发生在钢丝绳引接线、钢轨绝缘、道岔安装装置绝缘、尖轨连接杆绝缘和轨距杆绝缘等。出现短路故障可采用电压表法、欧姆表法和卡流表法进行查找。

用电压表法查找短路故障时,要对可疑部位逐个从电路中断开,再用电压表测量,如果断开后测得的电压数值明显上升,说明断开的部位存在短路故障。此方法也可称为断线法。

用万用表欧姆档测量轨道电路有关绝缘电阻的方法称为欧姆表法。欧姆表法适合判断转辙机安装装置(包括与密贴调整杆连接的方钢、与表示杆连接的尖端杆)和尖轨连接杆等处的绝缘质量,提前发现一侧绝缘损坏,用万用表310欧姆档对该处绝

缘进行测量,数值越大说明绝缘质量越好,如果测出的数值小于100欧姆,可判断为绝缘不良。由于两轨条通过扼流变压器线圈连成一体,所以用这种方法测出的电阻值,实际上是两侧绝缘电阻的并联值。采用欧姆表法测量转辙机安装角钢绝缘的方法见图4所示。

图 4 欧姆表法测量转辙机安装角钢绝缘原理图

卡流表是专为测量钢轨中电流的一种仪表。因为它可以快速确定轨道电路的故障位置,所以也称轨道电路故障测试仪。该表内部无电池,感应信号直接使表头指针偏转,数据准确可靠。由于铁芯开口较大,可方便的卡在钢轨上测量钢轨中的交流电流。用卡流表查找轨道电路短路故障的方法称为卡流表法。

用卡流表法适合查找因轨端、轨距杆、转辙机安装装置、尖轨连接杆、方钢、尖端杆等处绝缘破损造成的轨道电路短路故障。这些处所在正常情况下,即没有25Hz 轨道电路工作电流,也没有50Hz 电力机车牵引电流。如果出现电流,说明该处的绝缘失效,是短路故障点。用卡流表测量转辙机安装装置绝缘的方法见图5所示。

第5章 常见故障的分析与判断

5.1常见故障的判断方法

5.1.1案例一

一、故障现象:某一送一受(非电气化非电码化区段)轨道电路区段红光带

二、确认故障设备:在控制台观察故障区段,确认属非电气化非发码区段且为一送一受区段。

三、判断故障范围:

(一)从分线盘电压判断室内、外故障

⒈ 测试受端电压较平常电压升高时,一般为室内断路。

4 3 21 绝缘 Ω

转辙机安装角钢

⒉测试受端电压较平常电压降低时,需甩线测量电缆电压。

电压升高,为室内短路。

电压仍低,为室外故障。

⒊测试受端电压为0,需甩线测量电缆电压。

①电压仍为0时,为室外故障。

②电压升高,为室内短路故障。

⒋测试受端电压正常:

若为25Hz相敏轨道电路,需检查该区段二元二位继电器状态。

二元二位继电器吸起,为轨道架至区段组合断线或组合架内故障。观察区段组合中的DGJ和DGJF是否吸起来确定。

二元二位继电器未吸起,则说明极性反(极性反一般发生在动线施工后)或局部线圈断和该区段局部电压不良。

(二)室内故障的分析处理

⒈断路故障处理

按照电路配线图逐级测量电压,即可确定故障点。

⒉短路故障处理

按照电路配线图甩线测量电压,甩线时应优先断开插接件和接线端子。

(三)室外故障的分析处理

A、根据现场条件,就近测量故障区段的轨面电压:

⒈电压升高,为测试点至受端断路。

⒉电压为0或降低,应测量电流。

⑴电流较平常增大,为测试点至受端短路。

⑵电流减小时,为测试点到送端短路。

⑶电流为0,为测试点至送端故障,需继续沿钢轨向送端方向测量电压和电流,直至有电压或电流时。

①当有电压无电流时为断路故障,断点为从无到有处。

②当无电压有电流时为短路故障,短路点为从无到有处。

B、测量送电端限流电阻上的电压值与正常时的测试数据进行比较,是迅速准确判断轨道电路故障性质的有效方法(前提是保证限流电阻接触良好)。

1、若测得的数值比正常值显著降低或为零,则判断为断线故障;

2、若测得的数值比正常值明显升高,则判断为短路故障。

按照处理室内故障的方法相应处理并结合钳形电流表或轨道测试仪测电流即可。

用钳形电流表或轨道测试仪查钢轨上的短路点时,要注意两个短路点才能构成故障,要一起找出,不留故障隐患。

无钳形电流表或轨道测试仪时,可逐一检查轨距杆绝缘,轨端绝缘,在道岔区段还应检查安装装置绝缘,岔后极性绝缘是否破损,道岔长跳线是否封连轨底。如外观检查不能发现时,可以轨面上并接万用表(2.5V电压档),用手锤在绝缘部位处敲打,观察电压是否变化,对有变化处的绝缘进行分解检查,对破损绝缘进行更换。

5.1.2 案例二

一、故障现象:某一送一受(电气化非电码化区段)25Hz相敏轨道电路区段红光带

二、确认故障设备:在控制台观察故障区段,确认属电气化非电码化区段且为一送一受区段。

三、判断故障范围:

从分线盘电压判断室内、外故障

⒈测试受端电压值,与平常测试数据进行比较,电压值正常或升高而二元二位继电器未吸起时,应首先排除电气化的干扰,即此电压是否为25Hz电压。

2、使用频率计对此电压进行频率测量,如果是50HZ,那么此电压不是轨道电压,故障应在室外。重点检查是否有牵引电流侵入造成的回流不平衡处。

5.1.3案例三

一、故障现象:某一送一受(电码化发码区段)轨道电路区段红光带

二、确认故障设备:在控制台观察故障区段,确认属电码化发码区段且为一送一受区段。

三、判断故障范围:

从分线盘电压判断室内、外故障

⒈测试受端电压值,与平常测试数据进行比较,电压值正常或升高而二元二位继电器未吸起时,应首先排除发码电压的干扰,即此电压是否为发码电压。

2、使用频率计对此电压进行频率测量,如果不是25HZ(25Hz相敏轨道电路),

那么此电压不是轨道电压,此时应首先将发码设备关掉,使轨道电路中只有25HZ电源,然后再进行故障判断和查找。

5.1.4案例四

一、故障现象:某一送多受轨道电路区段红光带

二、确认故障设备:在控制台观察故障区段,确认该区段为一送多受区段。

三、判断故障范围:

在室内首先确定此区段有几个受端,并依次观察各级受端轨道继电器的状态,是全部没有吸起,还是个别没有吸起。如果是全部没有吸起,应该为送电端和其共用部分故障,由轨道电路公共点查起;如果是个别没有吸起,直接查该轨道继电器的电路。一般来说;,对于断线故障的故障点在钢轨电流低的一支,对于混线故障的故障点在钢轨电流高的一支。

5.1.5案例五

一、故障现象:相邻轨道电路区段红光带

二、确认故障设备:在控制台观察现象,确认故障区段。

三、判断故障范围:

查找电缆径路图,看故障区段发送电源是否为同一电缆送出;接收电压是否为同一电缆送回,是否为经过的电缆盒或变压器箱内故障;另外,还应重点检查两轨道电路相邻处的钢轨绝缘是否破损。

5.1.6案例六

一、故障现象:多个轨道电路区段红光带

二、确认故障设备:在控制台观察故障区段,确认为电源屏或电缆或组合架故障。

三、判断故障范围:

确认轨道电路的发送电源,由室内送出有几束,红光带区段是否由同一束轨道电源供出的,如果是由同一束轨道电源供出的,沿着此电缆径路查找,重点为该束轨道电源的输出保险。

查找电缆径路图,看故障区段发送电源是否为同一电缆送出;接收电压是否为同一电缆送回,是否为该束电缆故障。

还应确认这几个区段是否在同一组合架上,是否为该架KZ、KF保险熔断。

如果是25 Hz相敏轨道电路,还应检查轨道电源屏的短路切除电路是否已动作,如果已动作,应查找该束电源的短路点。

5.1.7案例七

一、故障现象:全站或某咽喉轨道电路区段红光带

二、确认故障设备:在控制台观察故障区段,确认为电源屏故障。

三、判断故障范围:

首先检查电源屏轨道电源输出是否正常,如不正常,应为电源屏轨道电源故障,重点为各部保险,25 Hz屏还应确认局部电源输出是否正常;如正常,应向各束输出轨道电源保险的输入端查找。

5.1.8案例八

一、故障现象:某轨道电路区段闪红光带

二、确认故障设备:在控制台观察故障现象,确认是否单一区段闪红及邻近线路列车运行状况、现场作业情况。

三、判断故障范围:

闪红光带故障稍纵即逝,不好分析处理。但只要平常检修设备时认真、细致,数据测试全面、准确。对设备的应用状况做到心中有数。结合闪红光带时站场的外围情况:如是否有车接近、临线是否有车通过、是否有兄弟单位人员施工作业、电源电压是否波动、还有气温变化、雷电、下雨等;还是有一定的踪迹可寻。

如有车接近、临线有车通过时闪红光带,可以考虑因列车震动影响,导致某些接插件接触不良或轨道绝缘破损等。电源电压波动,可以考虑是否有防雷元件或电子元件不良等。电气化区段还可以考虑是否回流不平衡影响,还有是否有对绝缘及钢轨上的外界影响。这些都应重点检查。

有微机监测的车站还可以根据微机监测记录的数据进行分析。如果送端电压升高受端电压降低,应考虑其间存在虚断点。如果送、受端电压均降低说明其间存在短路点。如果送、受端电压均升高,应考虑牵引电流干扰。

5.2常见故障案例

5.2.1配器断线故障

现象:在继电器室内测试,送电电压正常,受电电压大幅度下降,列车过后留下

红光带。

原因分析:经查找故障地点是适配器端子板下部引线折断。适配器断线后对25HZ 信号电压失去补偿作用,致使受端电压大幅度下降。

适配器与扼流变压器的接线见图6。

图 6 适配器与扼流变压器接线图

判断方法:测量适配器1、2端子电压与2、3端子电压之比是否等于1∶4,当不等于1∶4时,可判断是适配器故障。

5.2.2道绝缘内部有铁屑短路

现象:在继电器室内测试,送电电压正常,受电电压下降约正常值的1/2,车过后流下红光带。

原因分析:经查找,故障地点是轨道绝缘一侧短路。由于极性交叉的存在,经短路点和中心连接板构成短路电流,有一半电压被消耗,造成半短路故障。原因分析见图7。

图7

一侧绝缘短路故障原因分析图

判断方法:用卡流表在绝缘处测量钢轨电流,出现0.5A 左右的漏泄电流。

第6章轨道电路的日常维护与常见仪表的使用

6.1轨道电路的日常维护工作

1.接收器的工作电源电压为直流20.4V ~26.4V ,新设备开通使用时,应注意检查电源屏此电压的输出高低,一般调整在23V ~25V 为宜。

RD 3A SHP (适配器) 8 8 48 312

4 5 6 64 32 7 8 9 16 11 12 10 8 L C

1 3

2 BES 25(扼流变压器) + - +

- + - -

+ I

2.接收器的工作值为(12.5±0.5)V,可靠工作值为16V,可靠不工作值为10V。调整状态时,应保证接收器的接收电压不小于18V。

3.接收器输出至执行继电器的直流电压为20V~30V,当此电压低于20V时,将不能保证执行继电器(JWXC-1700)的可靠工作。

4.接收器接收电压的调整必须严格按“调整表”的要求进行,一般情况下可实现一次性调整。道床漏泄较严重、道碴电阻变化较大的特殊区段,要适时进行调整。调整时,受电端变压比不动、送电端限流电阻值不动,通过送电端变压器二次电压的调整或受电端限流电阻的调整,以满足接收器工作电压的要求。

5.要全面采用塞钉头部直径为10.2mm的接续线和引接线,严禁采用塞钉头部直径为9.8mm的接续线和引接线。钢轨钻孔要使用9.8mm的麻花钻头,钻出的眼孔应在9.9mm~10.0mm,工程施工和日常维护必须严格把关,消灭大孔、小孔和塞钉反打现象,塞钉打入时无卷边,确保塞钉与钢轨的紧密、可靠接触。扼流变压器采用等阻线与钢轨连接,一长一短引接线电阻均不大于0.1Ω,从而保证两根钢轨中牵引电流的平衡。

6. 从钢轨下面穿越的引接线,要采用特制的专用凹型线槽进行固定,使引接线与轨底隔开并保持一定的距离(30mm以上),以免造成混线。

7. 扼流变压器中心连接板要加装绝缘套,并保持完整,以防止引接线与中心连接板相碰。

8. 钢轨绝缘应达到绝缘无破损、轨端无肥边、鱼尾板螺栓不松动,高强度钢轨绝缘鱼尾板螺栓扭矩要达到规定要求,道钉(扣件)不碰触鱼尾板,特别是提速道岔曲股切割钢轨绝缘处的弹条扣件底部要加8mm厚的尼龙座进行绝缘防护。有扼流变压器的区段,要特别加强对两相邻轨道电路区段间钢轨绝缘的维护,以防止单轨绝缘破损或混电。

6.2.仪表的使用

6.2.1万用表

1:在分线盘判断送电电压时,使用交流250V档;判断回送电压时,先使用交流100V的档,再逐步降低至合适档位;

2:在组合架判断时,使用直流25V档;发码区段送电部分电路使用交流250V档;

3:在室外轨面判断使用交流2.5V的档;送电端电源使用交流250V档,变压器二

次使用交流10V档;受电端一次使用先交流100V的档,逐步降低至合适档位。6.2.2轨道诊断仪

1:确认诊断仪电池电源良好,诊断仪工作正常;

2:选用频率25HZ、电流档位,打开电源,指针应能回零,选取合适的量程;

3:测量时将仪表(仪表应放置仪表盒内)平行放置于被测钢轨和跳线上,不得悬空;

