当前位置:文档之家› msp430TFT-LCD,UART,I2C实验报告

msp430TFT-LCD,UART,I2C实验报告

msp430TFT-LCD,UART,I2C实验报告
msp430TFT-LCD,UART,I2C实验报告

I2CBus与SMBus间技术差异

I2C Bus与SMBus间技术差异 前言: 关于I2C与SMBus,许多人很少去谈论与了解两者的细节差异,包括很多国外的简报,文章也经常将两者混写、交杂描述、交替运用。 确实,在一般运用下,I2C Bus与SMBus没有太大的差别,从实际接线上看也几乎无差异,甚至两者直接相连多半也能相安无误地正确互通并运作。不过若真要仔细探究,其实还是有诸多不同,如果电子设计工程师不能明辨两者的真实差异,那么在日后的开发设计的验证纠错阶段必然会产生困扰,为此本文将从各层面来说明I2C Bus与SMBus的细微区别,期望能为各位带来些许帮助。 我写这篇文章,可以理解为郭長祐先生博客中相关文章的读书笔记,我可没有那么高的造诣,关于I2C Bus的基础,可参考先生之前的「I2C 界面之线路实务」,网址为: https://www.doczj.com/doc/e816184013.html,/n/article.asp?id=304799064272FED148256FDC00481D68 当然也可以去参考Philips半导体网站的I2C官方规格: https://www.doczj.com/doc/e816184013.html,/acrobat/literature/9398/39340011.pdf 运用背景、版本演进之别 首先从规格的制订背景开始,I2C是在设计电视应用时所研发的界面,首版于1992 年发表;而SMBus(System Management Bus)则是Intel与Duracell (金顶电池)共同制订笔记本电脑所用的智能型电池(Smart Battery)时所研发的接口,首版于1995 年发表,不过SMBus文件中也提及,SMBus确实是参考自I2C,并以I2C为基础所衍生成。 I2C起源于电视设计,但之后朝通用路线发展,各种电子设计都有机会用到I2C;而SMBus则在之后为PC所制订的先进组态与电源管理接口(Advanced Configuration & Power Interface;ACPI)规范中成为基础的管理讯息传递接口、控制传递接口。 虽然I2C与SMBus先后制订时间不同,但都在2000年左右进入成熟化改版,I2C的过程改版以加速为主要诉求,而SMBus以更切合Smart Battery及ACPI的需求为多。 I2C三次主要改版: 1992 年v1.0 1998 年v2.0 2000 年v2.1 SMBus三次主要改版: 1995 年v1.0 1998 年v1.1 2000 年v2.0

RS232串口通信实验报告

RS232串口通信实验报告 学院:电子信息学院 班级:08031102 姓名:张泽宇康启萌余建军 学号:2011301966 2011301950 2011301961 时间:2014年11月13日 学校:西北工业大学

一.实验题目: 设计一个简单的基于串口通信的信息发送和接受界面 二.实验目的: 1.熟悉并掌握RS232串口标准及原理。 2.实现PC机通过RS232串口进行数据的收发。 3.熟悉VC语言编写程序的环境,掌握基本的VC语言编程技巧。 三.实验内容 程序代码: P// PC1PC2Dlg.cpp : implementation file // #include "stdafx.h" #include "PC1PC2.h" #include "PC1PC2Dlg.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App About class CAboutDlg : public CDialog { public: CAboutDlg(); // Dialog Data //{{AFX_DATA(CAboutDlg) enum { IDD = IDD_ABOUTBOX }; //}}AFX_DATA // ClassWizard generated virtual function overrides //{{AFX_VIRTUAL(CAboutDlg) protected: virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL

串口通信实验报告全版.doc

实验三双机通信实验 一、实验目的 UART 串行通信接口技术应用 二、实验实现的功能 用两片核心板之间实现串行通信,将按键信息互发到对方数码管显示。 三、系统硬件设计 (1)单片机的最小系统部分 (2)电源部分 (3)人机界面部分

数码管部分按键部分 (4)串口通信部分 四、系统软件设计 #include #define uchar unsigned char #define uint unsigned int void send(); uchar code0[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//0-9的数码管显示 sbit H1=P3^6; sbit H2=P3^7;

sbit L1=P0^5; sbit L2=P0^6; sbit L3=P0^7; uint m=0,i=0,j; uchar temp,prt; /***y延时函数***/ void delay(uint k) { uint i,j; //定义局部变量ij for(i=0;i

