当前位置:文档之家› 碳纳米管的生物医学应用(原创)

碳纳米管的生物医学应用(原创)

碳纳米管的生物医学应用(原创)
碳纳米管的生物医学应用(原创)

碳纳米管的生物医学应用

摘要:碳纳米管的发现以及其优异的物理化学性能,使得它在生物和医学领域的具有很大的应用潜力。碳纳米管(CNTs)是碳纳米结构的同素异形体,长度与直径之比大于1,000,000甚至更大。这些圆柱形的碳分子使它们在许多应用纳米技术可能有新的性能,其独特的表面面积,刚度,强度和弹性,导致在制药领域是研究热门。碳纳米管属于富勒烯家族的卷成管状的形式的石墨薄片组成。可为单个或多壁碳纳米管。分子和离子迁移通过碳纳米管,为分子电子传感器和核酸测序制造提供可能。这篇文章提供了有关药物载体系统,生物传感器等应用,其毒性以及生物相容性的概述。

关键字:碳纳米管,生物医学,应用

1 前沿

以碳纳米管为载体的药物为治疗癌症提供了很大的希望[1]。碳纳米管的功能化可产生新的化学和生物应用[2]。这种药物有许多优点,主要提高了安全性和有针对性的提供药品,提高生物利用度,延长药物或基因药物对组织的作用、提高化学药物治疗稳定性、酶降解药物的效率等[3]。与其他材料,如聚合物,碳纳米管的兼容性,也可望提高。此外,一旦功能化,碳纳米管可作为溶剂,他们的性质值得进行研究。许多功能化碳纳米管在材料科学和技术,包括光电领域有有效的应用。碳纳米管在药物化学还发挥了重要作用。他们已被使用在药物支架和疫苗基板。CNT的官能基与生物活性特别适合用于靶向给药。然而,碳纳米管有机改性还不是一个完善的领域。碳纳米管的内在化学反应活性低,反应相结合的比较困难。

2 碳纳米管的生物医学应用

2.1药物载体系统及生物传感器

碳纳米管的一个重要特性是可以跨越细胞膜和生物体内的多种屏障,进入到细胞和生物体内多种器官内。研究结果显示,碳纳米管可以穿过多种细胞的细胞膜,包括小鼠成纤维细胞、人宫颈癌细胞、人乳腺癌细胞、和人T-细胞淋巴瘤细胞、Jurkat细胞等。

碳纳米管可以作为生物分子的载体,这一现象引起了众多研究者广泛的研究兴趣,从而将碳纳米管用于DNA、蛋白质和药物的输运,如图1所示,DNA可以通过共价和非共价作用连接到碳纳米管的表面。

图1 DNA通过共价和非共价作用连接到碳纳米管的表面

2.1.1 碳纳米管作为核酸类物质转运载体

近年来许多实验室致力于利用碳纳米管作为载体进行基因和RNAi治疗,在抗肿瘤治疗方面的研究尤其突出。图2为碳纳米管与核酸分子的相互作用示意图。

图2碳纳米管与核酸分子的相互作用示意图(A)核酸分子通过π-叠加和疏水作用缠绕于原位

合成碳纳米管上;(B)核酸分子通过静电相互作用吸附于带有正电荷的碳纳米管表面;(C)核酸分子嵌入碳纳米管内腔;(D)核酸分子通过共价键与碳纳米管连接碳纳米管作为基因载体:Kostarelos等率先报道了碳纳米管可以将β-gal基因转入动物细胞[4]。随后,他们发现以不同正电基团修饰的碳纳米管作为基因载体时,报告基因的表达水平取决于DNA与碳纳米管的复合强度,而复合强度与DNA 和碳纳米管的正、负电荷比相关[5]。Narain等人[6]发现以表面带有阳离子多糖的SWNTs 作为载体,基因的转染效率可与商业化lipofectamin相当。为检测碳纳米管-核酸复合物的细胞毒性,Prakash等人[7]以sw480 细胞作为模型,发现碳纳米管-核酸复合物的转染效率虽然较脂质体低,但其细胞毒性却比脂质体小很多。

碳纳米管作为RNAi载体:碳纳米管作为RNAi载体已经成功将siRNA序列或反义寡核苷酸序列(asODN)转运进入多种细胞,并在细胞水平和动物水平上实现对特定基因表达的沉默。Zhang 等人[8]将mycasODN通过酰胺键连接到碳纳米管,这种复合物有效地沉默了HL-60细胞内的myc蛋白表达,导致细胞发生凋亡。Dai等[9]将siRNA通过二硫键与PEG化的磷脂分子连接,磷脂分子的尾

部通过非特异性吸附结合于碳纳米管表面。McCarroll[10]用SWNTs-ApoBsiRNA 复合物有效地下调了小鼠肝脏ApoB表达和血浆中的胆固醇水平,且静脉注射siRNA用量少于1 mg/kg,这个剂量是临床应用中的一个可行剂量。