4:测量时按照从送电端至受点端钢轨电流回路逐段测量,遇有电流突变时则故障点就在该处。

5:测量完毕后及时关闭电源,防止电池损耗。

25HZ轨道电路故障处理及日常维护

题 目:25HZ 轨道电路故障处理及日常维护 专 业: 自动化

目录 摘要................................................................ I 第1章前言 (1) 1.1 轨道电路概述 (1) 1.1.1 轨道电路作用及构成 (1) 1.1.2 轨道电路的原理 (1) 1.1.3 轨道电路分类 (1) 1.1.4 轨道电路的工作状态 (2) 第2章 25Hz轨道电路 (1) 2.1 25Hz轨道电路概述 (1) 2.1.2 25Hz相敏轨道电路的发展 (1) 2.1.2 25HZ轨道电路的特点 (2) 2.2 97型25 Hz相敏轨道电路的运用特性 (2) 2.2.1 97型25 Hz相敏轨道电路范围 (2) 2.2.2 97型25 Hz相敏轨道电路主要特点 (2) 2.2.3 97型25 Hz相敏轨道电路主要技术指标 (3) 2.2.4 97型25 Hz相敏轨道电路工作原理 (4) 第3章 25Hz轨道电路的组成 (5) 3.1 25Hz轨道电路设备的基本组成 (5) 3.2 97型25 Hz相敏轨道电路的元器件 (5) 第4章 25HZ轨道电路的故障处理及日常维护 (7) 4.1 轨道电路的处理程序 (7) 4.2 97型25HZ相敏轨道电路故障查找方法 (7) 第5章常见故障的分析与判断 (9) 5.1 常见故障的判断方法 (9) 5.2 常见故障案例 (13) 第6章轨道电路的日常维护与常见仪表的使用 (15) 6.1 轨道电路的日常维护工作 (15) 6.2 仪表的使用 (16) 结束语 (17) 致谢 (18) 参考文献 (19)

轨道电路故障处理

轨道电路故障处理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

轨道电路故障处理 轨道电路用来检查进路是否空闲,反映区段或进路的锁闭和解锁状态,监督列车和调车车列的运行情况。 当轨道电路故障时会出现两种情况: 1、有车占用无红光带。 2、无车占用亮红光带。 原因分析: 1、有车占用无红光带:当有车占用时控制台无红光带显示故障是非常危险的,当发生这类故障后应首先通知车站值班员停用设备,然后进行处理。这类故障发生的原因一般在室外设备,可先检查控制台光带表示灯是否有故障,以及轨道继电器是否落下或接点卡阻或粘连等。这类故障发生在室外设备的主要原因: 1、在道岔区段轨道电路,设有轨端绝缘但没有设在受电端的双动道岔渡线或测线上,因轨端接续线或岔后跳线断开、脱落,而造成死区段。 2、轨面电压调整过高或送电端可调电阻调整的阻值过小,造成轨道电路不能正常分路。 3、一送多受轨道区段,因各受电端距离较远,轨面电压调整不平衡,有个别受电端轨面电压过高而造成分路不良。 4、因钢轨轨面生锈,车辆自重较轻或轮对电阻过大等,使车辆轮对分路不良。 5、室外发生混线,有其他电源混入,或牵引电流干扰等使轨道继电器误动。 2、无车占用亮红光带:发生这种故障时,应先在控制台观察故障现象,做出初步判断。如果几个轨道电路区段同时出现红光带,应重点在分线盒检查轨道电源熔断器熔

丝和送电电缆芯线;若相邻两个轨道区段同时出现红光带,一般是相邻两轨道电路轨道绝缘双破损;只有一个轨道区段亮红光带,应首先在分线盘处测试送电电缆端子有无电压,若有电压。确认为室外故障时,再去室外处理。判断轨道电路是开路故障还是短路故障是分析故障的关键。轨道电路开路故障:轨道电路开路后继电器落下,控制台点亮红光带。开路故障应查钢轨接续线、道岔跳线、箱盒与轨面的引导线(是否断线)。轨道电路短路故障:短路故障应查绝缘,绝缘破损;其他异物短路,如铁丝等金属褡裢或跳线、引导线混线造成。 一、轨道电路常见故障的判断与处理方法 1、轨道电路故障类型 ①开路故障:从轨道室内送电开始到受电回到室内轨道继电器,任何一点断开都不能使轨道电路正常工作,我们称其为轨道电路的开路故障。也是轨道电路故障中比较简单的故障,比较容易判断。 ②短路故障:轨道电路回路中两线间有任意一点混线短路,或是达到一定程度的分路电流就可影响轨道电路的正常工作,我们称其为轨道电路的短路故障。短路故障的判断处理比较复杂,各种因素比较多,须采取一些特殊的处理方法。 2、轨道电路故障的判断首先要判断清楚故障性质,即是开路故障还是短路故障。基本思路是:开路故障:从故障点到受电端电压下降,电流减小。故障点到送电端电压升高,电流减小。短路故障:从故障点到受电端电压下降,电流减小。故障点到送电端电压下降,电流增大。 25周相敏轨道电路故障判断开路和短路的基本方法:必须先从送电端着手,测量送电端限流电阻上的压降,即可判断轨道电路故障的性质,其基本原理就是

最新25HZ轨道电路常见开路故障资料

25HZ轨道电路常见开路故障 一、1 现象:轨道电红光带 2 测试:分线盘没有220V电压,再测零层XJZ、XJF有没有220V电压,若有电压,在测保险,保险上端有,下端没有,为保险熔断。 3测试:分线盘有220V电压,再测F-4电缆盒D1,D2没有电压。说明从分线盘至F-4电缆盒D1,D2电缆断线。处理时可用对地法判断哪根断(这四个端子分别对地,哪个变化大就是哪个不好。效线时最好不要用14型的表,只限25HZ轨到电路。) 4测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4无电,判断送端XB箱D1,D3与D2,D4之间保险断。注意:处理时不要用同电位法处理,要用交叉法判断保险的好坏。换保险时要注意220V的电压。 5测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧无电。说明D2,D4与变压器I次侧之间断线,判断哪根断时一定要效线。D2到I1,D4到I4。哪根有电就是哪根断。 6测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4电,变压器I次侧有电,变压器II次侧无电。然后测封线,封线有电就是封线断。 7测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻无电,再测D5,D7无电。然后效线III1到D8有电,说明III1到D8断线。 8测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻无电,再测D5,D7无电。然后效线III1到D8无电,说明III1到D8是好的。再测II2到限流电阻的进口无电好,再测限流电阻的出口到D5有电,说明限流电阻的出口到D5之间断线。 9测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电(电压约等于II次侧电压)再测D5,D7无电。说明限流电阻开路。 10测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电,再测D5,D7有电。再测扼流变压器D4,D5无电,然后效线XB箱的D5到扼流变压器的D5无电好,再效XB 箱的D7到扼流变压器的D4有电,说明XB箱的D7到扼流变压器的D4之间开路。 11测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电,再测D5,D7有电。再测扼流变压器D4,D5有电,扼流变压器I次侧有一半电压(比正常值少一半),测中间封线有电压,说明扼流变压器I次侧封线开路。 12测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电,再测D5,D7有电。再测扼流变压器D4,D5有电,扼流变压器I次侧有电压(电压升高,就是开路电压)然后测轨面无电压,说明扼流变压器I次侧与轨面之间开路(有钢丝绳断或钢丝绳与轨面接触不良)。

