当前位置:文档之家› 纳米压痕技术综述

纳米压痕技术综述

纳米压痕技术综述
纳米压痕技术综述

纳米压痕技术及其应用

傅杰

摘要:纳米压痕技术也称深度敏感压痕技术,是最简单的测试材料力学性质的方法之一,在材料科学的各个领域都得到了广泛的应用,本文主要针对纳米压痕技术及其应用做一个简单概述。

关键字:纳米压痕技术,应用

一、引言

传统的压痕测量是将一特定形状和尺寸的压头在一垂直压力下将其压入试样,当压力撤除后。通过测量压痕的断截面面积,人们可以得到被测材料的硬度这种测量方法的缺点之一是仅仅能够得到材料的塑性性质。另外一个缺点就是这种测量方法只能适用于较大尺寸的试样。

新兴纳米压痕方法是通过计算机控制载荷连续变化, 在线监测压深量, 由于施加的是超低载荷, 加上监测传感器具有优于1 nm 的位移分辨率, 所以, 可以获得小到纳米级的压深, 它特别适用于测量薄膜、镀层、微机电系统中的材料等微小体积材料力学性能可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量、硬度、断裂韧性、应变硬化效应、粘弹性或蠕变行为等[1]。

二、纳米压痕技术概述

纳米硬度计主要由轴向移动线圈、加载单元、金刚石压头和控制单元等四部分组成。压头材料一般为金刚石,常用的有伯克维奇压头(Berkovich)和维氏(Vicker)压头。压入载荷的测量和控制是通过应变仪来实现,整个压入过程由计算机自动控制,可在线测量载荷与相应的位移,并建立两者之间的相应关系(即P—h曲线)。在纳米压痕的应用中,弹性模量和硬度值是最常用的实验数据,通过卸载曲线的斜率得到弹性模量E,硬度值H 则可由最大加载载荷和残余变形面积求出[2]。

纳米压痕技术大体上有5种技术理论,他们分别是[2-3]:

(1)Oliver和Pharr方法:根据试验所测得的载荷一位移曲线,可以从卸载曲线的斜率求出弹性模量,而硬度值则可由最大加载载荷和压痕的残余变形面积求得。该方法的不足之处是采用传统的硬度定义来进行材料的硬度和弹性模量计算,没有考虑纳米尺度上的尺寸效应。

(2)应变梯度理论:材料硬度H 依赖于压头压人被测材料的深度h,并且随着压人深度的减小而增大,因此具有尺度效应。该方法适用于具有塑性的晶体材料。但该方法无法计算材料的弹性模量。

(3)Hainsworth方法:由于卸载过程通常被认为是一个纯弹性过程,可以从卸载曲线求出材料弹性模量,并且可以根据卸载后的压痕残余变形求出材料的硬度。该方法适用于超硬薄膜或各向异性材料,因为它们的卸载曲线无法与现有的模型相吻合。该方法的缺点是材料的塑性变形假设过于简单,缺乏理论上支持。

(4)体积比重法:主要用来计算薄膜/基体组合体系的硬度,但多局限于试验研究方法,试验的结果也难以完全排除基体对薄膜力学性能的影响。

(5)分子动力学模拟:该方法在原子尺度上考虑每个原子上所受到作用力、键合能以及晶体晶格常量,并运用牛顿运动方程来模拟原子间的相互作用结果,从而对纳米尺度上的压痕机理进行解释。

一般情况下Oliver和Pharr方法在纳米压痕技术最为常用,因此接下来针对此法并结合纳米压痕技术的应用作具体阐述。

三、纳米压痕技术的应用

随着纳米压痕技术的不断发展和完善,压痕仪在材料力学性能的研究中得到了广泛应用。它不但可以给出材料的硬度和弹性模量值,而且可以定量表征材料的流变应力和形变硬化特征、摩擦磨损性能、阻尼和内耗特性(包括储存模量和损失模量值)、蠕变的激活能和应变速率敏感指数、脆性材料的断裂韧性、材料中的残余应力、材料中压力诱发相变的问题、薄膜材料的力学性能等。实际上,任何一个可以从单轴拉伸和压缩测试得到的力学性能参数都可以用压痕的方法得到

1.硬度和弹性模量

纳米压痕测量技术中,两种最常用到力学性质就是硬度和弹性模量,图1给出一个加载——卸载循环过程的载荷一位移曲线.这里最重要的物理参量是最大载荷(P max)、最大位移(h max)、完全卸载后的剩余位移(h1),以及卸载曲线顶部的斜率(S=dP/dh).参量S被称为弹性接触韧度.根据这些参量以及下述三个基本关系式,我们可以推算出材料的硬度和弹性模量[1-3]:

A

P

H max

=

(1)

A

S

E

π

2

=

(2)

1

2

1

21

1

1

E

E

E

r

υ

υ-

+

-

=

(3)

