当前位置:文档之家› 渗透系数

渗透系数

渗透系数
渗透系数

用抽水试验确定渗透系数

---转自青春飞扬搜狐博客

1.抽水试验资料整理

试验期间,对原始资料和表格应及时进行整理。试验结束后,应进行资料分析、整理,提交抽水试验报告。

单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。并利用单孔抽水试验资料编绘导水系数分区图。

多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。

群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。

注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。

多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。

2. 稳定流抽水试验求参方法

求参方法可以采用Dupuit 公式法和Thiem公式法。

(1) 只有抽水孔观测资料时的Dupuit 公式

承压完整井:

潜水完整井:

式中K——含水层渗透系数(m/d);

Q——抽水井流量(m3/d);

sw——抽水井中水位降深(m);

M——承压含水层厚度(m);

R——影响半径(m);

H——潜水含水层厚度(m);

h——潜水含水层抽水后的厚度(m);

rw——抽水井半径(m)。

(2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式

式中hw ——抽水井中水柱高度(m);

h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度(m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。

其余符号意义同前。

当前水井中的降深较大时,可采用修正降深。修正降深s’与实际降深s之间的关系为:s'=s-s2/2H。

3.非稳定流抽水试验求参方法

3.1承压水非稳定流抽水试验求参方法

(1)Theis 配线法

在两张相同刻度的双对数坐标纸上,分别绘制Theis 标准曲线W(u)-1/u 和抽水试验数据曲线s-t,保持坐标轴平行,使两条曲线配合,得到配合点M的水位降深[s]、时间[t]、Theis 井函数[w(u)]及[1/u]的数值,按下列公式计算参数(r为抽水井半径或观测孔至抽水井的距离):

以上为降深——时间法(s-t)。也可以采用降深---时间距离法(s-t/r2)、降深---距离法(s-r)进行参数计算。

(2) Jacob 直线图解法

当抽水试验时间较长,u= r2/(4at)<0.01时,在半对数坐标纸上抽水试验数据曲线s-t为一直线(延长后交时间轴于t0,此时s=0.00m),在直线段上任取两点t1、s1、t2、s2,则有

(3)Hantush 拐点半对数法

对半承压完整井的非稳定流抽水试验(存在越流量,K’/b’为越流系数),当抽水试验时间较长,u= r2/(4at)<0.1时,在半对数坐标纸上抽水试验数据曲线s-t,外推确定最大水位降深Smax,在s-lgt线上确定拐点Si = Smax/2,拐点处的斜率mi 及时间ti,则有

(4) 水位恢复法

当抽水试验水位恢复时间较长,u= r2/(4at)<0.01时,在半对数坐标纸上绘制停抽后水位恢复数据曲线s-t,在直线段上任取两点t1,s1,t2,s2,则有

(5)水位恢复的直线斜率法

当抽水试验水位恢复时间较长,u= r2/(4at)<0.1时,在半对数坐标纸上绘制停抽后水位恢复数据曲线s-t,直线段的斜率为B,则有

3.2 潜水非稳定流抽水试验求参方法

潜水参数计算可采用仿泰斯公式法、Boulton法和Numan法。

(1) 仿泰斯公式法

式中H0、hw——-初始水头及抽水后井中水头;

W(u)——泰斯井函数;

Q——抽水井的流量(m3/d);

r——到抽水井的距离(m);

t——自抽水开始起算的时间(d);

T——含水层的导水系数(m2/d);T=Khm;

hm ——-潜水含水层的平均厚度(m);

K——含水层的渗透系数(m/d);

A——_含水层的导压系数(1/d);

m——潜水含水层的给水度。

具体计算时可采用配线法、直线图解法、水位恢复法等。

(2)潜水完整井考虑迟后疏干的Boulton公式

可根据抽水早期、中期、晚期的观测资料,采用相应的方法计算参数。

(3)Numan法

对于潜水含水层完整井非稳定流抽水试验,也可以采用Numan模型求参,具体求参过程可参阅《地下水动力学》等教科书。

4. 参数计算新技术新方法的应用

采用AQUIFERYTEST软件(图1)、数值模拟法(可采用GMS、MODFLOW、FEFLOW等软件)以及肖长来教授提出的全称曲线拟合法(图2)等一些新的软件、方法确定水文地质参数,效果非常好。