25Hz轨道电路故障处理程序

室外设备故障处理 a、测试送电端钢轨中的电流。电流升高时是受电端方向短路故障按i项查找;电流降低时测量轨面电压,电压升高时是受电端方向开路故障按f项查找;电压降低时是送电端方向短路或开路故障按c项查找。 b、测量送电端D1D3端子间电压。无电查室内及送电电缆盒;有电进行c项。 c、测量D2D4端子间电压。无电是1A液压断路器问题,交叉测试确认;有电进行d项。 d、测量变压器Ⅰ次侧电压。无电是液压断路器至变压器Ⅰ次侧配线开路,交叉测试确认;有电进行e项。 e、测量变压器Ⅱ次侧电压。有电进行f项;无电时分线圈测量变压器Ⅱ次侧,个别线圈无电,是相关线圈断线,分线圈有电是勾线断线;分线圈无电是变压器Ⅰ次侧问题,测量就近两个端子间电压是220时,说明这两个端子间断线。(正常时Ⅰ1Ⅰ3间及Ⅰ2Ⅰ4间电压应为110V)。 f、测量D5、D7间电压升高是变压器箱外部开路。顺序测量送电端信号圈、轨面、接头、受电端轨面、信号圈、变压器Ⅱ次侧、Ⅰ次侧及回楼D1、D2间电压,电压变化时是开路点。端子A、B有电,送到端子C、D没电,当不确定A具体接到C或D时,第一步测量A对C、D全有电是A断线,全没电是B断线;第二步再断开C或D,测试A、B端断线的端子对C、D线头测量,有电的是与没断的端子连接的好线,另一根断线。(特殊情况:当变压器Ⅱ次升高,电阻电压等于变压器Ⅱ次电压时是电阻开路) g、测量D5、D7间电压降低,电阻上的电压也降低是送电箱内开路故障。首先断开10A保险,测量变压器Ⅱ次Z 端子分别对应D6和D7端子电压,如果两个都没有电,说明变压器Ⅱ次Z端子对端子座间配线好;再测变压器Ⅱ次K端子对端子座一个有电一个没电,说明变压器Ⅱ次K端子对没电的端子间配线断线。如果断线的配线包括电阻,应借变压器Ⅱ次Z端子,测量K端子、电阻及端子座,电压变化时是故障点。(也可用电流的方法:测试变压器二次、限流电阻以及扼流信号圈中电流正常位0.43A,短路时是0.76A左右) h、测量D5、D7间电压降低,限流电阻上的电压升高是短路故障。首先断开10A保险后,测量D6、D7间电压不变是送电箱内部短路,电压升高是外短路。外部短路时断开扼流变压器信号圈全部电缆,D5、D7间电压不变,是信号圈电缆短路;电压升高后将信号圈甩开,电缆连接端子,电压下降是端子短路;电压不变是扼流变压器及以后短路。 i、判断为短路故障时,因电气化牵引区段钢轨及扼流变压器牵引圈中有牵引电流通过,严禁断开的特点,必须采用电流测试的方法。当电流增大时,短路点在受电端方向,电流减小时,短路点在送电端方向;而其它不经过牵引电流的处所可采用断开后续电路测量电压的方法。断开10A液压断路器,测量D6、D7间电压,降低说明短路点在送电端方向,升高说明短路点在受电端方向。在测量电压电流的过程中必须与测试记录比较。当受电端短路故障时,可将电流表放在钢轨上实时测量电流值,在扼流变压器信号圈、10A保险、变压器等处断开后续电路,电流下降时短路点在甩开处以后,电流不变时短路点在甩开处以前。 j、当查找到受电端D1、D2电压正常时,应询问室内控制台显示红光带是否恢复,未恢复时请室内确认二元二位继电器轨道及局部电压,不正常时,沿受电端电缆向室内方向查找;正常时,室外在动过线的地方反转极性即可。(1)特别注意复式交分道岔的1、2尖轨根部间和3、4尖轨根部的两根900mm短跳线必须连接,否则轨道电路只依靠2块滑床板与尖轨接触送电。 (2)扼流变压器可测量两个线圈电压相等和对地平衡以及信号圈与牵引圈变比判断。

zpw-2000a轨道电路故障判断和处理程序解析

ZPW-2000A 轨道电路故障判断和处理程序 一、判断故障区段 1.对分割区段,轨 2亮红时,影响轨 1也亮红,所以首先查轨 2,若轨 2恢复,轨 1仍然亮红,再查轨 1。 2. 对红灯转移区段,当通过信号机红灯灭灯且该信号机防护的区段亮红时,该信号机的前方区段也亮红,应先查信号机防护的区段。 3. 对站联区段,当发车线与邻站分界区段亮红时,应先判断邻站的站联条件是否送过来, 可先观察该区段组合的 GJ (邻、 DJ (邻是否吸起,若吸起,说明邻站已将站联条件送过来;若未吸起,再到区间综合柜零层相应端子测试电压是否送过来。若条件未送过来, 故障在邻站, 需邻站查找。二、判断室内外故障 判断清楚故障区段后,再判断故障在室内还是室外。在区间综合柜的电缆模拟网络盘上进行测试判断,先测试发送电缆模拟网络的“电缆”塞孔电压,再测试接收电缆模拟网络的“电缆”塞孔电压。与正常测试数据进行对比, 若发送电压不正常,故障在室内发送电路。若发送“电缆” 电压正常,接收电压不正常,故障在室外。若发送电压和接收电压均正常,故障在室内接收电路。 三、室内故障判断处理 1. 室内发送电路故障判断处理 a. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压正常,而“电缆”电压不正常,则电缆模拟网络故障,更换电缆模拟网络即可。 b. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压不正常,故障点在发送器的发送输出 s1、 s2端子至发送模拟网络端子 1、 2间的电线及继电器接点条件上。 c. 衰耗盘测试发送功出电压、载频、低频不正常, “+ 1” 衰耗盘测试发送功出电压、载频、低频正常,此时,若仅移频报警,轨道电路不亮红,则更换发送器即可。

25HZ轨道电路混线故障

25HZ轨道电路混线故障 一. 1.现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡一下电流,有电流再卡一下D5无电流,然后卡变压器Ⅲ1有电流,D8无电流。 故障点:可调电阻至D5和变压器Ⅲ1至D8混线。 注意事项:可调电阻前不能短路否则会烧坏变压器。 2. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,送端变压器箱D8有电流,D7电缆无电流。D5皮线有电流,电缆无电流。说明D8或D7与D5有短路,然后去掉过载保险区分是D8与D5或D7与D5短路。 故障点:有两种一D8与D5。二D7与D5短路。 注意事项:对地测量区分是接地故障还是短路故障 3. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,然后测试扼流变压器D4,D5无电流,(轨道箱至扼流变压器是双根电缆)在测试D7,D5和扼流变压器D4,D5单根电缆电流,相互比较如果D7,D5分别有一根电缆电流明显高几十毫安,则说明这两根电缆短路。 故障点:轨道箱至扼流变压器电缆混线 4. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,然后测试扼流变压器D4,D5电缆有电流,扼流变压器线圈无电流。 故障点:扼流变压器D4,D5短路或接地 注意事项:对地测量区分是接地故障还是短路故障 5. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,然后测试扼流变压器D4,D5有电流,送端扼流变压器钢丝绳有电流,与钢轨连接处电缆塞钉头无电流。 故障点:送端扼流变压器至钢轨钢丝绳短路。 6. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压或着有电压很低但无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,送端扼流变压器钢丝绳有电流,受端钢丝绳无电流或电流明显比正常值低,则说明送端至受端钢轨通道有短路,然后用轨道电路故障测试仪沿通道测试,有电流和无电流之间或电流有明显变化之间为故障点。 故障点:通道短路 注意事项:重点检查测试道岔安装装置绝缘及轨距杆地锚拉杆处所。 7. 现象:轨道电路红光带