碳纳米管作为其它类型核酸的转运载体:碳纳米管能够运载核酸的性质还有一些特殊的应用研究。例如,由于带负电荷,具有佐剂性质的CpG序列很难进入细胞。Bianco等[11]用正电修饰的碳纳米管与CpG序列复合,有效地将CpG带入目的细胞而增强了其免疫激活功能。另一个特殊应用是通过互补寡核苷酸片段的相互结合作用,使碳纳米管在肿瘤组织中发生自组装。Gmeiner等人[12]在对荷瘤小鼠进行热疗时,发现DNA修饰的碳纳米管的热疗效果比未修饰的碳纳米管更好,这是由于DNA 的修饰增加了碳纳米管的水分散性,使其获得了更高的热效应。

碳纳米管作为核酸转运载体的靶向性:除了载体之外,基因传递的靶向性也是基因治疗与RNAi干扰中急需解决的重要问题。迄今,在体外条件下尚少见在碳纳米管-核酸复合物上连接靶向分子进行转染的文献报道,在动物水平的转染实验中,绝大多数研究采用了瘤内注射的方式。

2.1.2碳纳米管在生物传感器中的应用

生物传感器的工作原理是将待测物质经扩散作用进入生物活性材料,经分子识别发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。

杨钰等[13]以MWNTs为导电介质和酶的固定物质, 利用层层累积技术固定葡萄糖氧化酶(GOx)的多层累积(MWNTs/GOx)n复合薄膜修饰石墨电极制备出了新型基于MWNTs的葡萄糖生物传感器。Y eo Heung Yun等[14]利用CNTs列阵电极制成Labe l- free免疫传感器。将Anti- mouseIg G共价固定到电极上,利用循环伏安和交流阻抗电化学的方法表征了抗原与抗体的结合。由于非标记型免疫传感器检测时无需加入其它试剂,非常适合在线检测。

2.2促进骨组织修复生长

CNTs用于生物支架材料主要有三个显而易见的优势:(1)比强度高。CNTs 具有极高的强度、韧性和弹性模量,同时密度很小,它是人类目前可制备出的具有最高比强度的材料。(2)特殊的一维纳米结构。CNTs特殊的纳米纤维结构,较适合于构建细胞生长的环境。(3)化学性质稳定,同时易于进行表面修饰。

要考虑如何利用CNTs构建理想生物支架,首先需要了解细胞生长的细胞外环境。以骨细胞为例,如图3所示[15],组成一根大腿骨的最基本单元是骨细胞(Osteocytes)和软骨细胞(Chondrocyte),骨细胞生长的环境是由羟基磷灰石(Hydroxyapatite)结晶和I型胶原(Collegen I)纤维组成的,而软骨细胞则是

生长在II型胶原(Collegen II)纤维组成的环境中,这说明从微观上观察一个组织中最基本的单元——细胞都是生长在充满了纳米纤维所构成的环境中,通常将这个环境称为细胞外基质(Extracellular matrix),细胞所处的具有三维结构的ECM在影响细胞的行为(Cellular behavior)时起到关键作用。

图3 软骨和骨所处的具有不同尺度范围的分级结构。(A)覆盖在骨关节处的软骨构成了一个耐磨、负重的表层。软骨内部(B)分为几个不同的区域,这些区域主题由不同结构的胶原组织(C)构成。软骨细胞被胞外基质包裹(D),胞外基质为聚集蛋白聚糖和透明质酸以及胶原构成的网状结构(E)。骨头矿化后呈现圆柱形的骨单元(F)。骨细胞被细胞外基质纳米网络结构所包围,细胞外基质主要成分为整齐排列的I型胶原纤维,可以为羟基磷灰石的结晶提供模板(H)。从微米至纳米的分级结构在人体内处处可见。

2.3促进神经再生,减少神经组织瘢痕产生

美国的研究人员开发出了一种自组装液体, 注射到体内即可凝固,形成一种类似于“脚手架” 的结构,能向细胞发出有序的生物学信号,引导组织重建。Webs ter等报道碳纳米纤维不仅可刺激神经元的轴突再生, 也可以减少瘢痕组织的产生[16]。研究者将碳纳米纤维与聚氟乙烯的混合物压缩成平板, 用来培养与瘢痕产生有关的星细胞, 发现随着碳纳米管含量的增加, 聚氟乙烯含量的减少, 星细胞的黏附也呈减少趋势。Hu 等[17]的研究则提示若要碳纳米管发挥更好的促神经再生作用, 对其进行一定的化学修饰是必要的。

3 碳纳米管材料的生物相容性与安全性问题

新的有效的药物输送系统的研究正在迅速扩大。目前许多种运载系统和方法已经上市,是根据不同类别的生物活性分子和靶组织的特点进行的(如肽,蛋白质,核酸和小分子有机物)(图4)。脂质体的乳液,阳离子聚合物,微型和纳米