{ m=1; //KEY1键按下 return(m); } if(H2==0) { m=4; //KEY4键按下 return(m); } } } if(L2==0) { delay(5); if (L2==0) { L2=0;H1=1;H2=1; if(H1==0) { m=2; //KEY2键按下 return(m); } if(H2==0) { m=5; //KEY5键按下 return(m); } } } if(L3==0) { delay(5); if (L3==0) { L3=0;H1=1;H2=1; if(H1==0) { m=3; //KEY3键按下

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

UART串口通信实验报告

实验四 UART 串口通信 学院:研究生院 学号:1400030034 姓名:张秋明 一、 实验目的及要求 设计一个UART 串口通信协议,实现“串 <-->并”转换功能的电路,也就是 “通用异步收发器”。 二、 实验原理 UART 是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实 现全双工传输和接收。在嵌入式设计中,UART 用来主机与辅助设备通信,如汽 车音响与外接AP 之间的通信,与PC 机通信包括与监控调试器和其它器件,如 EEPROM 通信。 UART 作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一 位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑” 0的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是 4、5、6、7、8等,构成 一个字符。通常采用ASCII 码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“ 1的位数应为偶数(偶校验)或奇数 (奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是 1位、1.5位、2位的高电 平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能 在通信中两台设备间出现了小小的不同步。 因此停止位不仅仅是表示传输的结束, 并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步 的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“ 1状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol )。 一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为 120 字符/秒,传输使用256阶符号,每个符号代表8bit ,则波特率就是120baud,比 特率是120*8=960bit/s 。这两者的概念很容易搞错。 三、 实现程序 library ieee; use ieee.std 」o gic_1164.all; end uart; architecture behav of uart is en tity uart is port(clk : in std_logic; rst_n: in std 」o gic --系统时钟 --复位信号 rs232_rx: in std 」o gic rs232_tx: out std 」o gic --RS232接收数据信号; --RS232发送数据信号;); use ieee.std_logic_ un sig ned.all;

串行口通信实验 单片机实验报告

实验六串行口通信实验 一、实验内容 实验板上有RS-232接口,将该接口与PC机的串口连接,可以实现单片机与PC机的串行通信,进行双向数据传输。本实验要求当PC机向实验板发送的数字在实验板上显示,按实验板键盘输入的数字在PC机上显示,并用串口助手工具软件进行调试。 二、实验目的 掌握单片机串行口工作原理,单片机串行口与PC机的通信工作原理及编程方法。 三、实验原理 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通信。进行串行通讯信要满足一定的条件,比如电脑的串口是RS232电平(-5~-15V为1,+5~+15V为0),而单片机的串口是TTL电平(大于+2.4V为1,小于- 0.7V为0),两者之间必须有一个电平转换电路实现RS232电平与TTL电平的相互转换。 为了能够在PC机上看到单片机发出的数据,我们必须借助一个Windows软件进行观察,这里我们可以使用免费的串口调试程序SSCOM32或Windows的超级终端。 单片机串行接口有两个控制寄存器:SCON和PCON。串行口工作在方式0时,可通过外接移位寄存器实现串并行转换。在这种方式下,数据为8位,只能从RXD端输入输出,TXD端用于输出移位同步时钟信号,其波特率固定为振荡频率的1/12。由软件置位串行控制寄存器(SCON)的REN位后才能启动,串行接收,在CPU将数据写入SBUF寄存器后,立即启动发送。待8位数据输完后,硬件将SCON寄存器的T1位置1,必须由软件清零。 单片机与PC机通信时,其硬件接口技术主要是电平转换、控制接口设计和远近通信接口的不同处理技术。在DOS操作环境下,要实现单片机与微机的通信,只要直接对微机接口的通信芯片8250进行口地址操作即可。WINDOWS的环境下,由于系统硬件的无关性,不再允许用户直接操作串口地址。如果用户要进行串行通信,可以调用WINDOWS的API 应用程序接口函数,但其使用较为复杂,可以使用KEILC的通信控件解决这一问题。 四、实验电路 [参考学习板说明书P27]