25HZ轨道电路案例分析

25HZ轨道电路案例分析 某站发生轨道电路红光带故障,影响多趟旅客列车。为压缩故障延时,提高故障处理技能,现将故障概况、处理过程及原因分析如下. 1、故障概况 某站5DG轨道区段突然红光带,轨道电压从原来的调整状态的21.9V降到11.7V,轨道电相位角由85.2°下降到53.4°。导致了二元二位继电器不能有效动作。在故障处理的过程中,。红光带自动消失消失。轨道电压及相位角均恢复正常。在对设备进行全面检查后恢复正常使用。 2、故障处理过程 13:05分段调度接到某站5DG红光带通知后,段调度立即启动轨道电路应急抢修预案。现场处理人员在信号机械室分线盘测量5DG发送电压为75V,受端电压为11V,凭经验认为故障点在室外,马上赶赴室外检查测试处理故障。13:45分技术科工程师赶到机械室检查测试,在分线盘甩开受端负载,测得受电端电缆电压为40V,在分线盘接负载电压降为11V,初步判断故障在室内,在进一步判断查找过程中,5DG红光带自动恢复,恢复后5DG电压21.7V。工长室外对5DG区段进行了仔细检查,没有发现设备异常。晚上利用天窗点继续查找,对有可能引起故障的器材进行试验,当对室内防护盒进行试验时发现,防护盒开路情况下,其故障现象再现,所有数据曲线与白天故障完全吻合,基本判定,该起故障系防护盒开路所致。 3、原因分析 通过对25HZ轨道电路特性分析资料的查阅,了解到HF4-25型防护盒的

功能为对50HZ 电流起到串联谐振的作用,能减少轨道线圈上的干扰电压。对25HZ 电流起到电容作用。减少了轨道电路传输衰耗和相移。当防护盒在从正常到开路状态时,电压最大衰耗可降到原电压的45.5%,同时相位角失调角最大为41.33°,变化幅度要根据轨道电路长度等情况有部分偏差。和本故障现象相符(表格一),在晚上对防护盒试验时的数据曲线数据也相符,因此我们得出结论故障原因为HF4-25 型防护盒开路故障。同时举一反三以轨道电压正常值20V 为例,当防护盒电容被击穿状态下轨道电压会原来得20V 降至3V-4V 左右,相位角失调角61°。防护盒电感短路状态下轨道电压从20V 降到17V 左右,相位角失调角15°;当防护盒后面短联线开路时。电压为9V 左右,相位角到0°。 故障时电压变化和相位角变化

25Hz轨道电路故障判断

25Hz轨道电路学习资料 XB GJZ220GJF220JJZ110JJF110 1、防护盒作用及故障后的影响: 25HZ相敏轨道电路继电器并接有防护盒,防护盒对50HZ牵引电流相当于15Ω的阻抗,起到减小轨道线圈电压的作用,对25HZ信号呈容抗,起着减小轨道电路衰耗和相移的作用,当防护盒不良时,继电器25HZ电压会下降,50HZ电压会上升,继电器翼板有震动噪声。 2、绝缘破损的情况: 在电气化区段由于安装了通过牵引电流的扼流变压器,使得有扼流变压器的绝缘都成为极性绝缘,一组绝缘破损短路,绝缘两侧电压都会下降一半,会出现2个区段红光带(也可能是一个区段红光带,一个区段电压降一半)。 3、室内外故障判断方法: 在分线盘轨道送端测试220V电源电压和受端所接收的轨道电压与电流。 调整状态时分线盘参考数据:送端220V/15mA 受端18V/20mA a 送端有220V 受端无电压无电流---室外故障 b 送端有220V 受端有较低电压但电流也很低---室外故障 c 送端无220V----室内故障 d 送端有220V 受端有较高电压时----室内故障 e 送端有220V 受端无电压或电压较低,但电流大于20mA时----室内故障

25Hz轨道电路室内故障外判断方法 第一闭环:电源屏至送端变压器1次侧; 第二闭环:送端轨道变压器2次侧至送端扼流变压器1次侧; 第三闭环:送端扼流变压器2次侧至受端扼流变压器2次侧; 第四闭环:受端扼流变压器1次侧至受端轨道变压器2次侧; 第五闭环:受端轨道变压器1次侧至室内RDGJ3、4线圈; 第六闭环:RDGJ3、4线圈至防护盒1、3端子; 第七闭环:防护盒至硒片(此闭环开路时不成呈现故障); 5、闭环内出现故障的判断 在某个闭环内若出现开路故障时,此闭环内及短线点以后的电路中不会有电流和电压。短线点之前电压会有不同程度的升高(除第六闭环外)。我们可以用电压表对电路逐段测试—电压变化的地段及为故障所在。 在第六闭环由于防护盒中电感电容的作用,其开路时将引起接收电压下降至9V左右,电流升高近一倍。 在某个闭环内若出现短路故障时,将引起自短路点之前电路中的电流升高,限流电阻上的压降升高,而限流电阻之后的电路电压明显下降或无电压:短路点之后得不到电流和电压(或电流电压明显下降)。我们可以用甩线法判断故障位置。快捷的方法是电流法,闭环内电流变化的地段即为故障位置。在第七闭环内若有电流即可判断硒片击穿或配线短路。 站内轨道均实行了极性交叉防护,当相邻轨道区段绝缘破损时,将造成两区段轨道电压同时下降而呈现故障。道岔安装装置绝缘破损时,用轨道测试仪检测最为快捷方便。送端电缆若短路,将引起电源屏输出电源所属保险熔断,出现多处红光带故障。我们可以对本束电源所控制的各个轨道区段送端电缆进行电阻测试,电阻为0欧或非常小的为故障区段。可对电缆阻值进行计算判断短路点的大概位置(电缆芯线阻值为0.0235欧/米)。 处理故障时要头脑清醒,充分考虑轨道电路的区别(有无电码化叠加、一送一受还是一送多受)。有电码化叠加区段在测试时必须用频率表测试或将电码化关掉查找(叠加区段为股道) 故障处理一般程序: 1、电压波动(故障)隐患: a、轨道曲线出现毛刺: 当轨道曲线出现毛刺时,首先要考虑到扼流变性能(内部线圈破损、连接板接触不良)。线圈破损,通过测试扼流变压器变比和扼流变压器线圈对中心连接板电压来判断,正常时变比为1:3,两线圈对中心连接板电压相等(通过晃动扼流变压器线圈可以发现轨道电压有

对于25Hz轨道电路故障处理与日常维护的现代研究

对于25Hz轨道电路故障处理与日常维护的现代研究 摘要在铁路的电力牵引区段中,25Hz轨道电路为常见轨道电路制式,一旦发生故障通常难以确定故障原因。基于这种认识,本文对25Hz轨道电路故障处理问题展开了分析,并提出了该电路的日常维护方法,从而为关注这一话题的人们提供参考。 关键词25Hz轨道;电路故障;日常维护 前言 25Hz轨道电路由接收设备、钢轨线路、电源、绝缘等构成,在非电化区段得到了广泛应用。电路频率限为25Hz,采用低频传输方式,终端设备可以实现相位鉴别,所以传输损耗小,设备灵敏度高,具有较强抗干扰能力。但是,该种轨道电路故障点较多,容易受外界因素影响,所以故障处理难度较大。因此,还应加强对25Hz轨道电路故障处理与日常维护研究,以便为列车安全运行提供保障。 1 25Hz轨道电路故障处理 1.1 接收器故障处理 25Hz轨道电路如果接收器存在故障,就会导致红光带的产生。结合红光带出现位置,可以对故障进行判断和处理。如果红光带在轨道区段出现,并且区段红、绿指示灯常亮,可以确定轨道接收器局部电源和接收电压正常,故障应位于室内直流输出或电源总,需要进行轨道测试盘检测。如果咽喉位置多个区段出现红光带,需对区段采用的相同路径电缆进行检测,确认是否存在断线问题。如果相邻区段出现一红一闪光情况,需检查分界绝缘情况,确认是否存在破损问题。在此基础上,需要对中性连接板和扼流变压器钢丝绳是否封接牢固进行确认。此外,如果单独区段有红光带产生,针对一送多受处的轨道,应确认继电器是否吸收完全,排除该问题后需对区段中DGJ和DGJF工作情况进行确认[1]。确定故障原因后,可以采取相应措施排除故障。 1.2 混线、断线故障处理 在轨道区段出现红光带,同时接收器绿灯灭,红灯亮,意味着接收器局部电源和直流电源电压正常,轨道结构电压和直流输出部分存在故障。在接收器轨道中,如果有低接收电压,还要再次测试分段盘轨道接收的电压。在接收电压为0后较小的情况下,还要甩开室外电缆,进行侧空电压测试。发现30V以上电压,室内可能存在故障,如接收器间存在混线、接收器插座插片不良、防护盒接收器间断线、输入变压器一次侧断线、防护盒断线。通过逐一排查,可以确定故障位置,然后进行故障处理。