Conductivity:9.38E-2 m/d

图1 AQUIFERYTEST软件求参图示

图2 全称曲线拟合法求参图示

5. 参数计算结果的验证

上述参数计算结果的精度如何,取决于试验场地水文地质条件的概化,也取决于观测数据的精度。对于所求得的参数,应将其代入相应的公式,通过对比计算降深与实测降深的差值,分析所求参数的精度及其可靠性和代表性,最终确定抽水试验场地的有代表性意义的参数值。

方法(二)

单孔稳定流抽水试验,当利用抽水孔的水位下降资料计算渗透系数时,可采用下列公式:

1 当Q~s(或Δh2)关系曲线呈直线时,

1)承压水完整孔:

(8.2.1-1)

2)承压水非完整孔:

当M>150r,l/M>0.1时:

(8.2.1-2)

或当过滤器位于含水层的顶部或底部时:

(8.2.1-3) 3)潜水完整孔:

(8.2.1-4)

4)潜水非完整孔:

当>150r,l>0.1时:

(8.2.1-5)

或当过滤器位于含水层的顶部或底部时:

(8.2.1-6)

式中K——渗透系数(m/d);

Q——出水量(m3/d);

s——水位下降值(m);

M——承压水含水层的厚度(m);

H——自然情况下潜水含水层的厚度(m);

h——潜水含水层在自然情况下和抽水试验时的厚度的平均值(m);

h——潜水含水层在抽水试验时的厚度(m);

l——过滤器的长度(m);

r——抽水孔过滤器的半径(m);

R——影响半径(m)。

2 当Q~s(或Δh2)关系曲线呈曲线时,可采用插值法得出Q~s 代数多项式,即:

s=a1Q+a2Q2+……anQn (8.2.1-7)

式中a1、a2……an——待定系数。

注:a1宜按均差表求得后,可相应地将公式(8.2.1-1)、(8.2.1-2)、(8.2.1-3)中的Q/s

和公式(8.2.1-4)、(8.2.1-5)、(8.2.1-6)中的以1/a1代换,分别进行计算。

3 当s/Q (或Δh2/Q)~Q关系曲线呈直线时,可采用作图截距法求出a1后,按本条第二款代换,并计算。

单孔稳定流抽水试验,当利用观测孔中的水位下降资料计算渗透系数时,若观测孔中的值s(或Δh2)在s(或Δh2)~lgr关系曲线上能连成直线,可采用下列公式:

1 承压水完整孔:

(8.2.2-1)

2 潜水完整孔:

(8.2.2-2)

式中s1、s2——在s~lgr关系曲线的直线段上任意两点的纵坐标值(m);

——在Δh2~lgr关系曲线的直线段上任意两点的纵坐标值(m2);

r1、r2———在s(或Δh2)~lgr关系曲线上纵坐标为s1、s2(或)的两点至抽水孔的距离(m)。

单孔非稳定流抽水试验,在没有补给的条件下,利用抽水孔或观测孔的水位下降资料计算

渗透系数时,可采用下列公式:

1 配线法:

1)承压水完整孔:

2)潜水完整孔:

式中W(u)——井函数;

S——承压水含水层的释水系数;

μ——潜水含水层的给水度。

2 直线法:

当<0.01时,可采用公式(8.2.2-1)、(8.2.2-2)或下列公式:

1) 承压水完整孔:

(8.2.3-5)

水完整孔:

(8.2.3-6)

式中s1、s2——观测孔或抽水孔在s~lgt关系曲线的直线段上任意两点的纵坐标值(m);

——观测孔或抽水孔在Δh2~lgt关系曲线的直线段上任意两点的纵坐标值(m2);

t1、t2——在s (或Δh2)~lgt关系曲线上纵坐标为s1、s2 (或)两点的相应时间(min)。

8.2.4 单孔非稳定流抽水试验,在有越流补给(不考虑弱透水层水的释放)的条件下,利用s~lgt关系曲线上拐点处的斜率计算渗透系数时,可采用下式:

(8.2.4)

式中r——观测孔至抽水孔的距离(m);

B——越流参数;

mi——s~lgt关系曲线上拐点处的斜率。

注:1 拐点处的斜率,应根据抽水孔或观测孔中的稳定最大下降值的1/2确定曲线的拐点位置及拐点处的水位下降值,再通过拐点作切线计算得出。

2 越流参数,应根据,从函数表中查出相应的r/B,然后确定越流参数B。

8.2.5 稳定流抽水试验或非稳定流抽水试验,当利用水位恢复资料计算渗透系数时,可采用下列公式:

1 停止抽水前,若动水位已稳定,可采用公式(8.2.4)计算,式中的mi值应采用恢复

水位的曲线上拐点的斜率。

2 停止抽水前,若动水位没有稳定,仍呈直线下降时,可采用下列公式:

1)承压水完整孔:

(8.2.5-1)

2)潜水完整孔:

(8.2.5-2)

式中tk——抽水开始到停止的时间(min);

tT——抽水停止时算起的恢复时间(min);

s——水位恢复时的剩余下降值(m);

h——水位恢复时的潜水含水层厚度(m)。

注:1 当利用观测孔资料时,应符合当<0.01时的要求。

2 如恢复水位曲线直线段的延长线不通过原点时,应分析其原因,必要时应进行修正。利用同位素示踪测井资料计算渗透系数时,可采用下列公式:

(8.2.6-1)

式中Vf——测点的渗透速度(m/d);

I——测试孔附近的地下水水力坡度;

r——测试孔滤水管内半径(m);

r0——探头半径(m);

t——示踪剂浓度从N0变化到Nt所需的时间(d);

N0——同位素在孔中的初始计数率;

Nt——同位素t时的计数率;

Nb——放射性本底计数率;

a——流场畸变校正系数。

方法(三)

在单孔抽水试验中,由于没有观测孔,只能根据抽水试验未稳定前的水位,做出降深-半对数时间图,以图解法来求渗透系数或根据水位恢复数据,以图解法来求岩石渗透系数.

像这种联解方程,想用数学推导法来求解,是非常困难的.涉及幂函数和指数涵数.

如一矿山的抽水试验,涌水量为Q=1053吨/天,含水层厚度为m=241.3米,降深s=9.40米,抽水管径r=0.084米.

经过化简和代入后为:

k-0.085lgk=1.41113

可以用逼进法,在excel里计算.

如k=1时,左边的式子,其得数是小于1的,显然不符合方程.

如k=3时,左边的式子,其得数是大于2的,显然也是不符合方程.

如k=2时,左边的式子,其得数是介于1--2之间的,这样就界定了k值的大致范围

然后再分别计算

k=1.1 左边的式子k-0.085lgk=1.0965

k=1.2,k-0.085lgk=1.19327

k=1.3,k-0.085lgk=1.2903

k=1.4,k-0.085lgk=1.38758

k=1.5,k-0.085lgk=1.4850

显然k值小于1.5,大于1.4.

然后再这个区间继续计算k-0.085k的值,使之趋近于1.41113.

在excel里,这种计算非常快捷.很快就可以得出k=1.4244

水文地质参数确定方法

确定水文地质参数的方法一般分为经验数据法、经验公式法、室内试验法和野外试验法四种。供水水文地质勘察中主要采用野外试验法,因为野外试验法求得的参数精确度较高。

经验数据法根据长期的经验积累的数据,列成表格供需要时选用。渗透系数、压力传导系数、释水系数、越流系数、弥散系数、降水入渗系数、给水度和影响半径等都有经验数据表可查。在评估地下水资源时,水文地质参数常采用经验数据。

经验公式法考虑到某些基本规律列出的公式,并加上经验的修正。渗透系数、给水度等都可按经验公式计算,其值比选用经验数据的精确度要高。

室内试验法在野外采取试件,利用试验室的仪器和设备求取参数。渗透系数、给水度、降水入渗系数等水文地质参数,可通过室内试验法求得。

野外试验法利用野外抽水试验取得有关数据,再代入公式计算水文地质参数。其计算公式分稳定流公式和非稳定流公式。计算时根据含水层的状态(潜水或承压水)、井的完整性(完整井或非完整井)、边界条件(傍河或其他边界)、抽水孔状态(单孔抽水或带观测孔抽水)等条件选择。渗透系数、导水系数、压力传导系数、释水系数、越流系数、给水度和影响半径等,都可用野外抽水试验法求得较精确的数据。野外确定降水入渗系数还可采用地下水均衡试验场的实测数据,一般精度较高。