其中式中

A——接触面积,υ——被测材料的泊松比

Er——当量弹性模量,E——被测材料的弹性模量

β——与压头几何形状相关的常数E1——压头材料的弹性模量

υ1——压头材料的泊松比

为了从载荷——位移数据计算出硬度和弹性模量,必须准确知道弹性接触韧度和接触面积,目前广泛用来确定接触面积方法被称为Oliver —Pharr 法。即通过将卸载曲线顶部的载荷与位移的关系拟合为指数关系,此处为减少误差,确定接触韧度的曲线拟和通常只取卸载曲线顶部的25%~50%:

m

f h h B P )(-= (4) )()(max 1m ax

f S h h Bm dh dP m h

h --=== (5)

式中

B 和m ——拟合参数,

h f ——完全卸载后的位移 ,

h max ——整个过程中最大位移。

为了确定接触面积,我们首先必须知道接触深度h c ,对于

弹性接触 ,接触深度总是小于总的穿透深度(即最大位移

h max ),如图2所示,接触深度可以由下式给出:

S P

h h c ε-=

(6) 式中ε——与压头形状有关的常数,再根据经验公式A=f (h c )可计算得出面积,一旦知道了接触韧度和接触面积,硬度和弹性模量便可以由(1)式和(2)式算出

2.合金与非晶金属的硬度与压入深度的关系(尺寸效应) 纳米压痕法是测量材料硬度和弹性模量等力学参量的理想手段。利用测试的载荷——位移曲线,通过Oliver —Pharr 方法,可得到材料的硬度和弹性模量。

对于一般合金而言,用该方法从一个压痕只能得到一个硬度与弹性模量值,而一般金属材料的硬度并不是一个常量.当压入深度较小时,材料的硬度较大;随着压入深度的增加,硬度趋近一恒定值,即所谓的尺寸效应。有人通过对纳米压痕法基本原理的理论分析并通过实验研究发现,利用S —h 的线性关系通过极少的几个压痕实验就能从加载曲线计算出材料的H —h 关系,进而得到以下两个结论:(1)材料的接触刚度与位移的关系是线性的;利用该线性关系,通过两个压痕实验能得到材料在不同压入深度的接触刚度;(2)利用由两个不同压入深度的压痕实验确定的接触刚度一位移关系从加载曲线能可靠地计算出材料的硬度一位移关系及弹性模量[4]。

[4]

而对于非晶态金属而言,其比一般金属具有很高的强度;而且强度的尺寸效应很小,非晶材料硬度和弹性模量与测量所用载荷(或压入深度)无关,这也可以从纳米压痕实验得到验证。有人采用Berkovich 和Cube Comer 压头测量了铜基非晶硬度和弹性模量,结果发现压头形状对铜基非晶合金的微观变形有影响,对比Berkovich 压头,经Cube Comer 压头压入的压痕周围剪切带较多;但压头形状不影响H 和E 测量结果。也表

明合金没有硬度的尺寸效应,材料的变形没有明显的加工硬化[5]

。 3.研究材料塑性性能 通过纳米压痕试验曲线和经验公式可以计算得到材料的弹性模量和硬度,但是对于微小体积的材料,仅仅知道弹性模量和硬度是不够的,材料的塑性性能或者说材料完整的应力——应变曲线,对于结构的设计和分析也十分关键。纳米压痕是基于对压痕问题的弹性解, 因此, 从压力——压深曲线中只能计算出有限的材料性能, 如弹性模量和硬度等。由于本构关系是非线性的, 并且要包含一些描述塑性能的参数(如屈服强度等) ,在数学模型中包含塑性性能分析是十分复杂的问题, 直接获得解析解比较困难。因此, 大多数对材料塑性性能的分析是通过有限元数值仿真来完成。即通过改变输入给有限元计算

程序的应力——应变关系曲线, 可以得到不同的压力——压深曲线, 这些曲线中与实际试验得到的压力——压深曲线吻

合最好的应该是对应着正确的输入的材料性能,如图3至图6

所示,把用这种方法得到的应力——应变曲线和材料实际的应力——应变曲线进行比较, 发现两者吻合得非常好。因此, 这种得到材料塑性性能的方法是正确可行的[6-7]。

图3初始估计的被测材料应力应变曲线 图4初始计算出的压力压深曲线和试验曲线的比较

图5修正应力应变关系和实际材料性质的比较图6完整的压力2压深曲线的比较

4.研究材料蠕性性能及蠕变速率敏感指数

蠕变即固体受恒定的外力作用时,应力与变形随时间变化的现象。目前获得材料蠕变参数的标准实验是单轴拉伸蠕变测试,需要大量的试样和测试时间,而采用压痕蠕变测试技术仅需要很小体积的材料,试样的制备也非常简单。另外对于薄膜这类本身体积很小的材料,或者难于加工的陶瓷等高硬度或者脆性材料以及类似于铅之类的非常软的材料,如果仅需要考察材料的局部的蠕变性能,也只能通过压痕蠕变来获得其蠕变性能参数。因此采用压痕实验来研究材料蠕变是非常有意义的。

利用纳米压痕技术测量未知材料蠕性性能一般思路为:首先采用压痕实验测量其弹性模量E,采用不同载荷下的压痕蠕变实验测量其蠕变指数n,通过实验和有限元仿真结合的方法得到其蠕变常数C,将得到的参数代入有限元模型,仿真出的曲线与实验曲线非常接近,最终证明了压痕实验测量材料蠕变性能的可行性和准确性[8]。