简要对比TWI总线与I2C总线

简要对比TWI总线与I2C总线 摘要在简要对比TWI总线与I2C总线的基础上,详细介绍TWI总线的内部模块、工作时序和工作模式,并给出一个编程实例加以说明.对TWI总线和传统的I2C总线的正确区分及使用具有现实的指导意义。 关键词两线串行总线TWI I2C AVR系列的单片机内部集成了TWI(Two-wire SerialInterface)总线。该总线具有I2C总线的特点,即接线简单,外部硬件只需两个上拉电阻,使用时钟线SCL和数据线SDA就可以将128个不同的设备互连到一起;而且支持主机和从机操作,器件可以工作于发送器模式或接收器模式,数据传输率高达400 kHz。正因为TWI总线具有这么多的优点,因此受到了使用者的青睐。 由于该总线与传统的I2C总线极其相似。因此不少人误以为TWI总线就是I2C总线,其实这只是一种简单化的理解。TWI总线是对I2C总线的继承和发展。它定义了自已的功能模块和寄存器,寄存器各位功能的定义与I2C总线并不相同;而且TWI总线引入了状奁寄存器,使得TWI总线在操作和使用上比I2C总线更为灵活。在实际应用上,由于大部分单片机内部没有集成I2C总线,因此单片机的控制是通过模拟I2C总线的时序来完成其操作的。 AVR系列的单片机内部集成了TWI总线,而且其用法也比I2C更为灵活。本文结合一个实例对TWI总线的内部模块、工作时序和工作模式进行了详细介绍,目的在于正确区分TWI 总线和传统的I2C总线,对如何正确使用TWI总线编程也具有现实的指导意义。 1 TWI内部模块 TWI内部由总线接口单元、比特率发生器、地址匹配单元和控制单元等几个子模块组成,如罔1所示。图中,SCL、SDA为MCU的TWI接口引脚。引脚的输出驱动器包含一个波

UART串口通信实验报告

实验四UART串口通信 学院:研究生院学号:1400030034姓名:张秋明 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟 rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收数据信号; rs232_tx: out std_logic --RS232发送数据信号;); end uart; architecture behav of uart is

实验报告-实验一IAR串口通信

实验报告-实验一IAR串口通信 以下是为大家整理的实验报告-实验一IAR串口通信的相关范文,本文关键词为实验,报告,IAR,串口,通信,实验,平台,使用,串口,通信,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。 实验一平台使用及串口通信 本次实验报告在下课后3天内上交!一、实验目的 (1)了解物联网实验 (2)箱熟悉IAR开发平台

(3)能够读懂原理图中有关传感器的接口电路(4)能够建工程项目并编写程序(5)掌握串口通信 二、实验设备 仿真器1台,gec_cc2530板1块,usb连接线1根。 三、实验内容 使用cc2530通过uART接收控制命令,完成LeD的控制。 四、实验代码 完善红色注释部分代码: #include#include #defineuintunsignedint#defineucharunsignedchar #defineRLeDp1_0#definegLeDp1_1#defineYLeDp1_4 voidinituART0(void); ucharRecdata[3]=%ucharRxTxflag=1; uchartemp; uintdatanumber=0;uintstringlen; /*******************************@brief串口(uART0)初始化******************************/voidinituART0(void){ cLKconcmD//设置系统时钟源为32mhZ晶振while(cLKconsTA//等待晶振稳定 cLKconcmD//设置系统主时钟频率为32mhZpeRcFg=0x00;//位置1p0口p0seL=0x3c;//p0用作串口

单片机串口通讯实验报告

实验十单片机串行口与PC机通讯实验报告 ㈠实验目的 1.掌握串行口工作方式的程序设计,掌握单片机通讯的编制; 2.了解实现串行通讯的硬环境,数据格式的协议,数据交换的协议; 3.了解PC机通讯的基本要求。 ㈡实验器材 1.G6W仿真器一台 2.MCS—51实验板一台 3.PC机一台 ㈢实验内容及要求 利用8051单片机串行口,实现与PC机通讯。 本实验实现以下功能,将从实验板键盘上键入的字符或数字显示到PC 机显示器上,再将PC机所接收的字符发送回单片机,并在实验板的LED上显示出来。 ㈣实验步骤 1.编写单片机发送和接收程序,并进行汇编调试。 2.运行PC机通讯软件“commtest.exe”,将单片机和PC机的波特率均设定 为1200。 3.运行单片机发送程序,按下不同按键(每个按键都定义成不同的字符), 检查PC机所接收的字符是否与发送的字符相同。 4.将PC机所接收的字符发送给单片机,与此同时运行单片机接受程序,检 查实验板LED数码管所显示的字符是否与PC机发送的字符相同。