吕荣值和渗透系数K之间关系

吕荣值和渗透系数K之 间关系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

吕荣值(q)表示使用灌浆材料作为试验流体时地层的渗透系数。吕荣(Lugeon),1吕荣为1MPa作用下1米试段内每分钟注入1L水量。(在100m的水柱压力下,每米长度标准钻孔内,历时10min,平均每分钟压入岩石裂隙中的水量。)定义公式,q=Q/PL,其中,Q为压入流量,单位L/min;P为作用于试段内的全部压力,单位M P a;L为试段长度,单位m。 渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=kρg/η,式中k为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数〉10米/昼夜;弱透水的亚砂土渗透系数为1~米/昼夜;不透水的粘土渗透系数<米/昼夜.据此可见土壤渗透系数决定于土壤质地。 地下水流速的确定:在地下水等水位图上的地下水流向上,求出相邻两等水位线间的水力梯度,然后利用公式计算地下水的流速V=kI 。式中:V---地下水的渗流速度(m/d)K---渗透系数(m/d)I----水力梯度 表示岩土透水性能的数量指标。亦称水力传导度。可由达西定律求得:q=KI,式中q为单位渗流量,也称渗透速度(米/日);K为渗透系数(米/日);I 为水力坡度,无量纲。可见,当I=1时,q=K,表明渗透系数在数值上等于水力坡度为 1时,通过单位面积的渗流量。岩土的渗透系数愈大,透水性越强,反之越弱。

钢结构工程摩擦面漆摩擦系数试验标准

一、编制依据和相关规范 (1)设计图纸及《XXXX钢结构制造验收规则》 (2)《公路桥涵施工技术规范》JTG/TF50-2011 (3)《铁路钢桥制造规范》Q/CR9211-2015 (4) 《铁路钢桥栓接板面抗滑移系数试验方法》(TB2137-90) 二、试件数量 1、工程量约9000吨,需做试件3批,每批6组试件。 2、工程量约2700吨,需做试件1批,每批6组试件。 三、试验方法应符合下列规定 1、试验用的试验机误差应在1%以内; 2、试验用的贴有电阻片的高强度螺栓、压力传感器和电阻应变仪应在试验前采用试验机进行标定,其误差应在2%以内; 3、测定抗滑移系数的试件为拉力试件; 4、测定抗滑移系数的试件应由钢结构制造厂加工,试件与所代表的钢结构应为同一材质、同批制作、同一摩擦面处理工艺,使用同一性能等级和同一直径的高强度螺栓连接副,并在相同条件下运输,存放; 5、试件的钢板厚度应为所代表的钢结构中有代表性部件的钢板厚度;

6、测定抗滑移系数的试件为双面拼装试件,其试件尺寸及组装如下图所示: 7、试件板面应平整,无油污、孔边,板边无飞边、毛刺; 8、试件按图示组装,先打入冲钉定位,然后逐个换成贴有电阻应变片的高强度螺栓(或用压力传感器),拧紧高强度螺栓的预应力达到(0.95~1.05)P(P为高强度螺栓设计预拉力为230KN); 9、将试件装在试验机上,使试件的轴线与试验机夹具中心线严格对中,在试件侧面画直线,

画线位置如图所示,测出高强度螺栓预拉力实测值,然后进行拉力试验,平稳加载,加载速度为3~5kN/s,拉至滑动测得滑动荷载N; 10、在试验中发生以下情况之一时,认为达到滑动荷载: ①试验机发生回针现象; ②X-Y记录仪中变形发生突变; ③试件测面画线发生错动; 四、摩擦面表面处理工艺 试件组装前应对栓接摩擦面喷砂除锈,并喷涂无机富锌防锈防滑涂料,以保证摩擦面摩擦系数达到规范要求。表面处理要求及涂装体系见下表: 五、抗滑移系数f按下式计算,取两位有效数字: f=N/mΣP 式中:N —由试验机测得的滑动荷载(kN,取3位有效数字); m —摩擦面数,取m=2; ΣP —与试件滑动荷载对应一侧的高强度螺栓预拉力实测值之和(kN,取3位有效数字); 六、本项目连接钢板厂内抗滑移系数f≥0.55,工地抗滑移系数f≥0.45。 七、试件制作及试验时机