蠕变速率敏感指数即指材料发生蠕变时的流变应力对于应变速率的敏感性参数,亦即当应变速率增大时材料强化倾向的参数。许多材料的室温蠕变能力很低,用传统的拉伸方法很难准确测量m值,纳米压痕仪具有极高的载荷和位移分辨率,能够方便的用于微小载荷及亚微米量级的性能测量,为研究材料的室温压痕蠕变提供了一种有效的测试手段。

对于晶体而言,用纳米压痕仪测量m值的方法有三种,即:①恒载荷法,②恒加载速率法,③恒加载速率/载荷法。恒载荷法通过研究恒定载荷时压头位移和材料硬度之间的关系计算m值,恒加载速率/载荷的加载方式,即加载过程中保持恒定的压痕应变速率[9]。

对于非晶态合金而言,块体非晶合金的室温蠕变变形与加载速率密切相关,因此采用不同的加载速率进行纳米压痕实验,进而得到m值,最终得到蠕变机制。具体实验过程如下:块状非晶合金通过载荷控制模式用不同恒定加载速率(如0.75,1,3,6,10,12和24 mN/s)加载到最大载荷为231 mN后保载10 8,然后以加载速率相同的速率卸载到零.在每种加载速率下,样品在同样条件下重复测试4个点,实验结果如图7所示

图7块体非晶合金在不同加载速率下纳米压痕实验的荷载

——位移(P-h)曲线

.可见,在保载阶段,随着加载速率的增加,蠕变现象越显著。高加载速率下,黏弹性和黏性流动在加载过程中受到抑制,在保载阶段得到充分发展,表现为最大载荷处的明显蠕变变形;在低加载速率下,黏弹性和黏性流动变形在缓慢的加载过程中已基本完成,表现为最大载荷处的蠕变不明显。由此,我们可以得到以下结论,块体非晶合金出现了室温蠕变现象,并且蠕变现象随着加载速率的增加而显著;保载阶段的蠕变可以分为两个阶段:在初始阶段,蠕变变形的速率很大,变形呈指数上升;随后进入稳态过程,蠕变变形随时间变化很小[10]。

5.研究压痕塑性变形诱导非晶合金发生晶化行为

塑性变形诱导非晶合金发生晶化的微观机制仍没有一个定论,由于在塑性变形过程中局部区域的温度升高,而非晶合金在热力学上处于亚稳态,因此很难评价局部热效应在塑性变形诱导非晶合金晶化中的作用,压痕塑性变形可以排除变形过程中温度升高的不确定因素,如非晶合金在纳米压痕实验中的温度升高约为0.05K,因此,压痕变形时研究塑性变形诱导非晶合金晶化的一种有效方法。再通过投射电镜发现非晶合金在压痕塑性变形过程中发生看晶化,直接析出稳定相,而没有析出该非晶合金加热过程中析出的初生相二十面体准晶相,表明非晶合金的机械稳定性与热稳定性有一定的区别。从而证实压痕变形中的剪切应力导致的塑性流动是发生晶化的动力所在,并非热效应。此外,还可以通过分子动力学方法模拟非晶合金的晶化过程,从微观结构演化的角度考察和分析应力晶化过程中的晶粒的形核、长大与合并过程,得到晶核生长位置、晶粒方向、塑性应变之间的关系[11-13]。

四、存在的问题及今后的发展方向

(1)纳米硬度的定义目前纳米压痕技术所采用的硬度定义是沿袭传统经典弹塑性力学中的硬度定义,是载荷与残余变形面积的比值,是一个平均概念。硬度的大小与采用的压头几何形状直接相关,对压人过程中的尺度效应无法表征。如何在纳米尺度上对微硬度或纳米硬度进行定义,使得实际测得的材料硬度值真正能够反映出材料的内在特性,建立材料微观组织结构与宏观力学性能之间的联系是人们正在追求的目标。

(2)薄膜/基体组合体采中基体对薄膜力学性能的影响问

题薄膜目前已在微构件、电子信息产品和其它机械产品中广泛使用,与产品的工作性能和使用寿命密切相关。因此,薄膜力学性能的研究受到广泛关注。由于构件尺寸的不断减小和薄膜力学性能的不断提高,薄膜厚度急剧减小,最小可小至十几纳米甚至几纳米。因此,要了解薄膜的力学性能必须排除基体对它的影响。反过来,也可以利用基体的影响设计薄膜/基体组合体系,使它们具有最佳的组合力学性能。发展有效的理论计算方法是当务之急。此外,薄膜与基体之间的界面效应对薄膜力学性能的影响也是今后的研究重点。

(3)材料表面及浅表层物理性能的影响物体表面有着十分复杂的特性,如表面化学反应膜、表面加工硬化、表面粗糙度、表面力等均会影响纳米压痕试验的准确性和重复性,尤其当压人深度很小时(如小于20nm),试验结果有很大的不确定性。如何避免这些因素的影响,在试样表面制备技术方面提出了很高的要求。