粒子的研究是最常见的。药物输送系统旨在改善一般药物的分子药理和治疗过程。与自由的药物相比一些问题如:有限的相容性,少的生物贡献,选缺乏择性,不利的药代动力学,对健康组织损伤,缺乏控制等可以通过药物释放系统的使用克服或由改善。碳纳米管已被证明对细胞的生长似乎没有毒性作用。在生物医学应用碳纳米管的探索是刚刚起步,但已经具有很大的潜力。由于人体大量的碳组成部分,一般认为碳管是一个非常具有生物相容性的材料。

图4 药物作用CNT表面示意图

对于碳纳米管的性质和特点,科学家仍在进行大量研究,才刚刚开始挖掘这些结构的潜力。单壁碳纳米管和多壁碳纳米管已经证明可以作为更安全和更有效的替代以前的给药方法。他们可以通过细胞膜,携带治疗药物,疫苗和核酸深入到以前无法到达的目标细胞。它们也可以作为理想的非毒性的载体,在某些情况下,增加附加的药物可提高疗效和更大安全性和相容性。总体而言,关于最近的研究表明碳纳米管对未来的医学有非常大前途。

多壁碳纳米管始终导电,并有具有的电导率约1.85× 103 S / cm的[18]。碳纳米管与聚合物复合的目的是在高耦合较高的机械性能,热性能等独特的性能[19]但会降低碳纳米管的导电性。然而,高的分子量和强的分子力使碳纳米管管间捆在一起,使他们的操作,表征和分析都非常困难。有机功能化在生产可溶性和易于加工的碳纳米管方面具有巨大优势。因此,碳纳米管可与与其他材料如聚合物复合应大力改善兼容性。碳纳米管可以通过附加功能化,如脂类,蛋白质等,就可以在水中分散碳纳米管和生物分子,从而可以使他们在操作和处理路径简便。

纳米粒子由于高比表面积和表面固有的毒性可产生有害影响。碳纳米管在毒理学方面,由于其纳米尺寸的颗粒,经与生物系统接触,可能诱导意外的毒性作用。由于碳纳米管的纳米级的尺寸,使毫克数量便拥有了一大批具有非常高的总比表面积纤维样圆柱型颗粒。碳纳米管内在的毒性取决于表面官能化程度和官能种类不同的毒性。未纯化或非功能化的纳米碳管,容易含有诸如无定形碳和金属纳米颗粒杂质(催化剂:钴,铁,镍,钼),这也可以是严重毒性作用的来源[ 20]。

4 结语

CNT 的制备现在已经产业化,随着对其功能化研究的深入,有望进一步改善其生物相容性。阐明CNT 进入细胞的机制并明确其运载效率的影响因素将进一步拓展其作为载体在生物医学领域中的应用。

参考文献

[1]Ashwin A. Bhirde, V yomesh Patel, Julie Gavard, Guofeng Zhang, Alioscka A. Sousa,

AndriusMasedunskas, Richard D. Leapman, Roberto Weigert, J. Silvio Gutkind, James F. Rusling, ACS Nano. 2009,24: 3 (2).

[2]Cui Y, Wei Q, Park H, Lieber C M, Science, 2001,293.

[3]Hamidi .M, Azadi .A, Pedram .R, Advance drug delivery review, 2008,60.

[4]Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A.

Functionalized carbon nanotubes for plasmid DNA gene delivery. AngewChemInt Ed, 2004, 43: 5242~5246.

[5]Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M,

Bianco A, Kostarelos K. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J Am ChemSoc, 2005, 127: 4388~4396.

[6]Ahmed M, Jiang X, Deng Z, Narain R. Cationic glyco-functionalized single-walled carbon

nanotubes as efficient gene delivery vehicles. BioconjugChem, 2009, 20: 2017~2022.

[7]Kulamarva A, Bhathena J, Malhotra M, Sebak S, Nalamasu O, Ajayan P, Prakash S. In vitro

cytotoxicity of functionalized single walled carbon nanotubes for targeted gene delivery applications. Nanotoxicology, 2008, 2: 184~188.

[8]Cui DF, Tian FJ, Coyer SR, Wang J, Pan BR, Gao FG, He R, Zhang Y. Effects of

antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J NanosciNanotechnol, 2007, 7: 1639~1646.

[9]Liu Z, Winters MA, Holodniy M, Dai H. siRNA delivery into human T cells and primary cells

with carbon-nanotube transporters. AngewChemInt Ed, 2007, 46: 2023~2027.

[10]McCarroll J, Baigude H, Y ang C, Rana TM. Nanotubes functionalized with lipids and natural

amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi.

BioconjugateChem, 2010, 21: 56~63.

[11]Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand JP, Müller S, Prato M,

Partidos CD. Cationic carbon nanotubes bind to CpGoligodeoxynucleotides and enhance their immunostimulatory properties. J Am ChemSoc, 2005, 127: 58~59.

[12]Ghosh S, Dutta S, Gomes E, Carroll D, D'Agostino R, Olson J, Guthold M, Gmeiner WH.

Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano, 2009, 3: 2667~2673.

