当前位置:文档之家› 导数的定义(人教A版)

导数的定义(人教A版)

导数的定义(人教A版)
导数的定义(人教A版)

导数的定义(人教A版)

一、单选题(共10道,每道10分)

1.一动点的运动方程是,则在一段时间内相应的平均速度为( )

A. B.

C. D.

2.函数在区间上的平均变化率为( )

A.4

B.5

C.2

D.3

3.物体作直线运动的方程为,则表示的意义是( )

A.经过4s后物体向前走了10m

B.物体在前4s内的平均速度为10m/s

C.物体在第4s内向前走了10m

D.物体在第4s时的瞬时速度为10m/s

4.在曲线的图象上取一点及邻近一点,则为( )

A. B.

C. D.

5.若函数可导,则等于( )

A. B.

C. D.

6.若,则=( )

A. B.

C. D.

7.已知,则=( )

A. B.

C. D.

8.在处可导,为常数,则( )

A. B.

C. D.

9.已知,,则=( )

A. B.

C. D.

10.已知函数和在区间上的图象如图所示,则下列说法正确的是( )

A.在到之间的平均变化率大于在到之间的平均变化率

B.在到之间的平均变化率小于在到之间的平均变化率

C.对于任意,函数在处的瞬时变化率总大于函数在处的瞬时变化率

D.存在,使得函数在处的瞬时变化率小于函数在处的瞬时变化率

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

《导数的概念及其计算》综合练习

导数的概念及其运算 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1、函数2 1()ln 2 f x x x =- ,则()f x 的导函数'()f x 的奇偶性是 ( ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 2、若0()2f x '=,则=--→k x f k x f k 2) ()(lim 000 ( ) A.0 B. 1 C. —1 D.2 3、若曲线4x y =的一条切线l 与直线084=-+y x 垂直,则l 的方程为( ) A.034=--y x B.034=-+y x C.034=+-y x D.034=++y x 4、曲线423+-=x x y 在点)3,1(处的切线的倾斜角为( ) A.?30 B.?45 C.?60 D.?120 5、设))(()(,),()(),()(,sin )(112010N n x f x f x f x f x f x f x x f n n ∈'='='==+ ,则 2010()f x =( ) A.x sin B. x sin - C.cos x - D.cos x 6、曲线)12ln(-=x y 上的点到直线032=+-y x 的最短距离是( ) A.5 B.52 C.53 D.0 7、已知函数2log ,0, ()2,0.x x x f x x >?=?≤? 若'()1f a =,则a =( ) A.2log e 或22log (log )e B.ln 2 C.2log e D.2或22log (log )e 8、下列结论不正确的是( ) A.若3y =,则0y '= B.若3y x =,则1|3x y ='=

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

-导数知识点与基础习题(含答案)

一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即 0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义: 当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即 000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数 函数极大值与最大值之间的关系. 求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

导数的基本概念

导数的运算及几何意义 【知识回顾】 1.导数概念 ①函数在点处的导数 : (x o )==深刻 理解“函数在一点处导数”、“导函数”、“导数”的区别和联系。 函数y=f (x )在点x 0处的导数()就是导函数()在点x= x 0处的函数值,即()=()|x=x0. ②导函数:导函数也简称导数。 ③导数的几何意义:函数f (x )在区间处的几何意义,就是曲线y=f (x )在 点p (,f ())处的切线的斜率。也就是说,曲线y=f (x )在点P (,f ())处切线的斜率是()。相应地,切线方程为y-y 0=()(x-x 0)。 2.常用的导数公式 ①C x f =)((C 为常数),则_________;②n x x f =)(,则_____________ ③x x f sin )(=,则_______________; ④x x f cos )(=,则___________ ⑤x a x f =)(,则_______________; ⑥x e x f =)(,则___________ ⑦x x f a log )(=,则_____________; ⑧x x f ln )(=,则___________ 3.导数的基本运算法则 法则1:_________________])()([='±x g x f ;法则2:_________________])()([='?x g x f 法则3:_________________]) ()([='x g x f