(4)材料硬度及压痕的影响 不同硬度的材料在受压时会在压头周围产生堆积现象或沉陷现象,从而影响压头实际的压人深度,使得实际计算的硬度值发生偏差。如何消除材料在压痕试验中堆积和沉陷现象产生的影响并准确确定实际的压人深度,需要在材料的塑性变形机理方面做进一步的探讨。

《材料力学性能仪器化压入测试原理》

仪器化压入载荷-位移曲线的时间无关校正原理: 对于原始数据中极为重要的载荷-位移曲线测试而言,时间因素包含两个方面,一是加载方式及相应的加载速率,二是在最大载荷处的保载时间。加载方式通常分为三种,分别是恒载荷速率加载方式:

/P dP dt ?

==常数;恒位移速率加载方式:h h /d dt ?

==常数;恒应变率加载方式:

h/(h /)/h d dt h ?

==常数。一般情况下不论何种

加载方式随加载速率的增大,压入载荷将增大,而到达最大载荷曲线向左偏移。幸运的是在随后的保载阶段,这种初始到达最大载荷时的位移减小将随保载时间的延长可以被忽略,即加载速率对保载阶段的稳定位移几乎不构成影响。于是,考虑时间因素的影响归结为考虑保载的影响。

对于恒载荷速率加载最大蠕变应变o ε存在随压入深度的减小数值增大的现象,称此现象为材料仪器化压入蠕变应变的尺寸效应。

文中提及:加载时:尽管上述方法校正精度高,但效率很低,因此考虑提高实验效率同时保留一次近似精度,可以将不同深度处的恒载最大蠕变应变当成常数来处理。卸载时:在经历过10s~15s 的保载阶段后,对于绝大多数金属和陶瓷材料其卸载曲线的形状基本不再随保载时间的改变而改变,因此可以用平移的方法将整个卸载曲线移至与最大载荷想对应的最大蠕变应变o ε所处压入深度位置。(得出实验的保载时间

要在10s~15s 之间)

一、纳米压痕试验方法研究(上海材料研究所 王春亮 2007)

(一)试验比较多:

试验着眼于纳米压痕试验方法的影响因素,压痕硬度、马氏硬度和维氏硬度之间的关系,纳米压痕试验结果的不确定度,以及纳米压痕试验方法在薄膜试样中的应用。获得材料压痕硬度、杨氏模量、压痕蠕变、压痕松弛和断裂韧性等力学性能。各种测量方法及材料的差异参数,以及各种形状压头的相关参数。

(二)选择的主要测量方法:由相关计算公式计算,推得计算出压痕硬度和压痕模量就必须精确的测量弹性接触刚度S 和加载时投影面积Ap 。纳米压痕硬度和传统的压痕硬度间差别就是在接触面积的确定方式上,它是通过对载荷—位移曲线进行分析后计算出投影面积的。目前最常用的方法是:Oliver —Pharr 方法。由公式所得的卸载曲线与实际卸载曲线的偏差,因此弹性接触刚度的曲线拟合通常只取卸载曲线顶部的25%到50%。Oliver —Pharr 提出两种方法:第一种只能给出最大压痕出的硬度和弹性模量;第二种方法就是CSM,是将一个高频谐振力叠加在准静态的加载信号上,成功关键是所采用的动力学模型能否准确地描述压痕系统的动力学响应(即系统力学模型的精确度),可对接触刚度的方法进行动态测量。

连续刚度测量法(CSM ):在加载的过程中连续计算接触刚度,利用动态刚度测量从而获得随压痕深度连续变化的硬度和模量值。

[有人开始开发测量超薄力学性能的试验仪器和技术新的方法。(基于纳米压痕仪的薄膜力学性能纳米测试与表征研究 博士论文 几乎没有表征)]

介绍了其他材料参数的测量原理(马氏硬度:压痕蠕变:压痕松弛:断裂韧性:压痕硬度与传统维氏硬度的关系:)

(三)纳米压痕实验中影响因素:接触零点引起的误差;压头面积函数引起的误差;热漂移引起的误差;压痕间隙引起的误差。

1.接触零点的确定有:1)拟合曲线外推法计算零点;2)试验力或接触刚度第一增加时。接触零点的确定至关重要。(由测量数据得,对于压痕深度为2000nm 的试验,当零点设置的不确定度超过最大压痕深度的1%时,得到的压痕硬度的误差己超过6%;而对于压痕深度为100nm 的试验,当零点设置的不确定度超过最大压痕深度的1%时,得到的压痕硬度的误差仅为4%左右。此外还可以推出,接触零点移动几纳米,压痕深度较大时影响较小,但对压痕深度较小时影响则较大。)

2.压头面积引起误差:1)压头形状的确定;2)最小压痕深度。

压痕仪器压头选择为玻氏压头为正三棱锥形状(同基于纳米压痕仪的薄膜力学性能纳米测试与表征研究博士论文中选择),其下又分为:通用的玻氏压头(与维氏压头有相同的表面积)和修正的玻氏压头(与维氏压头有相同的投影表面积)。另外的压痕试验常用的正三棱准压头是直角压头(在脆性材料周围产生很小的规则裂纹,可估算围观区域内断裂韧性)。