㈤ 实验框图

源程序代码: ORG 0000H AJMP START ORG 0023H AJMP SERVE ORG 0050H START: MOV 41H,#0H ;对几个存放地址进行初始化 MOV 42H,#0H MOV 43H,#0H MOV 44H,#0H MOV SCON,#00H ;初始化串行口控制寄存器,设置其为方式0 LCALL DISPLAY ;初始化显示 MOV TMOD,#20H ;设置为定时器0,模式选用2 MOV TL1, #0E6H ;设置1200的波特率 MOV TH1, #0E6H SETB TR1 ;开定时器 MOV SCON,#50H ;选用方式1,允许接收控制 SETB ES SETB EA ;开中断 LOOP: ACALL SOUT ;键盘扫描并发送,等待中断 SJMP LOOP SERVE JNB RI,SEND ;判断是发送中断还是接收中断,若为发送中 断则调用 ACALL S IN ;发送子程序,否则调用接收子程序 RETI SEND: CLR TI ;发送子程序 RETI SIN: CLR RI ;接受子程序 MOV SCON, #00H MOV A, SBUF ;接收数据 LCALL XS ;调用显示子程序 RETI 子程序: SOUT: CLR TI ;清发送中断标志位 LCALL KEY ;调用判断按键是否按下子程序 MOV A,R0 ;将按键对应的数字存入A MOV SBUF,A ;输出按键数字给锁存 RET KEY: MOV P1,#0FFH ;将P1设置为输入口 MOV A, P1 CPL A ;将A内值取反

最新串行通信实验报告整理

串行通信实验报告 班级姓名学号日期 一、实验目的: 1、掌握单片机串行口工作方式的程序设计,及简易三线式通讯的方法。 2、了解实现串行通讯的硬环境、数据格式的协议、数据交换的协议。 3、学习串口通讯的程序编写方法。 二、实验要求 1.单机自发自收实验:实现自发自收。编写相应程序,通过发光二极管观察 收发状态。 2.利用单片机串行口,实现两个实验台之间的串行通讯。其中一个实验台作为发送方,另一侧为接收方。 三、实验说明 通讯双方的RXD、TXD信号本应经过电平转换后再行交叉连接,本实验中为 减少连线可将电平转换电路略去,而将双方的RXD、TXD直接交叉连接。也可以将本机的TXD接到RXD上。 连线方法:在第一个实验中将一台实验箱的RXD和TXD相连,用P1.0连接发光二极管。波特率定为600,SMOD=0。 在第二个实验中,将两台实验箱的RXD和TXD交叉相连。编写收发程序,一台实验箱作为发送方,另一台作为接收方,编写程序,从内部数据存储器 20H~3FH单元中共32个数据,采用方式1串行发送出去,波特率设为600。通过运行程序观察存储单元内数值的变化。 四、程序 甲方发送程序如下: ORG 0000H LJMP MAIN ORG 0023H LJMP COM_INT ORG 1000H MAIN: MOV SP,#53H MOV 78H,#20H

MOV 77H,00H MOV 76H,20H MOV 75H,40H ACALL TRANS HERE: SJMP HERE TRANS: MOV TMOD,#20H MOV TH1,#0F3H MOV TL1,#0F3H MOV PCON,#80H SETB TR1 MOV SCON,#40H MOV IE,#00H CLR F0 MOV SBUF,78H WAIT1: JNB TI,WAIT1 CLR TI MOV SBUF,77H WAIT2: JNB TI,WAIT2 CLR TI MOV SBUF,76H WAIT3: JNB TI,WAIT3 CLR TI