区间轨道电路故障判断处理程序

区间轨道电路故障判断处理程序 UM71轨道电路是发送和接收设备利用两根轨条作通道构成的电路,它起着检查各个区段线路是否空闲的作用。轨道电路的构成及工作原理并不复杂,但引发的轨道电路故障的原因表现出的现象是多样化的。为减少电务设备对运输生产造成的干扰,在发生故障时快速、准确地判明并及时进行处理,尽快恢复行车秩序,根据现场设备的实际情况制定故障判断处理程序。 电务部分: 一、区间轨道电路控制台红光带或区段表示红亮。 1、接到车站值班员的通知,进机械室确认故障现象, 1)、分清故障区段和有车占用区段。一般情况下,非接近区段和离去区段在控制台是无法盯控的,一旦区间轨道电路发生故障,必然会影响行车,必须与机车联控问清机车停车的具体位置。 2)、分清故障区段是大号还是小号故障。 ○1、如果只有D5G1红,说明是D5G1故障,可以直接从D5G1查找; ○2、如果D5G1和D5G2都红,说明是D5G2故障,则应查找D5G2区段。

2、测试功出。 ○1、有功出电压,且功出电压与平时工作电压相同或有所升高。说明发送端工作正常,故障点在发送器之后。 ○2、无功出。 说明发送器没有正常工作。此时可先更换发送器,再测试功出是否正常,如果正常则判断为发送器故障。 如果更换后仍然没有功出,则应查看发送器编码电路中各继电器状态,用数字万用表直流电压档,测量编码电路是否有压降,再用电阻档确认电阻的大小,此电路较为简单,按一般断线故障查找即可。 ○3、电压明显大幅度下降。 说明发送器性能不良或连接发送器以后的电路中存在短路现象。此时可先更换发送器,测试功出电压是否正常,如果仍然不正常,则应测试分线盘电压。 3、测试限入。 ○1、无限入。 可先更换接收器,如故障未恢复,应先测试室外分线盘。 ○2、限入正常。 可先更换轨道继电器,故障未恢复,应先测试接收器(L+、L—)是否输出24V电压。如无输出则更换接收器或者查找接收器至轨道继电器的配线是否完整并插接良好。 ○3、限入电压低于240mV 此故障一般是室外电容故障导致,轨距杆短路等,但是需要

25HZ轨道电路常见故障处理程序

25HZ轨道电路常见故障处理程序 第一步:信号人员接到车站报轨道电路故障后,首先到运转室查看控制台显示状态及列车运行情况,并在第一时间内向电务段调度简单汇报故障发 生的时间、地点、区段及概况;调度电话: 第二步:信号人员到车站运转室办理登记故障区段停用手续,查看控制台故障区段现象,询问故障发生的时机、经过; 第三步:到机械室分线盘测试送、受端电压状况,以判断是室内还是室外故障。 1)在分线盘上测试故障区段发送电压 ①参考平时此区段的发送电压,在分线盘上测试发送电压是否正常,如没 有电压,查找室内调整变压器、隔离盒、一次电源及至分线盘的引线情况; ②在分线盘上测试发送电压偏低,可能是断线或混线故障,可甩开分线盘 测试端子进行测试以判断是室内或室外故障,然后再进行查找; 2)在分线盘测试故障区段的接收电压(发送正常时) ①测试故障工区段的接收电压是否正常,如正常(参考调整表)、检查相 敏接收器的电源,局部电源及电执行继电器的状态是否正常; A、如相敏接收器红灯灭—查找其24V工作的电源情况; B、如相敏接收器绿灯闪—查找其局部电源; C、如相敏接收器32、42有20V—30V的直流输出—查找其与执行 继电器的引线及其状态; ②如故障区段的接收电压10V以下,甩开分线盘端子进行测试,以判定室 内或室外故障; A、甩开原电压正常—查找室内防雷硒片有无防雷痕迹,25HZ防护 盒是否作用良好; B、甩开原电压仍然10V以下—查找室外半混线故障; ③如故障区段的接收电压0V,甩开分线盘端子后测试仍为0V ,则为室外 断线或纯混线,应到室外由送—受逐步处理; 第四步:1、各段调度汇报在机械室测试数据和故障判断结果; 2、接收段处理故障的调度命令; 第五步:按规定前往故障区段进行处理,之前需携带电台、工具和仪表、混线故障查找仪; 第六步:到达故障区段后,由送端—扼流箱—轨面—扼流箱—受端逐步测试判断、处理; 第七步:如果是送端故障 1、测试室内电源是否送到室外轨道箱和变压器一次上; 2、测试变压器Ⅰ、Ⅱ次是否有电,扼流变压器是否正常,是否送到钢 轨上; 第八步:如是受端故障 测试轨面电压—扼流变压器—轨道箱—接收变压器Ⅰ、Ⅱ次及返回室 内测电源是否正常; 第九步:汇报故障处理概况:故障处理后,要及时将处理经过、发生时间、恢复时间、影响车次、器材名称、编号处理人报告段调度。

25HZ相敏轨道电路原理

一、25H Z相敏轨道电路原理(一送一受双扼流) (1)与传统的交流连续式轨道电路的比较 (2)传输信号的不同。 (3)电气化区段抗干扰性选择。 (4)电码化的优势。 GJZ220 GJF220 简单了解25HZ相敏轨道电路制式: 1.通号公司研制的97型。 2.铁科研研制的微电子型。 3.北方交大研制的适配器型。

二、几种器材介绍: 1.JRJC1-70/24型二元二位继电器 JRJC1-70/24型号的含义: 用途:可靠工作反映轨道电路或空闲,可靠不工作反映轨道电路占用。 类型:交流感应式继电器。 特点:频率选择性和相位选择性。 J R J C 1—70 / 240 继电器 二元 交流 插入式 设计序号 轨道线圈电阻 局部线圈电阻