[13]Y ANG yu , SHI hai bin , WU baoyan , et a. Carbon nanotubes- based glucose biosensor prepared

using layer- by- layer techique. Transducer and Microsystem Technology, 2006, 25(1): 13-15. [14]Y eoHeung Y un, et al. A nanotube array immune sensor for direct electrochemical etection of

antigen-anti body binding[J]. Sensors and Actuators B, 2007, 123(1): 177-182.

[15]Stevens MM,GeorgeJH.Exploring and Engineering the Cell Surface Interface.Science.2005 18,

2005;310:1135-8.

[16]Webs ter TJ, Waid MC, McKenzie JL, et al . Nano-biotechnology: carbon nanofibres as improved

neural and orthopaedic implants. Nanotechnology 2004;15: 48-54.

[17]Hu H, Ni YC, Haddon RC, et al . Chemical ly functional izationcarbonnanotubes as subs trates for

neuronal growth. Nano Lett 2004;4 (3): 507-511.

[18]Paradise. M, Goswami T, Material & Design, 2007,28(5).

[19]Delmotte J.P., A. Rubio. Carbon, 2002,40.

[20]Lacerda L, Bianco A, Prato M, Kostarelos K., Adv. Drug. Deli. Rev,2006, 58.

碳纳米管的特性及应用_孙晓刚

作者介绍:孙晓刚(1957-),男,吉林人,江西金世纪冶金(集团)股份有限公司高级工程师,长期从事碳纳米管制备工 艺的研究,并对碳纳米管的工业化生产进行了广泛深入的研究和商业策划工作。 收稿日期:2001-02-21 修回日期:2001-05-08 碳纳米管的特性及应用 孙晓刚1,曾效舒2,程国安2 (1.江西金世纪冶金(集团)股份有限公司,江西南昌 330046; 2.南昌大学,江西南昌 330029) 摘 要:介绍了巴基球及碳纳米管的发现和历史,重点介绍 了碳纳米管的基本性能和晶体结构,描述了碳纳米管电传导 和热传导的机理。文中还介绍了碳纳米管的主要生产方法 和各自的优点。根据全球碳纳米管应用研究的方向,对碳纳 米管的应用领域进行了探讨,展望了碳纳米管的应用前景及 商业开发价值。 关键词:碳纳米管;性能;制备;应用 中图分类号:T B383 文献标识码:A 文章编号:1008-5548(2001)06-0029-05 1 碳纳米管简介 仅仅在十几年前,人们一般认为碳的同素异形 体只有两种:石墨和金刚石。1985年,英国Sussex 大学的Kroto教授和美国Rice大学的Sm alley教授 进行合作研究,用激光轰击石墨靶以尝试用人工的 方法合成一些宇宙中的长碳链分子。在所得产物中 他们意外发现了碳原子的一种新颖的排列方式,60 个碳原子排列于一个截角二十面体的60个顶点,构 成一个与现代足球形状完全相同的中空球,这种直 径仅为0.7nm的球状分子即被称为碳60分子。此 即为碳晶体的第三种形式。 1991年,碳晶体家族的又一新成员出现了,这 就是碳纳米管。日本NEC公司基础研究实验室的 Iijima教授在给《Nature》杂志的信中宣布合成了一 种新的碳结构。它由一些柱形的碳管同轴套构而 成,直径大约在1~30nm之间,长度可达到1μm。 进一步的分析表明,这种管完全由碳原子构成,并可 看成是由单层石墨六角网面以其上某一方向为轴, 卷曲360°而形成的无缝中空管。相邻管子之间的 距离约为0.34nm,与石墨中碳原子层与层之间的距 离0.335nm相近,所以这种结构一般被称为碳纳米 管。这是继C60之后发现的碳的又一同素异形体, 是碳团簇领域的又一重大科研成果。 碳纳米管由层状结构的石墨片卷曲而成,因卷 曲的角度和直径不同,其结构各异:有左螺旋的、右 螺旋的和不螺旋的。由单层石墨片卷成的称为单壁 碳纳米管,多层石墨片卷成的称为多壁碳纳米管。 碳纳米管的径向尺寸较小,管的外径一般在几纳米 到几十纳米;管的内径更小,有的只有1nm左右。 而碳纳米管的长度一般在微米量级,长度和直径比 非常大,可达103~106,因此,碳纳米管被认为是一 种典型的一维纳米材料。 碳纳米管、碳纳米纤维材料一直是近年来国际 科学的前沿领域之一。仅就碳纳米管而言,自从 1991年被人类发现以来,就一直被誉为未来的材 料。 2 基本性能 碳纳米管的性质与其结构密切相关。就其导电 性而言,碳纳米管可以是金属性的,也可以是半导体 性的,甚至在同一根碳纳米管上的不同部位,由于结 构的变化,也可以呈现出不同的导电性。此外,电子 在碳纳米管的径向运动受到限制,表现出典型的量 子限域效应;而电子在轴向的运动不受任何限制。 无缺陷金属性碳纳米管被认为是弹道式导体,其导 电性能仅次于超导体。根据经典电阻理论和欧姆定第7卷第6期 2001年12月 中 国 粉 体 技 术 China Powder Science and Technology Vol.7No.6 December2001