(压痕深度要>=0.6μm ,否则要对压头面积函数进行校对。)

结论:压痕硬度值变化以及压痕模量值的变化与面积函数变化成负相关。

3.热漂移引起的影响:要合理控制试验环境,严格控制试验温度。

4.压痕间距引起的误差:对于玻氏和维氏压头,相邻压入间距保持在最大压痕深度的25倍以上。

(四)压痕硬度与维氏硬度和玻氏硬度之间的关系。对于不同压头、以及不同的硬度等级的式样,硬度关系不尽相同。对于维氏压头而言,维氏硬度值约为压痕硬度值的0.0877倍,马氏硬度值约为压痕硬度值的0.8333倍;对玻氏压头而言,维氏硬度值约为压痕硬度值的0.0901倍,马氏硬度值约为压痕硬度值的0.9009倍。

(五)纳米压痕试验方法测量不确定度评估:

测量不确定度:不确定度评估分为A类标准不确定度(贝塞尔公式、极差法以及最小二乘法)和B类标准不确定度(根据校准证书、检定证书和准确度等级等已知信息进行评估的。)。目前尚未发现纳米压痕试验结果不确定度定量评估结果。

测得压痕模量的重复性限和复现性限是什么?

重复性限r同一操作、同一实验室、同一台仪器,一样方法步骤连续时间内,对样品重复性测定,的两个结果间的绝对差在置信概率为95%时不超过的极限值。

再现性限R:不同操作者、不同实验室、不同仪器,按一样方法步骤,对同一样品进行测定,得到两个结果之间绝对差在置信概率为95%是不超过的极限值。

压痕硬度试验有两类:一是用压痕表面上承受平均压力(F/A)进行表示;如布氏硬度、维氏硬度和努氏硬度:测得值与刚度有共同的量纲(N/mm2);二是压痕深度表示材料硬度值,如洛氏硬度:物理意义不够明确,不同的试验力压头所的值没有关系。

(六)薄膜样品压痕试验研究:

不同测试方法的比较:材料为TiO2/SiO2膜。三种不同个连续刚度测量法CSM间的比较。结论:DCM CSM hardness, modulus for thin films方法更加可靠。基底效应对压痕模量值的影响要大于对压痕硬度值的影响。测试发现薄膜在11nm处压痕模量值较稳定,即膜厚的1/15;在13nm处压痕硬度值比较稳定,即膜厚的1/12。

用上述压痕试验方法对不同的样品进行测试:Cu/Si薄膜、TiN/Fe薄膜、ALN/Si薄膜。测得不同材料的模量和硬度测试可靠结果出现的相对薄膜的位置,即在膜厚的几分之几处。

参考文献

[1] 谢存毅, 纳米压痕技术在材料科学中的应用,实验技术30卷(2001年)7期

[2] 黎明温诗铸,纳米压痕技术及其应用, (2002)17—1437—03

[3] 黎明温诗铸,纳米压痕技术理论基础,机械工程学报,2003年3月

[4] 谭孟曦, 利用纳米压痕加载曲线计算硬度与压入深度关系及弹性模量,金属学报,2005年10月

[5] 黎业生, 纳米压痕仪测Cu50Zr43Ti7非晶合金硬度弹性模量, 稀有金属材料与工程, 2009年1月

[6] 刘扬,陈定方,基于纳米压痕技术和有限元仿真的力学性分析, 武汉理工大学学报,2003 年10 月

[7] 黄伟赵宝史洪刚李亚峰, 用纳米压痕测定钨合金材料的微观本构关系,兵工学报,2006年3月

[8] 刘硕,压痕蠕变实验的力学模型与蠕变力学性能表征,2007年7月

[9] 陈吉汪伟, 纳米压痕法测量Cu的室温蠕变速率敏感指数, 金属学报,2 0 0 1年l1 月

[10] 彭建龙志林,铁基块体非晶合金在纳米压痕过程中的蠕变行为研究,物理学报,2009年6月[11] 闫志杰李金富,压痕塑性变形诱导非晶合金晶化,物理学报,2007年2月