2.HF2-25型和HF-25型防护盒 用途:对50H Z成分进行滤波,减小轨道继电器上50H Z牵引电流的干扰电压。 对25H Z信号频率的无功分量进行补偿。 减少25H Z信号在传输中的衰耗和相移,使轨道线圈电压和局部线圈电压产生正相移,保证轨道继电器正常工作。 原理: 防护盒1、3号端子并接在轨道继电器的轨道线圈上,对50H Z 呈串联谐振,相当于20欧姆的电阻,将50H Z干扰电流旁路掉;对25H Z信号电流相当于16μF电容,以减少25H Z干扰信号在传输中的衰耗和相移,并对25H Z信号频率的无功分量进行补偿。 3.室内防雷补偿器 型号:两种,一种是FB-1型,内设两套补偿单元,另一种是FB-2型,内设一套补偿单元。 参数特性:局部耐压250V,接收工作电压为90V。

71 C1 Z1 C2 Z2 81 51 61 31 41 11 21 FB-1型防雷补偿防护盒原理图 C1 Z1 31 41 21 11 FB-2型防雷补偿防护盒原理图

25HZ相敏轨道电路讲义

25HZ相敏轨道电路 一、25HZ相敏轨道电路设备的组成 1、送电端设备构成 (1)BE25:送电端扼流变压器。 (2)BG25:送电端电源变压器。 (3)R0:送电端限流电阻。 (4)RD1 、RD2:熔断器。(烧保险红光带:①在无列车接近时保险不烧,测试各部的电压都正常,有车接近就烧保险。原因:是牵引电流不平衡造成。在本轨道电路中有一火花间隙与轨条打火所致。②本区段有车通过时烧保险,无车时不烧保险,测试检查送端限流电阻电压几乎为0V,限流电阻没按标准使用。) 2、受电端设备构成 (1)BE25:受端扼流变压器。 (2)BG25:受电端中继变压器。 (3)RD3:熔断器。 (4)FB:防雷补偿器。 (5)HF:防护合。 (6)GJ:(JRJC1-70\240)(旧JRJC-66\345): 25HZ相敏轨道电路接收器。 3、电源设备:25HZ电源屏。 二、25HZ轨道电路原理 由25HZ电源屏分别供出25HZ轨道电源和局部电源。轨道电源由室内供出,通过电缆供向室外,经送电端25HZ轨道电源变压器(BG25)、送电端限流电阻(RX)、送电端25HZ 扼流变压器、钢轨线路、受电端25HZ扼流变压器(BE25)、受电端25HZ轨道中继变压器(BG25)、电缆线路,送回室内,经过室内防雷硒堆(Z,耐压值大于100V)、25HZ防护盒(HF)给二元二位轨道继电器(GJ)的轨道线圈供电。局部线圈的25HZ电源由室内供出,当轨道线圈和局部线圈所得电源满足规定的相位和频率要求时,二元二位继电器JRJC1-70/240吸起,轨道电路处于工作状态;反之二元二位继电器JRJC1-70/240落下,轨道电路处于不工作状态。 三、25HZ相敏轨道电路各部件作用 1、缓动继电器(代替原轨道复示)JWXC-H310型各字母含义: J--继电器W--无极X--信号 C--插入310--线圈电阻H--缓动 作用:用于复示相应区段二元二位继电器状态。装于区段组合内。 此继电器配合系统其它器材解决冲击干扰引起轨道继电器误动危及行车安全等问题。缓吸时间0.4±0.1S 缓放时间0.8±0.1S 。有8组普通前后接点(8QH)。 故障现象:组合上GJZ保险烧断缓动继电器落下,继电器线圈断线缓动继电器落下。注:红光带时要注意轨道复示组合架上的保险及缓动继电器状态。 2、二元二位继电器 二元二位继电器JRJC2-70/240各字母含义: J—继电器R—二元J—交流C—插入2—设计序号70—轨道线圈电阻240—局部线圈电阻 作用:反映轨道区段的占用和出清。 原理:它是一种交流感应式继电器,是根据电磁铁所建立的交变磁场与金属转子中感应电流之间相互作用的原理动作的。当该继电器通过规定的交流频率电流,局部线圈电压超前轨

轨道电路施工维修和故障处理方法探讨

轨道电路施工维修和故障处理方法探讨 轨道电路是铁路信号传输的重要设备,对于列车占用线路的情况可以起到监督作用,同时还能够给列车传递信息,从而更好地对列车运行进行协调。在轨道交通事业不断发展的今天,应该要对轨道电路的功能进行完善,要对轨道电路常见的故障进行处理,从而使轨道电路保持正常运转,为列车提供各种所需信息。 标签:轨道电路故障维修方法 前言 轨道电路是车站几种连锁的重要部分,是对列车的各种信号进行传输的重要途径,随着轨道事业的不断发展,轨道电路建设的要求也越来越高,轨道电路所承担的工作也越来越多。当前轨道电路已经不单单是反映列车占用和出勤的,已经是很多铁路运输过程中的行车指挥以及编组站自动化的一个必不可少的基础设备,尤其是随着自动化和智能化的不断发展,轨道事业的发展也朝着自动化和智能化方向发展,因此轨道电路的设计也逐渐实现智能化、信息化。但是需要注意的是,轨道电路的运行过程中,往往会出现很多故障,这些故障产生的原因有可能是外部条件引起的,也有可能是电路自身的问题,这些故障对于电路的发展有十分严重的影响。比如轨道电路空闲红光带一直是信号设备的常见、多发故障,而且这种故障的隐蔽性比较强,不易被察觉,对车辆的安全形势有十分严重的影响。随着轨道事业的发展,开设了越来越多的线路,这些线路在不断运营的过程中所面临的故障也越来越多,因此必须要对这些故障进行有效地防范,从而确保行车安全。当前很多轨道电路都采用的25 Hz 相敏轨道电路,也有轨道采用的是交流连续式480轨道电路,这些电路受到综合因素的影响比较大,任何一方出现问题,都有可能会导致轨道的电路不能正常运行,从而导致轨道行车过程中的运营和调度混乱。各个轨道线路都很关注电路故障问题,对历年信号故障统计数据可以发现,轨道电路的故障大约是信号系统故障的40%~50%,所占的比重较高,而且频繁地出现各种轨道电路故障,有可能会降低信号系统的可靠性,从而影响轨道线路的生产安全和运行效率,还会增加工人的维修费用,延长工期。由此看见,在轨道线路的运营过程中,应该要积极加强对轨道电路故障的检查,并且进行及时维修,确保轨道电路的安全性和稳定性。另外,当前很多轨道线路的信号设备在不断升级换代,一些轨道的信号设备维修仪表还配备了轨道电路综合测试仪,其功能十分全面,能够实现对一些基本故障的检测,为轨道电路问题的处理有十分重要的指导作用。 一、轨道电路常见的故障以及检测 1.室内轨道电路故障 在进行轨道电路的故障分析时,应该要对轨道电路的故障进行查找,一般来说,对于轨道电路的故障分析,应该要区分是室内故障还是室外故障,室内故障与室外故障所表现出来的形式是不相同的。

25Hz轨道电路故障判断教学教材

25H z轨道电路故障判 断

25Hz轨道电路学习资料 XB GJZ220GJF220JJZ110JJF110 1、防护盒作用及故障后的影响: 25HZ相敏轨道电路继电器并接有防护盒,防护盒对50HZ牵引电流相当于15Ω的阻抗,起到减小轨道线圈电压的作用,对25HZ信号呈容抗,起着减小轨道电路衰耗和相移的作用,当防护盒不良时,继电器25HZ电压会下降,50HZ 电压会上升,继电器翼板有震动噪声。 2、绝缘破损的情况:

在电气化区段由于安装了通过牵引电流的扼流变压器,使得有扼流变压器的绝缘都成为极性绝缘,一组绝缘破损短路,绝缘两侧电压都会下降一半,会出现2个区段红光带(也可能是一个区段红光带,一个区段电压降一半)。 3、室内外故障判断方法: 在分线盘轨道送端测试220V电源电压和受端所接收的轨道电压与电流。 调整状态时分线盘参考数据:送端220V/15mA 受端18V/20mA a 送端有220V 受端无电压无电流---室外故障 b 送端有220V 受端有较低电压但电流也很低---室外故障 c 送端无220V----室内故障 d 送端有220V 受端有较高电压时----室内故障 e 送端有220V 受端无电压或电压较低,但电流大于20mA时----室内故障 25Hz轨道电路室内故障外判断方法 4、把电路分为若干个闭环: 第一闭环:电源屏至送端变压器1次侧; 第二闭环:送端轨道变压器2次侧至送端扼流变压器1次侧; 第三闭环:送端扼流变压器2次侧至受端扼流变压器2次侧; 第四闭环:受端扼流变压器1次侧至受端轨道变压器2次侧;

第五闭环:受端轨道变压器1次侧至室内RDGJ3、4线圈; 第六闭环:RDGJ3、4线圈至防护盒1、3端子; 第七闭环:防护盒至硒片(此闭环开路时不成呈现故障); 5、闭环内出现故障的判断 在某个闭环内若出现开路故障时,此闭环内及短线点以后的电路中不会有电流和电压。短线点之前电压会有不同程度的升高(除第六闭环外)。我们可以用电压表对电路逐段测试—电压变化的地段及为故障所在。 在第六闭环由于防护盒中电感电容的作用,其开路时将引起接收电压下降至9V左右,电流升高近一倍。 在某个闭环内若出现短路故障时,将引起自短路点之前电路中的电流升高,限流电阻上的压降升高,而限流电阻之后的电路电压明显下降或无电压:短路点之后得不到电流和电压(或电流电压明显下降)。我们可以用甩线法判断故障位置。快捷的方法是电流法,闭环内电流变化的地段即为故障位置。在第七闭环内若有电流即可判断硒片击穿或配线短路。 站内轨道均实行了极性交叉防护,当相邻轨道区段绝缘破损时,将造成两区段轨道电压同时下降而呈现故障。道岔安装装置绝缘破损时,用轨道测试仪检测最为快捷方便。送端电缆若短路,将引起电源屏输出电源所属保险熔断,出现多处红光带故障。我们可以对本束电源所控制的各个轨道区段送端电缆进行电阻测试,电阻为0欧或非常小的为故障区段。可对电缆阻值进行计算判断短路点的大概位置(电缆芯线阻值为0.0235欧/米)。

轨道电路故障

半自动轨道电路故障安全分析 (你文章后面我已经看不懂了,整体上逻辑混乱,没有按照分析问题和解决问题的思路着 手) 学生姓名:滕秦溥 学号: 1432689 专业班级:铁道交通运营管理1401班 指导教师:魏宝红

摘要 为提高接车站运转职工在办理轨道电路故障时的准确率(这一句没有把事情说清楚),故此本文探索在6502半自动闭塞情况下,接车站接车时突发轨道电路“红光带”和“道岔失去表示”故障时的一种通用处理程序。本文认为可以将轨道电路“红光带”故障归纳进轨道电路“道岔失去表示”的故障大类中。最后进行安全分析并据此提出相应对策,确保非正常情况下接发列车作业安全。(摘要内容太简单) 关键词:6502 接车站轨道电路故障安全分析

目录

引言 本文针对目前单线半自动6502型控制台或计算机连锁设备的接车战场显示终端所显示的常见故障,“红光带”和“道岔失去表示”两种情况做详细说明和解释,以时间柱为坐标分段论述两种故障的区别与联系。通过案例分析做出统一处理程序。目前分路不良的轨道电路区段达到三万多,因轨道电路故障造成的事故是遍及全路的最大的安全隐患之一。因其复杂,所以真正把轨道电路故障的问题解决好,克服轨道电路故障事故的发生,保证铁路安全运输的任务迫在眉睫,这也是本文研究的重点。最后经过安全隐患分析和岗位职责安全分析做出总结避免相似情况再次发生。(这段的逻辑关系混乱)

1.轨道电路简述: 1.1轨道电路的构成(先定义再构成) 轨道电路由两部分构成,即“轨道”和“电路”。 “轨道”是铺设在路基之上,用来引导机车车辆的运行方向,直接承受机车车辆巨大压力的部分,它由道床,轨枕,钢轨连接零件防爬设备和道岔等组成。 “电路”是以钢轨作为导体两端加以机械绝缘(或电气绝缘),接上送电和受电设备构成的电路称为轨道电路。 1.2轨道电路的定义 轨道电路是为保证安全而诞生的,轨道电路可以判断列车位置,是否有障碍物等。轨道电路在铁路运输生产中产生着巨大的安全作用,通过轮对短路两侧钢轨,切断电气回路而反映列车占用此区段轨道电路。 如果钢轨轨面或轮对踏面生锈严重,造成列车轮对不能可靠短路钢轨,即切不断该轨道电路的电气回路,就称为轨道电路分路不良也就是常说的“红光带” 故障。本文认为“红光带”又可分为有岔区段和无岔区段,有岔区段故障常见会发生“道岔失去表示”或者“挤岔”事故,当轨道电路出现故障后将会对铁路行车造成严重的安全隐患。 2.轨道电路故障: 常规方法是将轨道电路故障分为:轨道电路”红光带”和“道岔失去表示” 两大类。

02__25Hz相敏轨道电路的测试和调整

97型25Hz相敏轨道电路 现场测试和调整(参考) 一、有关术语 1.参考调整表:指部标准图《97型25Hz相敏轨道电路图册》通号(99)0047中的参考调整表。 2.允许失调角:25Hz轨道电路传输时,在局部电压导前轨道电压90°的基础上,还会发生相移,该相移应控制在一定的允许范围,称为允许失调角β。 即β应在±30°之内。 3.相敏轨道继电器的有效电压:指经轨道传输后,加在二元二位轨道继电器轨道线圈上的电压,或加在微电子相敏轨道电路接收器接收端上的电压,与允许失调角相关。U J(有效)-U J(测试)×cosβ,不同失调角时,其二者的换算见表1。 表1 U J(有效)和U J(测试)换算表 二、25Hz相敏轨道电路的主要技术指标 1. 调整状态时,轨道继电器轨道线圈上的有效电压应≥18V,轨道电压相位角滞后于局部电压相位角90±30°。JXW-25微电子相敏轨道电路接收器接收端有效电压应≥16V,允许失调角应在±30°以内,直流电压输出应为20 V~30V。 2. 用0.06Ω标准分路电阻线在轨道电路送、受端轨面上任一处分路时,轨道继电器(含一送多受的其中一个分支的轨道继电器)轨道线圈上的电压应≤7.4V。 相敏轨道电路接收器接收端电压应≤7.4V 3. 轨道电路送、受电端扼流变压器至钢轨的应采用等阻线,接线电阻不大于0.1Ω。 4. 轨道电路送、受电端轨道变压器至扼流变压器的接线电阻不大于0.3Ω。 5. 轨道电路电源屏至送电端轨道变压器一次侧的电缆允许压降为30V。轨道继电器至轨道变压器间的电缆电阻不大于150Ω。 6. 轨道电路送、受电端的限流电阻器R X、R S,其阻值应按通号(99)0047图册

相关主题
文本预览
相关文档 最新文档