光电技术在生物医学中的应用一现状与发展

论文题目: 光电技术在生物医学中的应用——现状与发展 学院 专业名称 班级学号 学生 2013年12月19日

摘要: 简要介绍光电技术在生物医学应用中的发展概况,从基因表达与蛋白质——蛋白质相互作用研究方面,重点讨论了生物分子光子技术的特点与优势,阐明基于分子光学标记的光学成像技术是重要的实时在体监测手段,最后简要讨论了医学光学成像技术在组织功能成像和脑功能成像中的应用原理。 关键词:光电技术,医学诊断与治疗,分子光子学,医学成像

1.生物医学光子学发展简介 光电技术在生物医学中的应用实质上就是生物医学光子学的研究畴。生物医学光子学是近年来受到国际光学界和生物医学界广泛关注的研究热点。在国际上一般称为生物医学光子学或生物医学光学。 光子学以量子为单位,研究能量的产生、探测、传输与信息处理。光子技术在生物与医学中的应用即定义为生物医学光子学,其相应产业涉及人类疾病的诊断、预防、监护、治疗以及保健、康复等。研究容包括:光子医学与光子生物学,X-射线成像,MRI ,PET等。近年来,生物医学光子学在生物活检、光动力治疗、细胞结构与功能检测、对基因表达规律的在体观测等问题上取得了可喜研究成果,目前正在从宏观到微观多层面上对大脑活动与功能进行研究。美国《科学》杂志在最近儿年已发表相关论文近20篇。随着光子学技术的发展,生物医学光子学将在多层次上对研究生物体特别是人体的结构、功能和其他生命现象产生重要影响。 在国际上已经成立了国际生物医学光学学会(International Biomedical Optics Society),简称IBOS。IBOS每年与国际光学工程学会(SPIE)联合举办学术会议。国外 学术交流方面,作为生物医学工程和光学工程领域重要国际会议的“生物医学光学国际学术研讨会”(International BiomedicalOptics Symposium,简称BIOS)每年在美国和欧洲各举办一次。在国,国家自然科学基金委员会生命科学部与信息科学部联合发起并承办的全国光子生物学与光子医学学术研讨会已经举办了六届。在第六届学术会议上发表学术论文75篇,论文摘要27篇。 从光电技术(或光子技术)在生物医学中的应用现状可以看到,光子医学与光子生物学的研究和应用围是广泛而且深入的,并正在形成有特色的学科和产业。例如,由于生物超微弱发光与生物体的细胞分裂、细胞死亡、光合作用、生物氧化、解毒作用、肿瘤发生、细胞和细胞间的信息传递与功能调节等重要的生命过程有着密切的联系,基于生物超微弱发光的生物光子技术在肿瘤诊断、农业、环境监测、食品监测和药理研究等方面己经得到应用。 下面主要从生物分子光子技术和医学光学成像技术两个方面介绍当前的研究现状 与发展趋势。