[12] 王海龙王秀喜,压痕过程中非晶Cu形变诱导晶化行为的原子模拟,金属学报,2007年3月

[13] 王海龙王秀喜,分子动力学模拟金属玻璃压痕过程应力晶化,中国有色金属学报,2007年1月

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

纳米材料的自组装综述

纳米材料的自组装综述 专业:高分子材料与工程 摘要: 自组装技术是制备纳米结构的几种为数不多的方法之一。本文对最近几年自组装技术在纳米科技领域中的一些重大突破和成果进行较为系统地综述,主要包括以下几个方面:自组装单层膜、纳米尺度的表面改性、超分子材料、分子电子学与光子晶体。 关键词: 自组装; 纳米技术; 材料;超分子材料 1 引言 纳米科学与技术是一门在0. 1~100 nm 尺度空间研究电子、原子和分子运动规律和特性的高技术学科。它以现代先进科学技术为基础,是现代科学(混沌物理、量子物理、介观物理、分子生物学) 和现代技术(计算机技术、微电子技术、扫描隧道显微技术、核分析技术) 相结合的产物。它的最终目标是人类按照自己的意志直接操纵单个原子,制造具有特定功能的产品。纳米技术作为21 世纪新的推动力,将对经济发展、国家安全、人民生活、以至于人们的思维产生深远的影响[1 ] 。 自组装是在无人为干涉条件下,组元自发地组织成一定形状与结构的过程[2 ] 。自组装纳米结构的形成过程、表征及性质测试,吸引了众多化学家、物理学家与材料科学家的兴趣,已经成为目前一个非常活跃并正飞速发展的研究领域[3 ] 。它一般是利用非共价作用将组元(如分子、纳米晶体等) 组织起来,这些非共价作用包括氢键、范德华力、静电力等[1 ,4 ] 。通过选择合适的化学反应条件,有序的纳米

结构材料能够通过简单地自组装过程而形成,也就是说,这种结构能够在没有外界干涉的状态下,通过它们自身的组装而产生。因此,自组装是制备纳米结构的几种为数不多的方法之一[2 ] ,它已成为纳米科技一个重要的核心理论和技术。纳米材料因其尺寸上的微观性,从而表现出特殊的光、电、磁及界面特性。这些特性使得纳米材料广泛应用于各种领域:涂料 [5 ]、催化剂[6-7] 、电化学[8] 、光化学[ 9]及材料科学[10-12 ](如光电子器件)。 2 自组装单层膜 分子与生物分子膜正在被广泛应用到许多研究领域。自组装单层膜就是其中的一个研究重点。它是分子通过化学键相互作用,自发吸附在固/ 液或固/ 气界面,形成热力学稳定和能量最低的有序膜。在适当的条件下,自组装单层膜可以通过不同类型的分子和衬底来制备,常用的衬底有Au (111) 、Pt(111) 、Ag 、Al 、Si 、云母、玻璃等。 目前,研究最多的自组装单层膜可以分为三种类型[13 ] :由脂肪酸自组装的单层膜; 由有机硅及其衍生物自组装的单层膜;烷烃硫醇在金表面自组装的单层膜。它们的原理很简单,一个烷烃长链分子 (带有10~20 个亚甲基单元) ,其头部基团吸附到所用的衬底上,如硫醇(S —H) 头部基团和Au (111) 衬底已被证明可以进行完美的结合,它代表了一种控制表面性质的模式。硫醇分子在溶液中很容易吸附到金衬底上,形成一密集的单层,尾部基团从表面伸向外部,通过应用带有不同尾基的硫醇分子,化学样品的表面功能可以在很大范围内进行调节。自组装单层膜有着广泛的应用,如电子传输的研究、生物

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

微纳米力学及纳米压痕表征技术

微纳米力学及纳米压痕表征技术 摘要:微纳米力学为微纳米尺度力学,即特征尺度为微纳米之间的微细结构所涉及的力学问题[1] 。纳米压痕方法是通过计算机控制载荷连续变化,并在线监测压深量[2],适用于微米或纳米级的薄膜力学性能测试,本实验采用Oliver–Pharr方法研究了Al2O3薄膜,附着在ZnS 基底,得到了Al2O3薄膜的力学性能。 关键词:微纳米力学纳米压痕杨氏模量硬度 0引言 近年来,随着工业的现代化、规模化、产业化,以及高新技术和国防技术的发展,对各种材料表面性能的要求越来越高。20世纪80年代,现代表面技术被国际科技界誉为最具发展前途的十大技术之一。薄膜、涂层和表面处理材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异,这些差异在摩擦磨损、物理、化学、机械行为中起着主导作用,如计算机磁盘、光盘等,要求表层不但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。[3]同时随着材料设计的微量化、微电子行业集成电路结构的复杂化,传统材料力学性能测试方法已难以满足微米级及更小尺度样品的测试精度,不能够准确评估薄膜材料的强度指标和寿命 ;另外在材料微结构研究领域中, 材料研究尺度逐渐缩小,材料的变形机制表现出与传统块状材料相反的规律 ,以上趋势要求测试仪器具有高的位置分辨率、位移分辨率和载荷分辨率 ,纳米压痕方法能够满足上述测试需求。[4] 现在,薄膜的厚度己经做到了微米级,甚至于纳米级,对于这样的薄膜,用传统的材料力学性能测试方法己经无法解决。纳米压痕试验方法是一种在传统的布氏和维氏硬度试验基础上发展起来的新的力学性能试验方法。它通过连续控制和记录样品上压头加载和卸载时的载荷和位移数据,并对这些数据进行分析而得出材料的许多力学性能指标,压痕深度可以非常浅,压痕深度在纳米范围,也可以得到材料的力学性能,这样该方法就成为薄膜、涂层和表面处理材料力学性能测试的首选工具,如薄膜、涂层和表面处理材料表面力学性能测试等。 1纳米力学简介 1.1纳米材料 纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子与宏观体系之间的纳米粒子所组成的材料,是把组成相或晶粒结构控制在 100nm 以下尺寸的材料。 1.2纳米材料分类 纳米材料分类:按维数,纳米材料的基本单元可以分为: 1 零维:在空间三维尺度上均在纳米尺度,如纳米尺度颗粒,原子团簇; 2 一维:在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等; 3 二维:在三维空间中有一维在纳米尺度,如超薄膜,多层膜,超晶格等。 1.3纳米材料特性及其基本单元 纳米材料的基本单元:团簇、纳米微粒、纳米管、纳米带、纳米薄膜、纳米结构。