计算题

计算 1、分配系数分别为100和110的两组分,在相比(β=V m /V s )为5的色谱柱上分离,若使分离度R=1.0,需多长色谱柱?若使分离度R=1.5,又需多长色谱柱?(设理论塔板高度为0.65mm ) 解:(1)K 1=100,K 2=110,β=V m /V s =5,R=1.0,H=0.65mm к1= K 1(V s /V m )= K 1/β=100/5=20 к2= K 2(V s /V m )=K 2/β=110/5=22 α= K 2/ K 1=110/100=1.1 1 1422 +-= k k n R αα= √n/4×〔(1.1﹣1)/1.1〕×(22)/22+1=1.0 n=2116 H=L/n L=nH=2116×0.65×10- 3=1.38 m (2)R=1.5时 √n/4×022/23=1.5 2 1 2 221L L R R = L=3.11m 2、在1m 长的气相色谱柱上,某药物及其代谢产物的保留时间分别为5.80min 和6.60min ,两色谱峰的半峰宽分 别为0.23cm 和0.24cm ,空气的保留时间为1.10min ,记录纸速为0.50cm/min 。 计算:(1)代谢物的容量因子; (2)两组分的分离度; (3)以该药物计算色谱柱的有效塔板数; (4)在不改变塔板高度的条件下,分离度为1.5时所需柱长 解:L=1m ,t R1=5.80min ,t R2=6.60min ,t R0=1.10min ,u 0=0.50cm/min (W 1/2)1=0.23cm , (W 1/2)2=0.24cm

(1)к= t R2′/ t R0=(6.60﹣1.10)/1.10=5.00 (2)26.323 .085 .560.6)(2)2/1(122)2/1(1)2/1(12=-=-≈+-= W t t W W t t R R R R R (3)n eff =5.54(t R1′/(W 1/2)1)2 =5.54×〔(5.80﹣1.10)×0.50/0.23〕2 =578 (4)R 12/ R 22 = L 1/L 2 L 2 =(R 22/ R 12)L 1 =(1.52/3.262)×1 m =0.21 m 3、在一根3m 长的色谱柱上分析某样品,记录纸速为0.50cm/min ,得如下数据: 保留时间(t R )min ; 半峰宽(W 1/2)mm ; 峰高(h )mm ; 重量校正因子(以面积表示 f i ) 空气 1.0 内标物 6.8 2.0 2.43 1.00 待测组分 8.3 2.5 3.21 1.15 计算:(1)内标物与组分的分离度; (2)柱长为2m 时的分离度及内标物的半峰宽; (3)已知内标物在样品中的含量为2.55%,组分的含量是多少? 解:u = 0.50 cm/min ,L = 3m (1) R=2(t R2﹣t R1)/〔(W 1/2)1+(W 1/2)2〕=2(8.30﹣6.80)×0.50×10 / (2.0+2.5)=3.3 (2) 2 1 2 221L L R R = 69.23.33/2=?=R R 12/ R 22 = L 1/L 2 R 2= √2m/3m×3.3 =1.49 (3)A=1.065×W 1/2×h (2.0×2.43×1.00) / (2.5×3.21×1.15) = 2.55% / x% x% = 4.84%

双环法测野外渗透系数

双环法测野外渗透系数SK-500型试坑双环注水试验装置 双环法测野外渗透系数 一、实验目的和意义 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 二、实验方法 野外测定包气带非饱和松散岩层的渗透系数最常用的是试坑法,单环法和双环法。其中双环法的精度最高。 三、实验原理 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。 在坑底嵌入两个高约20cm,直径分别为0.25m和0.5m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 图1双环法渗水试验示意图 四、实验仪器 双环、铁锹、尺子、水桶、胶带、橡皮管 五、实验步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验。 (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,稍后可按一定时间间隔比如每10分钟观测一次,直至单位时间渗入水量达到相对稳定,再延续2~4小时即可结束试验。 六、注意事项 (1)随时保持内外环的水柱都保持在0.1m的同一高度。 (2)向供水瓶注水时,做好水量转换的换算 七、实验成果 (1)野外渗水试验的记录格式见表1。 表1 野外渗水试验记录 工程名称试验者 工程编号计算者 试验日期校核者 试验次数经过的时间 (s) 渗透流量 m3/min 渗透速度 m/min 渗透系数 m/min 注:A-双环内径面积(314cm2)I是水力梯度, (2)计算渗透系数