4.复合函数求导:___________________________ 【经典例题】 例题1.已知函数x e x x f 223)(2-=,则=?-?→?x f x f x )0(2)(2lim 0( ) 4.A 2.B 2.-C 4.-D 变式练习:已知函数x x x f 23)(3-=,则=?-?→?x f x f x )0(2)(2lim 0( ) A.4 B.2 2.-C D.4- 例题2.求下列函数的导数 ①65324+--=x x x y ②x x y sin = ③1 1+-=x x y ④)3 2sin(π+=x y ⑤)3(log 2x y = 变式练习:以下运算正确的个数( ) ①21)1(x x =' ②();sin cos x x -=' ③() ;2ln 22x x ='④()10 ln 1lg x x -=' 1.A B.2 C.3 D.4 例题 3.已知函数)(x f y =在R 上可导,若函数)4()4()(22x f x f x F -+-=,则 _____)2(='F 变式练习:已知函数()()()()x e f x x f x f x f ln 2,+'='且满足的导函数为(其中e 为自 然对数的底数),则()='e f ( ) A.1 B.-1 C.-e D.1--e 例题 4.等比数列{}n a 中,4,281==a a ,函数)())(()(821a x a x a x x x f ---=Λ,则 ______)0(='f A. 62 B. 92 C. 122 D. 152 变式练习:设函数()()()()=='-++=k f k x k x k x x x f 则且,6)0(,32( ) A.0 B.-1 C.3 D.-6 例题5.过点(1,0)作曲线y =e x 的切线,则切线方程为________ 变式练习:曲线1 2-=x x y 在点)1,1(处的切线方程为____________________ A. 02=--y x B. 02=-+y x B. 054=-+y x D. 054=--y x 例题6.设曲线2ax y =在点),1(a 处的切线与直线062=--y x 平行,则a 的值为____

导数的概念及运算专题训练

导数的概念及运算专题训练 基础巩固组 1.已知函数f(x)=+1,则--的值为() A.- B. C. D.0 2.若f(x)=2xf'(1)+x2,则f'(0)等于() A.2 B.0 C.-2 D.-4 3.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0 4.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为() A.1 B. C. D. 5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为() A.y=3x+1 B.y=-3x C.y=-3x+1 D.y=3x-3 6.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图象可以为() 7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是() A.4 s末 B.8 s末 C.0 s末与8 s末 D.4 s末与8 s末 8.函数y=f(x)的图象在点M(2,f(2))处的切线方程是y=2x-8,则=. 9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为. 10.已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=. 11.函数f(x)=x e x的图象在点(1,f(1))处的切线方程是. 12.若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是. 综合提升组 13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0 14.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(- 1)=() A. B.- C. D.-或 15.直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

3第三讲导数与微分法研究

泰山学院信息科学技术学院教案 数值分析教研室 通过教学使学生掌握导数的定义,导数的几何意义及微分的概念,熟练掌 握导数的各 种求导方法。 第三讲导数与微分法研究 、基本概念 1?导数及其变形 2?分段函数的导数通过左右导数来求 3. 导数的几何意义 4. 微分的定义 二、求导方法 1 .求导公式及其应用 2. 复合函数求导法 3 ?隐函数的导数求法 4.参数方程确定的函数的导数求法 5?极坐标方程表示的的函数的导数求法 6 .形如y = f(x)g(X) 的函数的导数求法一一取对 数求导法 7?分段函数的导数 8?变动上线的积分表示的函数的导数 课程名称 高等数学研究 授课对象 授课题目 第三讲导数与微分法研究 课时数 教学 目的 重 点 难 占 八\、 1. 2. 3. 隐函数的导数求法 参数方程确定的函数的导数求法 形如y = f (X) g(X) 的函数的导数求法一一取对数求导法 变动上线的积分表示的函数的导数

教学过程与内容 教学 后记 第三讲导数与微分法研究 元函数的导数与微分是微积分的基础,经常出选择题与填空题,可作为求极限、 求驻点、求拐点、求多元函数的偏导数与全微分等问题的基础。重点掌握分段函数的导 数、隐函数的导数、参数(极坐标)方程确定的函数的导数。变动上限的积分表示的函 数的导数每年都考。 一、基本概念 1 .导数及其变形 ,f(X)-f(X 0), lim = lim f X - x 0 4° 例1:设f (X)在x 0可导,求 f(X 0 —3h)-f(X 0) (1) lim h T f(X o 中心 X)— f(X o ) _ lim f (X o +h)- f(X o ) -h m o h 1 ⑶ lim n[ f(X 0 +-) - f (X o - T n f(X0+2h)-f(X0-2h) ⑵h m o 丄)] 2n 2 .分段函数的导数通过左右导数来求 例2:设f(X)斗X - a I ?(x),护(X)在X = a 连续,文在什么条件下 f (x)在x = a 可 导? 【解】lim f(X ^f(a ^ lim -?(x) = -?(a) X —a lim fg-f (a) = lim 畀(X)=护(a) T X — a X T 〒 当—q)(a)=W (a),即 W (a) =0时,f (x)在 x = a 可导。 2 【讨论】f(x)=|x|, f(x)=x|x|, f(x) =x(x +1)(X -1) I X -1 I 分别有几个不可导 点。 例3:已知函数f(x) =? ” 2 x l ax + b X A 1 X ^1处处可导,试确定 a 、b 的值。 【解】(1)欲使f (x)在X =1处可导,必先在X = 1处连续, 故有 lim f(X)= limf (x) = f(1),即 a + ^1 x —! — H 十 (2)又f (x)在X=1处的左、右导数分别为 2 5= 十斗 ad + 也 x)+b —1 「5、 .. a(1+也 x)+b —1 r a 也X f Q=J x s + 纵 二四盂=a 故a = 2,从而b = -1,所以,当a = 2 , b = —1时f (x)处处可导。