(3)UART 发送与接收

实验报告3 1.实验名称:UART 发送与接收 2.实验原理:以UART方式设置串口,当有数据发送时触发中断,进入中断程序。 3.实验结果: 实现CC2530通过串口向PC机串口发送字符串“What is your name?”,电脑向CC2530发送名字,名字以#号结束,CC2530向串口发送字符串”HELLO”+名字。 4.实验改进需求: 输出0V和1V 5.代码: 原始代码: #include #include #define led1 P1_0 #define led2 P1_1 #define uint unsigned int #define uchar unsigned char void initUARTO(void); void InitialAD(void); void UartTX_Send_String(uchar *Data,int len); uchar str1[20]="What is your name?"; uchar str2[7]="HELLO"; uchar Recdata[20]; uchar RXTXflag=1; uchar temp; uint datanumber=0; uint stringlen;

//初始化串口0函数 void initUARTO(void) { CLKCONCMD &=~0x40; while(CLKCONSTA & 0x40); CLKCONCMD &=~0x47; PERCFG=0x00; P0SEL=0x3c; P2DIR&=~0xc0; U0CSR|=0x80; U0GCR|=9; U0BAUD|=59; UTX0IF=1; U0CSR|=0x40; IEN0|=0x84; } //串口发送字符串函数 void UartTX_Send_String(uchar *Data,int len) { uint j; for(j=0;j

SPI、I2C、UART三种串行总线的原理、区别及应用

简单描述: SPI 和I2C这两种通信方式都是短距离的,芯片和芯片之间或者其他元器件如传感器和芯片之间的通信。SPI和IIC是板上通信,IIC有时也会做板间通信,不过距离甚短,不过超过一米,例如一些触摸屏,手机液晶屏那些很薄膜排线很多用IIC,I2C能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C 是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存这两种线属于低速传输; 而UART是应用于两个设备之间的通信,如用单片机做好的设备和计算机的通信。这样的通信可以做长距离的。UART和,UART就是我们指的串口,速度比上面三者快,最高达100K左右,用与计算机与设备或者计算机和计算之间通信,但有效范围不会很长,约10米左右,UART优点是支持面广,程序设计结构很简单,随着USB的发展,UART也逐渐走向下坡; SmBus有点类似于USB设备跟计算机那样的短距离通信。 简单的狭义的说SPI和I2C是做在电路板上的。而UART和SMBUS是在机器外面连接两个机器的。 详细描述: 1、UART(TX,RX)就是两线,一根发送一根接收,可以全双工通信,线数也比较少。数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快。在多机通信上面用的最多。 2、SPI(CLK,I/O,O,CS)接口和上面UART相比,多了一条同步时钟线,上面UART 的缺点也就是它的优点了,对通信双方的时序要求不严格不同设备之间可以很容易结合,而且通信速度非常快。一般用在产品内部元件之间的高速数据通信上面,如大容量存储器等。 3、I2C(SCL,SDA)接口也是两线接口,它是两根线之间通过复杂的逻辑关系传输数据的,通信速度不高,程序写起来也比较复杂。一般单片机系统里主要用来和24C02等小容易存储器连接。 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 UART:通用异步串行口。按照标准波特率完成双向通讯,速度慢 SPI:一种串行传输方式,三线制,网上可找到其通信协议和用法的 3根线实现数据双向传输 串行外围接口 Serial peripheral interface UART:通用异步收发器 UART是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了

SPI_IIC_USART_区别

第一个区别当然是名字: SPI(Serial Peripheral Inter face:串行外设接口); I2C(INTER IC BUS) UART(Universal Asynchronous Receiver Transmitter:通用异步收发器) 第二,区别在电气信号线上: SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。 如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。 I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。 如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。(注:I2C资料了解得比较少,这里的描述可能很不完备) UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART 发送器组成,硬件上由两根线,一根用于发送,一根用于接收。 显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行; 第四,看看牛人们的意见吧! wudanyu:I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。SPI实现要简单一些,UART需要固定的波特率,就是说两位数据的间隔要相等,而SPI 则无所谓,因为它是有时钟的协议。 quickmouse:I2C的速度比SPI慢一点,协议比SPI复杂一点,但是连线也比标准的SPI要少。 SPI总线 ----串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口。Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。SPI总线是一种三线同步总线,因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间