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

纳米压痕力学模式总结(中文)

::: Application Report 先进表面力学测试 安东帕压痕模式总结 介绍 仪器化压痕技术在当今学术和工业研究以及质量控 制等许多领域都得到了广泛的应用。这种方法通常被称 为纳米压痕,因为压痕深度通常比传统的维氏或洛氏硬 度测量要小得多。仪器化压痕技术通过施加载荷和测量 压痕深度来测量多种材料的硬度和弹性模量。由于包括 分析在内的测量是自动化的,许多测量可以在不需要操 作员干预的情况下自动执行和分析。鉴于安东帕纳米压 痕系统及其软件的多功能性,可以在特定材料上应用各 种加载方式以揭示特殊材料特性。例如,可以用循环加 载探测具有分级特性或表面涂层的材料,以测量它们的 硬度梯度; 具有时间依赖性的材料如聚合物可以以恒定 的应变速率模式或以各种压痕速率压痕以获得它们的动 态响应。可以在位移控制模式中有效地实现一些与压痕 相关的实验,例如微柱压缩,以观察滑移现象。 本应用报告总结了安东帕压痕软件中包含的各种方法。 详细描述了每种方法,并给出了应用实例。本文档的目 的是指导纳米压痕器的用户选择最佳的测试方法。 1. 标准压痕模式 标准压痕是最常见的压痕类型,用于简单有效的硬度 和弹性模量测量。 它在ISO 14577标准中定义。用户只需 输入最大压痕载荷和保载时间。载荷曲线如图.1a 所示, 载荷位移曲线如图.1b 所示。 图1-a )标准压痕载荷曲线, b )得到的载荷 - 位移压痕曲线。 1.1. 高级压痕模式(单载荷压痕) 高级压痕模式是一种仪器化压痕技术,允许执行一 次压痕测量,用户可以独立定义加载和卸载速率。由于 这种模式,可以选择不同的加载类型,从而加快总测试 时间或分析不同材料对不同加载速率的响应。此模式可 用于大多数常规压痕测试应用。 安东帕仪器压痕(纳米压痕)测试仪提供三种主要类型 的载荷加载: ? 线性加载 ? 二次方加载, ? 恒定应变率加载。 基于线性或恒定应变率加载类型的试验程序可以是力控 制器或位移控制。 1.2. 具有不同加载速率的线性加载 这种加载式的高级压痕模式可用于大多数常规压痕 测试应用。加载速率的增加会缩短测试时间,尤其是在 运行大型矩阵时。它也可用于聚合物模拟阶跃载荷(载 荷快速增加),并研究随后保载期间的蠕变或应力弛 豫。 压头的加载遵循以下公式:f =k×t (图2),其中k 是加载 速率,单位为m n/min 。假设硬度恒定,深度遵循平方根 演变与时间(f ~√h )的关系。 图 2 –线性加载实例 。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米材料综述 论文

纳米材料综述 1 引言 纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。 1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构. 在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。 2 纳米材料特性 一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。这种现象称为“纳米效应”。纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 2.1表面效应 纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径变小,表面原子所占百分数将会显著增加。当粒径降到1 nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。 2.2小尺寸效应 由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质: 1)特殊的光学性质:纳米金属的光吸收性显著增强。粒度越小,光反射率越低。所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑。金属超微颗粒对光的反射率通常可低于l%,约几微米的厚度就能完全消光。相反,一些