导数的基本概念性质应用

导数的基本概念及性质应用 考点:1、掌握导数的基本概念及运算公式,并能灵活应用公式求解 2、能运用导数求解单调区间及极值、最值 3、理解并掌握极值及单调性的实质,并能灵活应用其性质解题。 能力:数形结合 方法:讲练结合 新授课: 一、 知识点总结: 导数的基本概念与运算公式 1、导数的概念 函数y =)(x f 的导数 )(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比x Δ y Δ的极限,即 )(x f '=0 x Δlim →x Δ y Δ= x Δlim →x Δf(x) -x) Δ(+x f 说明:分子和分母中间的变量必须保持一致 2、导函数 函数y =)(x f 在区间( a, b )内每一点的导数都存在,就说在区)(x f 间( a, b )内可导,其导数也是(a ,b )内的函数,叫做)(x f 的导函数,记作)(x f '或x y ', 函数)(x f 的导函数)(x f '在0x x =时的函数值)(0x f ',就是)(x f 在0x 处的导数。 3、导数的几何意义 设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的切线 斜率。 4、求导数的方法 (1)基本求导公式 0='c )()(1Q m mx x m m ∈='- x x cos )(sin =' x x sin )(cos -=' x x e e =')( a a a x x ln )(=' x x 1 )(ln = ' a x x a ln 1 )(log = ' (2)导数的四则运算

v u v u '±'='±)( v u v u uv '+'=')( )0()(2 ≠= '' -'v v v u v u v u (3)复合函数的导数 设)(x g u =在点x 处可导,y =在点)(x f 处可导,则复合函数)]([x g f 在点x 处可导, )()())(('''x u f x f x ??= 导数性质: 1、函数的单调性 ⑴设函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为增函数;若)(x f '<0则为减函数。 ⑵求可导函数单调区间的一般步聚和方法。 ①确定函数)(x f 的定义区间 ②求)(x f ',令)(x f '=0,解此方程,求出它在定义区间内的一切实根。 ③把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间。 ④确定)(x f '在各小开区间内的符号,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性。 说明:原函数单调性与导函数单调性无关,只与导函数正负号有关 2.可导函数的极值 ⑴极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有)(x f <)(0x f (或 )(x f >)(0x f ),则称)(0x f 为函数的一个极大(小)值点。称0x 为极大(小)值点。 ⑵求可导函数极值的步骤。 ①求导数)(x f ' ②求方程)(x f '=0的根 ③检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得极大值;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得极小值。 说明:极值点的导数为0,导数为0的点不一定是极值点(隐含条件,说明某点是极值点,相 当于给出了一个)(x f '=0的方程 3.函数的最大值与最小值

最新导数及其应用知识点经典习题集

导数及其应用 1、函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在0x x =处的瞬时变化率是 ,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即= . 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 )(x f y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 7.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 8.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数 '()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区 间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 9.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

导数的概念教案

导数的概念(中级版) 许建芳 一、教学目标 1、知识与技能目标 (1)通过实例的分析,理解平均变化率、瞬时变化率的概念;了解平均变化率与瞬时变化率之间的关系; (2)通过导数概念的形成过程,了解导数概念的实际背景,体会导数的思想及内涵; (3)通过观察和动手实践培养学生的分析、比较和归纳的能力,并感悟到极限思想. 2、过程与方法目标 (1)通过问题的探究,体会逼近、类比、以已知求未知、从特殊到一般的数学思想方法; (2)通过问题的探究,培养学生的探究意识和探究方法. 3、情感、态度与价值观目标 (1)通过导数概念的学习,体验和认同“有限和无限对立统一”的辩证观点,接受用运动变化的辩证唯物主义思想处理数学问题的方法; (2)通过了解导数产生的历史及它在实际生活、生产和科研中的广泛应用及巨大作用,认识学习导数的必要性,从而激发学生学习导数的兴趣. 二、教学重点 导数概念的形成过程及导数概念的内涵. 三、教学难点 对导数概念的理解. 四、教学准备 计算器、多媒体课件等. 五、教学方法 引导探究法:设疑——点拨——引导——探究。 六、教学流程