i2c区别spi

I2C的数据输入输出用的是一根线,SPI则分为dataIN和dataOUT。由于这个原因,采用I2C时CPU的端口占用少,SPI多一根。但是由于I2C的数据线是双向的,所以隔离比较复杂,SPI则比较容易。所以系统内部通信可用I2C,若要与外部通信则最好用SPI带隔离(可以提高抗干扰能力)。但是I2C和SPI都不适合长距离传输。长距离时就要用485了。 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如P89LPC900. SPI,是一种高速的,全双工,同步的通信总线,其工作模式有两种:主模式和从模式,无论那种模式,都支持 3Mbit/s的速率,并且还具有传输完成标志和写冲突保护标志。 I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。 I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为低电平时,SDA由低电平向高电平跳变,结束传送数据。 应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。 I2C的数据输入输出用的是一根线,SPI则分为dataIN和dataOUT。由于这个原因,采用I2C时CPU的端口占用少,SPI多一根。但是由于I2C的数据线是双向的,所以隔离比较复杂,SPI则比较容易。所以系统内部通信可用I2C,若要与外部通信则最好用SPI带隔离(可以提高抗干扰能力)。但是I2C和 SPI都不适合长距离传输。长距离时就要用485 了。 第一: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS) UART(Universal Asynchronous Receiver Transmitter:通用异步收发器)

单片机实验报告串行口

单片机实验报告 实验名称:串行通信实验 姓名:魏冶 学号:090402105 班级:光电一班 实验时间:2011-11-29 南京理工大学紫金学院电光系

一、实验目的 1、理解单片机串行口的工作原理; 2、学习使用单片机的TXD、RXD口; 3、了解MAX232芯片的使用。 二、实验原理 MCS-51单片机内部集成有一个UART,用于全双工方式的串行通信,可以发送、接收数据。它有两个相互独立的接收、发送缓冲器,这两个缓冲器同名(SBUF),共用一个地址号(99H),发送缓冲器只能写入,不能读出,接收缓冲器只能读出,不能写入。 要发送的字节数据直接写入发送缓冲器,SBUF=a;当UART接收到数据后,CPU从接收缓冲器中读取数据,a=SBUF;串行接口内部有两个移位寄存器,一个用于串行发送,一个用于串行接收。定时器T1作为波特率发生器,波特率发生器的溢出信号做接收或发送移位寄存器的移位时钟。TI和RI分别发送完数据和接收完数据的中断标志,用来向CPU发中断请求。 三、实验内容 1、学会DPFlash软件的操作与使用,以及内部内嵌的一个串口调试软件的使用。 2、用串口连接PC机和DP-51PROC单片机综合仿真实验仪。 3、编写一个程序,利用单片机的串行口发送0x55,波特率为9600。 程序设计流程图

4、程序下载运行后,可在PC机上的串口调试软件上(内嵌在DPFlash软件的串口调 试器,设置通信口为COM1口,波特率为9600,数据位8,停止位1)看到接收到“UUUUUU……”,出现这样的结果就基本达到要求。 (1)代码: #include void main() { long int i; SCON=0x40; PCON=0; TMOD=0x20; TH1=0xfd; TL1=0xfd; TI=1; TR1=1; star:for(i=0;i<5000;i++); SBUF=0x55; goto star; } (2)电路图; 5、在单片机接收到0x55时返回一个0x41,在PC机一端,以接收到0x41完成,波特率2400。

实验四 UART串口通信实验报告

实验四UART串口通信 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5

位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收

ARM串口实验报告.

《 APM串口实验》 实验报告 课程名称:嵌入式微处理器技术 班级:电信 0901 姓名: 地点:嵌入式系统基础实训室 指导教师:王瑾 ARM的串行口实验 一、实验目的 ◆ 1.掌握ARM 的串行口工作原理。 ◆ 2.学习编程实现ARM 的UART 通讯。 ◆ 3.掌握CPU 利用串口通讯的方法。 二、实验内容 学习串行通讯原理,了解串行通讯控制器,阅读ARM 芯片文档,掌握ARM 的UART 相关寄存器的功能,熟悉ARM 系统硬件的UART 相关接口。编程实现ARM 和计算机实现串行通讯: ARM 监视串行口,将接收到的字符再发送给串口(计算机与开发平台是通过超级终端通讯的),即按PC 键盘通过超级终端发送数据,开发平台将接收到的数据再返送给PC,在 超级终端上显示。 三、预备知识 1、1.用ARM SDT 2.5或ADS1.2 集成开发环境,编写和调试程序的基本过程。 2、2.ARM 应用程序的框架结构。