碳纳米管的生物相容性_齐宁宁

碳纳米管的生物相容性 齐宁宁,杜丽娜,金义光 (军事医学科学院放射与辐射医学研究所,北京 100850) 摘要:碳纳米管(CNT )是一种非常有序、高纵横比的碳同素异形体,包括单壁碳纳米管(S WCNT ) 和多壁碳纳米管(MWCNT )。它的特性使其在生物医学领域得到广泛应用,包括生物传感器、药物和疫苗传递,以及特殊生物材料的制备。本文总结了现有碳生物材料性能,概述了纳米毒理学研究内容,探讨了CNT 细胞毒性和生物相容性。关键词:碳纳米管;生物相互作用;细胞毒性中图分类号:R94 文献标识码:A 文章编号:100120971(2007)022******* 收稿日期:2006210220  作者简介:齐宁宁,女,在读硕士研究生,研究方向:药物新剂型与新技术。Tel:010*********,E 2mail:ningning_qi@1631com 1 引言 碳纳米管(carbon nanotubes,CNT )是一种独特的一维大分子。单壁碳纳米管(S WCNT )由单层石墨(直径014~2n m )构成,而多壁碳纳米管(MWCNT )由直径2~100n m 的多个同心石墨圆柱体组成。它们抗张强度高,质量极轻,热和化学稳定性很高,并有金属导体和半导体电学性质。 生物医学材料和设备是CNT 研究的一个主要领域,包括生物传感器、药物和疫苗运输载体,以及新型生物材料。CNT 作为现有聚合物材料的纳米填充剂,可显著提高机械性能,并能形成高度各向异性纳米复合物。 CNT 用于现有和新型生物医学设备前,应全面 考察其毒性和生物相容性。生物相容性是指材料在发挥作用时只引起宿主的适度反应。热解碳用于生物医学移植和涂层材料已几十年,特别是在心瓣膜修复术方面。早期研究表明热解碳心瓣膜血液相容性良好,可很好粘附于内皮细胞,对血小板的粘附和活化作用很小。然而一项有420名患者参与的临床研究发现,热解碳涂层支架的效果并不比传统高级不锈钢支架好。类钻石碳(DLC )早期体外生物相容性研究表明对巨噬细胞无炎性反应,也未观察到对成纤维细胞和成骨细胞的毒性。几项有关DLC 涂层的体内实验表明,DLC 涂布的不锈钢金属植入棒对绵羊骨和肌肉组织无副作用。 微粒毒理学研究组织(肺、消化道或皮肤)暴露 于微粒环境中的不良反应。纳米毒理学产生于对纳 米粒子和纤维毒理学评价的迫切需要,可定义为研究工程纳米机械和纳米结构与活生物体相互作用的科学。 普遍认为有3个因素决定粒子是否造成伤害,包括(1)粒子表面积/质量比:表面积大使粒子与细胞膜接触面大,吸收和转运毒性物质可能性大;(2)粒子滞留时间:与细胞膜接触时间越长,损伤概率越大;(3)粒子所含化学物质的反应性及固有毒性。 纤维材料与粒子的病理学表现不同,特别是呼吸道暴露远比其他摄入方式更易致病。3个主要特点决定吸入性纤维致病,包括(1)纤维尺寸:决定可吸入性(穿透进入肺中心腺泡区的能力);(2)生物滞留性:是特长纤维毒理的关键因素,它们通常不易被巨噬细胞吞噬;(3)反应性或固有毒性:同粒子一样,纤维毒性也主要取决于其化学成分毒性。2 碳纳米管的毒性 围绕CNT 材料应用的热点问题之一是对参与其生产和处理的工人的未知影响。本节将详细介绍肺毒性、皮肤刺激和细胞毒性方面的研究。211 肺毒性 尽管CNT 没有肺毒性前兆,但最近组织学研究发现有肺部炎症和肉芽肿形成。2001年Huczko 等最早考察了未纯化CNT 对豚鼠肺功能的影响。将25mg CNT 的015mL 盐溶液给豚鼠气管滴注,对照组接受25mg 不含CNT 的炭黑。滴注4周后用非侵入法考察肺功能。非侵入法和支气管肺泡灌洗测试均显示受试组与对照组无差别。结论是在含有CNT 的炭黑环境中工作,可能不存在任何健康

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

生物技术在医学领域的应用

微生物制药技术 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物

合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

碳纳米管(CNTs)

碳纳米管(CNTs) 班级:材料化学班姓名:唐建学号:20110513427 摘要:1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。从此便引发了碳纳米管研究的热潮和近十几年来碳纳米管科学和技术的飞速发展。本文主要分为两部分: 1、对纳米材料及碳纳米管的相关知识进行介绍 2、于应用层次,讨论纳米材料及碳纳米管的应用前景 关键字:纳米材料概述碳纳米管热点及应用 1、引言 生物科学技术、信息科学技术、纳米科学技术是下一世纪内科学技术发展的主流。生物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界不存在的生物;信息科学技术使人们可以坐在家中便知天下大事,因特网几乎可以改变人们的生活方式。而纳米科学技术作为二十一世纪的主导产业,又将给人们带来怎样天翻地覆的改变呢?…… 2、理论知识 2.1 纳米材料概述 纳米材料:指晶粒尺寸为纳米级(10-9米)的超细材料。从材料的结构单元层次来说,它处于宏观物质和微观原子、分子之间的介观领域。在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构成与晶态、非晶态均不同的一种新的结构状态。 纳米科学技术:研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 2.2 纳米材料的特性 2.2.1纳米材料的体积效应 体积效应中的典型例子是久保理论。其是针对金属纳米粒子费米面附近电子能级状态分布而提出的。该理论把金属纳米粒子靠近费米面附近的电子状态看作是受尺寸限制的简并电子态,并进一步假设它们的能级为准粒子态的不连续能级,并认为相邻电子能级间距δ和金属纳米粒子的直径d的关系为:δ=4EF/3N ∞V-1 ∞1/d3(其中N为一个金属纳米粒子的总导电电子数,V为纳米粒子的体积;EF为费米能级)。随着纳米粒子的直径减小,能级间隔增大,电子移动困难,电阻率增大,从而使能隙变宽,金属导体将变为绝缘体。 2.2.2 .纳米材料的量子尺寸效应 当纳米粒子的尺寸下降到某一值时,金属粒子费米面附近电子能级由准连续变为离散能级;并且纳米半导体微粒存在不连续的最高被占据的分子轨道能级和最低未被占据的分子轨道能级,使得能隙变宽的现象,被称为纳米材料的量子尺