教 学环节教学内容设计思想师生活动 时 间 创设情景 【展示课件1】 1、播放女子双人10m跳台跳水录像 片段 【展示课件2】 2、奇怪的平均速度: 在10米高台跳水运动中,运动员相 对水面的高度h(单位:m)与起跳后的时 间t(单位:s)存在函数关系: h(t)=-4.9t 2 +6.5t+10. 计算运动员在 65 49 t ≤≤这段时间 里的平均速度. 【展示课件3】 3、思考下面的问题: (1)运动员在这段时间里是静止的 吗? (2)运动员在 65 49 t=时,速度为0吗? (3)用平均速度描述运动员的运动状 态有什么问题吗? 【展示课件4】 引入新课. 以新开题,扣人 心弦. 新问题:平均速 度为“0”? 引起学生的好 奇. 让学生带着问 题走进课堂,激发学 生求知欲. 1、师引导学生 观看跳水的轨迹及 速度变化. 2、全体学生计算 平均速度,之后,一 学生回答计算结果. 3、教师抛出三个 思考题. 一学生答题,其 他学生补充; 教师总结. 引 入新课. 8 分 引导探究 任务一:感受平均速度的变化. 【展示课件5-10】 1、函数图像h(t)当t=2,Δt取不 同值时的斜率变化. 2、当Δt取不同值时,尝试计算 (2)(2) 4.9 13.1 h t h t t +?- ==-?- ? v 的值? Δt vΔt v -0.1 0.1 -0.01 0.01 -0.001 0.001 -0.0001 0.0001 -0.00001 0.00001 ………. … . ……. … 3、计算 Δt=0.0000001,Δt=-0.0000001时 的值. 【展示课件11】 感受变化,动手 探究. 借助直观的图 像和数据,归纳、探 求导数的概念. 培养学生的探 究意识和探究方法, 培养学生的动手操 作能力. 1、教师讲解图 像的变化. 2、全体同学笔 练,一学生板演. 教师讲解学生 的板演. 3、学生看教材 第四页表. 学生计算. 展示课件. 10 分

第三章 导数及其应用

第三章 导数及其应用 第一节导数的概念及运算、定积分 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx ? 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx . 函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. (2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)?处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). ?曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. (4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式

导数的概念及导数的几何意义

§57 导数的概念及导数的几何意义⑴ 【考点及要求】了解导数的概念,理解导数的几何意义,通过函数图象能直观地理解导数的几何意义。 【基础知识】 1.一般地,函数)(x f 在区间],[21x x 上的平均变化率为,平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上曲线陡峭的程度; 2.不妨设))(,()),(,(0011x f x Q x f x P ,则割线PQ 的斜率为, 设x 1-x 0=△x ,则x 1 =△x +x 0,∴=PQ k ,当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=) ()(00无 限趋近点Q 处切线。 3.曲线上任一点(x 0,f(x 0))切线斜率的求法:x x f x x f k ?-?+= ) ()(00,当 △x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的,记为. 4.瞬时速度与瞬时加速度:位移的平均变化率: t t s t t s ?-?+) ()(00,称为;当无限趋近于0 时, t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常数称为t=t 0时的;速度的平均变化率: t t v t t v ?-?+)()(00,当无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这个常数 称为t=t 0时的. 【基础练习】 1.已知函数2()f x ax =在区间[1,2]上的平均变化率为,则()f x 在区间[-2,-1]上的平均变化率为 . 2.A 、B 两船从同一码头同时出发,A 船向北,B 船向东,若A 船的速度为30km/h,B 船的速度为40km/h,设时间为t,则在区间[t 1,t 2]上,A,B 两船间距离变化的平均速度为____ __ _ 【典型例题讲练】 例1.已知函数f(x)=2x+1, ⑴分别计算在区间[-3,-1],[0,5]上函数f(x)的平均变化率; ⑵.探求一次函数y=kx+b 在区间[m ,n]上的平均变化率的特点; 练习:已知函数f(x)=x 2+2x ,分别计算f(x)在下列区间上的平均变化率; ⑴[1,2]; ⑵[3,4]; ⑶[-1,1]; ⑷[2,3] 【课堂检测】 1.求函数()y f x == 在区间[1,1+△x]内的平均变化率

相关主题
文本预览
相关文档 最新文档