3、3.了解串行总线 四、实验设备及工具 硬件:ARM嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC机Pentium100 以上、串口线。 软件:PC 机操作系统win98、Win2000 或WinXP 、ARM SDT 2.51 或ADS1.2 集成开发环境、仿真器驱动程序、超级终端通讯程序。 五、实验原理及说明 1.异步串行I/O 异步串行方式是将传输数据的每个字符一位接一位(例如先低位、后高位地传送。数据的各不同位可以分时使用同一传输通道,因此串行I/O 可以减少信号连线,最少用一对线即可进行。接收方对于同一根线上一连串的数字信号,首先要分割成位,再按位组成字符。为了恢复发送的信息,双方必须协调工作。在微型计算机中大量使用异步串行I/O 方式,双方使用各自的时钟信号,而且允许时钟频率有一定误差,因此实现较容易。但是由于每个字符都要独立确定起始和结束(即每个字符都要重新同步,字符和字符间还可能有长度不定的空闲时间,因此效率较低。 图2-1 串行通信字符格式 图2-1 给出异步串行通信中一个字符的传送格式。开始前,线路处于空闲状态,送出连续“1”。传送开始时首先发一个“0” 作为起始位,然后出现在通信线上的是字符的二进 制编码数据。每个字符的数据位长可以约定为5 位、6 位、7 位或8 位,一般采用ASCII 编码。后面是奇偶校验位,根据约定,用奇偶校验位将所传字符中为“1”的位数凑成奇数个或偶数个。也可以约定不要奇偶校验,这样就取消奇偶校验位。最后是表示停止位的“1” 信号,这个停止位可以约定持续1 位、1.5位或2 位的时间宽度。至此一个字符传送完毕,线路又进入空闲,持续为“1”。经过一段随机的时间后,下一个字符开始传送才又发出起始位。 每一个数据位的宽度等于传送波特率的倒数。微机异步串行通信中,常用的波特率为50,

iic和spi有什么区别

iic和spi有什么区别 什么是iicIIC 即Inter-Integrated Circuit(集成电路总线),这种总线类型是由飞利浦半导体公司在八十年代初设计出来的一种简单、双向、二线制、同步串行总线,主要是用来连接整体电路(ICS),IIC是一种多向控制总线,也就是说多个芯片可以连接到同一总线结构下,同时每个芯片都可以作为实时数据传输的控制源。这种方式简化了信号传输总线接口。 IIC简介即I2C,一种总线结构。例如:内存中的SPD信息,通过IIC,与BX芯片组联系,IIC 存在于英特尔PIIX4结构体系中。 随着大规模集成电路技术的发展,把CPU和一个单独工作系统所必需的ROM、RAM、I/O 端口、A/D、D/A等外围电路集成在一个单片内而制成的单片机或微控制器愈来愈方便。目前,世界上许多公司生产单片机,品种很多。其中包括各种字长的CPU,各种容量的ROM、RAM以及功能各异的I/O接口电路等等,但是,单片机的品种规格仍然有限,所以只能选用某种单片机来进行扩展。扩展的方法有两种:一种是并行总线,另一种是串行总线。由于串行总线的连线少,结构简单,往往不用专门的母板和插座而直接用导线连接各个设备。因此,采用串行线可大大简化系统的硬件设计。PHILIPS公司早在十几年前就推出了I2C串行总线,利用该总线可实现多主机系统所需的裁决和高低速设备同步等功能。因此,这是一种高性能的串行总线。 飞利浦电子公司日前推出新型二选一I2C主选择器,可以使两个I2C主设备中的任何一个与共享资源连接,广泛适用于从MP3播放器到服务器等计算、通信和网络应用领域,从而使制造商和终端用户从中获益。PCA9541可以使两个I2C主设备在互不连接的情况下与同一个从设备相连接,从而简化了设计的复杂性。此外,新产品以单器件替代了I2C多个主设备应用中的多个芯片,有效节省了系统成本。 什么是spiSPI是串行外设接口(Serial Peripheral Interface)的缩写。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时

相关主题
文本预览
相关文档 最新文档