碳纳米管复合材料生产制造项目申报材料

碳纳米管复合材料生产制造项目 申报材料 投资分析/实施方案

碳纳米管复合材料生产制造项目申报材料 一些有机溶剂(如NMP)可分散和剥离碳纳米管,在有机溶剂中可对石墨进行剥离并得到无缺陷的石墨烯,并且得到的石墨烯产量大没有表面化 学修饰。 该碳纳米管复合材料项目计划总投资13652.07万元,其中:固定资产 投资10591.43万元,占项目总投资的77.58%;流动资金3060.64万元,占项目总投资的22.42%。 达产年营业收入20728.00万元,总成本费用16464.61万元,税金及 附加212.10万元,利润总额4263.39万元,利税总额5063.54万元,税后 净利润3197.54万元,达产年纳税总额1866.00万元;达产年投资利润率31.23%,投资利税率37.09%,投资回报率23.42%,全部投资回收期5.77年,提供就业职位368个。 报告根据项目的经营特点,对项目进行定量的财务分析,测算项目投 产期、达产年营业收入和综合总成本费用,计算项目财务效益指标,结合 融资方案进行偿债能力分析,并开展项目不确定性分析等。 ...... 碳纳米管具有独特的导电性、很高的热稳定性和本征迁移率,比表大,微孔集中在一定范围内,满足理想的超级电容器电极材料的要求。碳纳米

管的电磁效应同样存在着两端正负极场和单极粒子的特质性质,前者是以复合量子态的存在,是在下面第5行成复合材料人们的生活应用,而后着的单极碳粒子的性质是可以组成粒子点阵跃迁跳跃的纳米线,它的能效要有更高的辐射能量存在。

碳纳米管复合材料生产制造项目申报材料目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π键,碳纳米管外表面的大π键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学 前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。 一、碳纳米管的性能 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。力学性能 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 导电性能 碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。传热性能 碳纳米管具有良好的传热性能,CNTs 具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。 二、碳纳米管电子学的应用 碳纳米电子管(eNTs是一种具有显著电子、机械和化学特性的独特材料。其导电能力不同于普通的导体。性能方面的区别取决于应用,也许是优点,也许是缺点,也许是机会。在一理想纳米碳管内,电传导以低温漂轨道传播的,如果电子管能无缝交接,低温漂是计算机芯片的优点。诸如电连接等的混乱极大地修改了这—行为。对十较慢的模拟信号的处理速度,四周环绕着平向球分子的碳纳米管充当传播者已被实验让实。在后门将有碳的纳米管穿过两根金导线证明了场效应分子晶体管,近来证实逻辑电路的难题 遇到了静电掺杂碳纳米管。碳纳米管的掺杂质可使用化学方法来完成。CMOS类型变极器有 n型和p型掺杂两种。这项工作用达到10A5的开关比率且具有高增益的晶体管电阻逻辑以实验证明了变极器和或非电路的性能。显然,通过适当地排列碳纳米管晶体管顺序可实现与、

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管项目规划方案

碳纳米管项目规划方案 投资分析/实施方案

摘要 碳纳米管(CarbonNanotubes,CNTs)是一种同轴管状结构的碳原子簇,其管径与管之间相互交错的缝隙都属于纳米数量级,根据管壁的层数可以 将CNTs分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)。碳纳米 管自被发现以来就因为其优异的电学、力学、化学等性能,在多项领域中 显示出巨大应用潜力。(1)在锂电池领域,碳纳米管凭借优异导电性能, 被广泛应用于锂电池新型导电剂。(2)在导电塑料领域,碳纳米管凭借其 优越的导电性能和力学性能,用来提升导电塑料的导电性和结构强度,已 经显现出巨大的应用价值。 该碳纳米管项目计划总投资13049.30万元,其中:固定资产投资10161.66万元,占项目总投资的77.87%;流动资金2887.64万元,占 项目总投资的22.13%。 本期项目达产年营业收入27616.00万元,总成本费用22003.91 万元,税金及附加232.83万元,利润总额5612.09万元,利税总额6619.00万元,税后净利润4209.07万元,达产年纳税总额2409.93万元;达产年投资利润率43.01%,投资利税率50.72%,投资回报率 32.26%,全部投资回收期4.60年,提供就业职位480个。

碳纳米管项目规划方案目录 第一章基本信息 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

浅谈免疫学在生物学、医学、药学等领域的应用

浅谈免疫学在生物学、医学、药学等领域的应用 摘要:免疫学技术在国内外的应用已是日趋广泛。近年来,由于任何有关抗原抗体的研究均可使用免疫技术,使免疫学技术早已超越了医学领域,广泛应用于植物学、动物学、药学、生物学等其他科学领域,免疫学技术本身也在迅速发展。免疫学是生命科学及医学领域中的前沿学科,本文仅就免疫学在某些领域的具体应用做简要的评述。 关键词:免疫酶;免疫检测;免疫和中医药 一、免疫学在分子生物学中的应用 免疫学技术已从早年应用于微生物学发展到应用于分子生物医学研究的许多方面。目前,它已成为兴学科生物学研究的重要工具之一。在此次免疫技术涉及的分子生物学应用中,我们所涉及到免疫电泳技术、放射免疫技术、免疫酶技术、免疫荧光定位技术等等,我们就免疫酶技术做一概述。 免疫酶技术是一项定位,定性和定量的综合性技术,已是将一定的酶通过共价桥而标记抗体,在抗原抗体结合时,酶与底物作用,产生有色物质,对后者可进行定位或定量检测。现已有酶免疫测定法,酶联免疫吸附试验和均向酶免疫测定等方法。后一种方法是利用游离抗原与标记抗原竞争结合抗体,如果游离抗原浓度高,就会抢去抗体,使供氢体得以接触酶而使酶的活性增加。用分光光度记可测出反应前后酶活性的变化。免疫酶技术如与新技术进一步结合,可提高其灵敏度和可靠性。