纳米材料研究综述

文章编号:1004-3888(2003)05-0397-04 纳米材料研究综述 Ξ 张万忠,李万雄 (湖北农学院环境工程系,湖北荆州434025) 摘 要:综述了纳米材料的研究概况,介绍了纳米材料的研究现状、特点、结构、特性、制备 方法及其应用状况。 关键词:纳米材料;结构与特性;制备与应用中图分类号:O157 文献标志码:A 纳米材料是指微观结构至少在一维方向上受 纳米尺度调制的各种固态材料[1],其晶粒或颗粒尺寸在1~100nm 数量级,主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m 3/10nm 晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子 结构互不相关,使得纳米材料成为介于晶态与非 晶态之间的一种新的结构状态[2]。此外,由于纳米晶粒中的原子排列的非无限长程有序性,使得通常大晶体材料中表现出的连续能带分裂为接近分子轨道的能级。高浓度界面及原子能级的特殊结构,使其具有不同于常规材料和单个分子的性质如表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等,导致了纳米材料的力学性能、磁性、介电性、超导性光学乃至力学性能发生改变,使之在电子学、光学、化工陶瓷、生物、医药等诸多方面具有重要价值,得到了广泛应用[3,4]。 1 纳米材料研究的现状与特点 1.1 纳米材料研究的现状 上世纪70年代纳米颗粒材料问世,80年代 中期在实验室合成了纳米块体材料,80年代中期以后,成为材料科学和凝聚态物理研究的前沿热点。可大致分为3个阶段;第一阶段(1990年以前),主要是在实验室探索用各种手段制备各种材 料的纳米颗粒粉体,合成块体(包括薄膜),研究评价表征的方法,探索纳米材料不同于常规材料的特殊性能;第二阶段(1994年前),人们关注的热点是如何利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合纳米薄膜;第三阶段(从1994年到现在),纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。 1.2 纳米材料研究的特点 (1)纳米材料研究的内涵逐渐扩大 第一阶 段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象发展到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶)。 (2)纳米材料的概念不断拓宽 1994年以 前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间基体,因此,纳米结构材料内涵变得丰富多彩。 (3)基础研究和应用研究并重 目前,基础研究和应用研究出现并行发展的新局面,纳米材料的应用成为人们关注的热点,纳米材料进入实用阶段,纳米材料及相应产品开始陆续进入市场。 Ξ 收稿日期:2003206206 第一作者简介:张万忠(1965-),男,河南罗山县人,理学硕士,湖北农学院环境工程系副教授. 第23卷 第5期Vol.23No.5 湖 北 农 学 院 学 报 Journal of Hubei Agricultural College 2003年10月Oct.2003

纳米压痕仪测硬度

利用纳米压痕测量表层残余应力 摘要 经过差热收缩,薄铜箔产生等量的双轴残余应力(高达约175兆帕)。随后,这些箔片在位移控制下出现压痕后测量负载—位移—时间特性。实验发现,随着(拉伸)残余应力的增加,渗透到一定深度(一定时间内)所需的应用负载减小,这与有限元模型测试结果(包括塑性和蠕变)相符。本文主旨就是关于这种变化的灵敏度。实验观察到,相对较小的残余应力变化(几十兆帕的顺序排列)能产生影响。这种影响应通过他们对纳米反应的影响检测出。鉴于这种技术在表征(平面)表层残余应力特别是点对点变化的映射(对应获得准确的绝对值)的潜力,这是令人鼓舞的。与此相反,它表明残余应力水平变化产生的硬度变化更小且更难分析。 materialia2011学报,爱思唯尔公司出版,保留所有权利。 关键词:纳米压痕;有限元分析;残余应力;无损检测 1.介绍 一般(平面)残余应力会影响屈服和塑性应变性能,它的存在影响试样近表区压痕响应。曾有人提出这些压力可运用纳米压痕技术检测和测量。这是个吸引人的想法,因为它能让这样的残余应力以无损的方式得到快速测量,可能他们能在成分表面被映射—例如,在焊缝。 Tsui et al. [1]研究了纳米压痕技术通过强加弯矩产生的残余应力对硬度(H)和杨氏模量(E)值的影响。正如预期的一样,实验数据表明E对残余应力并无依赖(测量接触面积修正后)。但是修正后硬度也不受残余应力的影响,一般来说硬度是受影响的(假设他们有一个偏差分量)。然而,他们的数据有一定的干扰性,这些实验里,针对对残余应力减小水平的敏感度很低。其他组在应用残余应力下测到了硬度变化。 Tsui et al. [1]组表明,当堆积发生,传统硬度测量方法容易产生错误。考虑到压头与试样的实际接触面积使得不确定因素增多,这的确是很有可能的。事实上,任何依靠压头面积函数的分析都有这种局限—至少对表现明显堆积的材料压痕是这样。随即的文献5,作者提出了相同的有限元模型(FEM)模拟,模拟表明,除大的(拉伸)残余应力的情况以外,硬度不受残余应力影响。 徐和李[6]在一项纯理论(FEM)研究报告中说明,随着(拉伸)残余应力的增加,硬度(纳米压痕技术得到)稍微降低。他们表明高频与最大深度之比可以作为另一种测量方法,它对残余应力的存在更敏感。这里高频是指残余压入深度,最大深度指最大压头深度。他们也表明压缩(平面)残余应力对应的这个比例高于拉应力。E/rY值低的材料这种差别更明显。 Suresh and Giannakopoulos [7] 组建议比较压入相同深度时受力和没受力的材料接触面积的差别。这个没有可提供的实验数据。该方法已经被广泛当做可行的方法,至少对于锋利的压头来说,理论估计的差别很小(除了残余应力接近屈服应力时)。 Taljat and Pharr [3]组表明,如果运用钝的球形压头,残余应力的影响会更易检测。因为弹塑性机制转变会更好。他们在纯理论(FEM)研究中发现在弹塑性转变时平均接触压

碳纳米材料综述

碳纳米材料综述 课程:纳米材料 日期:2015年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

相关主题
文本预览
相关文档 最新文档