二、免疫学在医学中的应用 免疫学在医学中广泛应用于传染病预防,疾病治疗,免疫诊断。现代免疫学认为,机体的免疫功能是对抗原刺激的应答,而免疫应答又表现为免疫系统识别自己和排除非己的能力。免疫功能根据免疫识别发挥作用。这种功能大致有对外源性异物(主要是传染性因子)的免疫防御;去除衰退或损伤细胞的免疫,以保持自身稳定;消除突变细胞的免疫监视,即免疫防御,免疫自稳,免疫监视。 免疫学细胞免疫测定。 近代免疫学广泛采用了细胞生物学、免疫血清学、免疫标记、免疫组化等多方面技术,不断发展和完善了一系列细胞免疫检测技术,用于检测各类免疫细胞的表面标志(包括抗原及受体)、细胞的活化、增殖、吞噬、杀伤功能、各种细胞因子的活性或含量等方面。这些技术为深入研究和认识机体免疫系统的生理、病理改变,阐明某些疾病的发病机制和临床诊治提供了有用的手段。随着细胞免疫学的迅猛发展,时有新的细胞免疫检测技术出现。近年来,新发展的项目集中在对有关细胞因子以及细胞受体方面的检测。我们以此为例简述淋巴细胞转化试验。 淋巴细胞转化试验:人类淋巴细胞在体外与特异性抗原(如结核菌素)或非特异性有丝分裂原(如植物血凝素,PHA)等一起孵育,T细胞即被激活而向淋巴母细胞转化。T细胞转化过程可伴随有DNA、RNA、蛋白质的合成增加,最后导致细胞分裂。在光学显微镜下可计数转化后

碳纳米材料在生物医学领域的应用

碳纳米材料在生物医学领域的应用 作者:管理员来源:本站浏览数:94 发布时间:2014-9-4 8:29:34 随着纳米技术的飞速发展,纳米材料已成为一种新型材料。纳米材料具有独特的物理化学性质,如小尺寸效应、巨大比表面积、极高的反应活性、量子效应等,这些特性使纳米科学成为当今世界三大支柱科学之一。碳纳米材料是纳米材料领域重要的组成部分,主要包括碳纳米管、富勒烯、石墨烯、纳米钻石及其衍生物等。由于其独特的理化特性,它们在生物医学领域具有广泛的应用前景。另外,随着碳纳米材料的产业化,各种形式的碳纳米材料将以不同途径进入人们的生活,纳米材料的生物安全性问题正受到世界各国科学家的广泛关注。 组织工程 1.骨组织工程 碳纳米管是Lijima于1991年发现的一种新型纳米材料,是一种由碳原子sp2杂化 形成的石墨烯片层卷成的无缝中空的管体,根据管壁层数的差别,一般可以分为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管。研究表明,碳纳米管不仅具有相当高的强度和韧性,还具有优异的电学、磁学以及吸收等性能,是一种公认的超强一维增强材料,可以很好地解决组织修复领域中存在的一些问题。 众所周知,羟基磷灰石是骨骼的天然组分之一,在生理环境下性能稳定,纳米级材料为骨细胞的黏附、生长提供了良好的支撑,使骨细胞易于贴附,分泌多种成骨分化因子,并且在骨细胞钙化过程中,纳米羟基磷灰石还为骨细胞钙化成骨提供晶核,发挥骨传导作用。因此,纳米羟基磷灰石是骨修复领域中研究最为广泛的材料。但是,现有的研究结果表明,纯的羟基磷灰石的力学性能较差,不能用作承重植入材料。研究证实,将碳纳米管和羟基磷灰石制成复合材料,有望在保持其生物相容性的同时大大提高其力学性能。研究表明,多壁碳纳米管负载骨水泥之后,能够显著提高骨水泥的力学性能。 2.神经组织工程 碳纳米管独特的性质也引起了人们对其在神经组织学领域的研究兴趣,碳纳米管增强型复合材料能够有效地重建神经缺损的大鼠斜方肌的运动机能,术后再生神经电生理与组织学指标检测结果与自体神经移植材料相当,部分指标结果甚至超过自体神经移植。这些研究表明,碳纳米管增强型复合材料是桥接修复周围神经的理想材料。据报道,富勒烯具有良好的清除自由基的能力,许多神经退行性病变,如阿尔兹海默症 帕金森症,都是由于谷氨酸受体过度激活,产生过量的活性氧自由基和NO自由 基造成的,实验证明富勒烯可以有效减少神经元的死亡。

相关主题
文本预览
相关文档 最新文档