透水率和渗透性之间的区别----谢克

透水率和渗透性之间的区别 很多人把透水率和渗透性等同看待,也没有太在乎试验方法之间的差别。 (1)透水率的概念 也叫单位吸水率,是压水试验过程过程中,每分钟(min)每米(m)试段在每米(m)压头下的注入水量(L)。单位国际标准采用吕荣Lu。 压水试验规范中说透水率“表达岩体透水性的指标”,个人感觉欠妥,把大家搞糊涂了。正确的说法是“反映岩体可灌性的指标”,尽管和岩石渗透系数K有相关关系,甚至很好的相关关系,是不同的概念和机理。希望将来哪位把它改过来。下面再仔细讨论“透水率”和“渗透性”的恩恩怨怨! (2)透水率的工程意义 首先,要把压水试验和常规的抽水、注水试验区别一下,目前认为它是为灌浆目的而进行的水文地质试验,就足够。透水率是反映岩体可灌性的指标,其大小直接影响设计的方案。 比如基础防渗设计标准是3Lu,目前基础一下50米很多岩体透水率是5Lu,那么防渗设计一般要求做到(a)相对隔水层[封闭帷幕]或(b)足够深度[悬挂帷幕,要进行渗透计算确定]显然,如果是交钥匙工程,投标时资料不权,估计透水率比较小,结果中标后,补充勘察发现有大面积透水性很强的岩层。工程意义就是,你的帷幕防渗工作量包不住,赔钱!意义重大。 (3)透水率吕荣Lu和渗透系数K的关系 上面也提到了,数值上有很好的关系,工程中老总会用1Lu≈1.0E-7m/s来把透水率转化成渗透性。这也是把大家搞糊涂的原因。也不反对这个简化转换,确实有这个近似数值关系。哈哈 (4)两者的区别也是明显的: (a)两者不是线性关系 层流状态可以用以上简化关系,如果是非稳定流,就不适合了。规范说小于10Lu可以直接数值转换,也有公式。接触了Christin Kutzner德国岩土大坝专家的一本书,上面就有两者的曲线。绝对不是线性的。因此,大家要理解实践简化和真实解的区别。 (b)试验状态不一样 常规渗透试验,如抽水、常水头、降水头渗透试验,都是利用稳定地下水位随时间的变化来确定的岩石的渗透系数的,关键的一条,对岩石本身的扰动很小,降落漏斗的形成、发展和水位恢复时间很长,是一个很“温柔”的试验过程。 再看压水试验,都用很大的压力水头,在钻孔周围迅速形成水位压力差,虚拟反漏斗。并不需要原来地下水的参与,干孔照样可以试验。对岩石裂隙张开度、充填物的影响是肯定的,是一个“急暴”的试验过程。 因此,也有大师提出这个问题,在这本书里有介绍。《水利水电工程灌浆与地下水排水》

土壤—饱和导水率(渗透系数)的测定—渗透筒法pdf

FHZDZTR0020 土壤 饱和导水率(渗透系数)的测定 渗透筒法 F-HZ-DZ-TR-0020 土壤—饱和导水率(渗透系数)的测定—渗透筒法 1 范围 本方法适用于田间土壤饱和导水率(渗透系数)的测定。 2 原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤的饱和导水率(渗透系数)是根据达西(H. Darcy )定律: K =h t S L Q ×××……(1) 式(1)中: K ——饱和导水率(渗透系数),cm/s ; Q ——流量,渗透过一定截面积S (cm 2)的水量,mL ; L ——饱和土层厚度,渗透经过的距离,cm ; S ——渗透筒的横截面积,cm 2; t ——渗透过水量Q 时所需的时间,s ; h ——水层厚度,水头(水位差),cm 。 饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。饱和导水率(渗透系数)K 的量纲为cm/s 或mm/min 或cm/h 或m/d 。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 图1 渗透筒Q =K ×S ×t ×h /L 3 仪器 3.1 渗透筒(图1)。 3.2 量筒,500mL 。 3.3 烧杯,400mL 。 3.4 漏斗。 3.5 秒表。 3.6 温度计。 4 操作步骤 4.1 测定深度:根据土壤发生层次(A 、B 、C )进行测定,每一层次要重复 测定5次。 A 层测定主要用作设计防止土壤侵蚀的措施及制定灌溉制度。 B 层测定用作设计防止土壤侵蚀的措施及预测该层土壤水分可能停滞的 情况,鉴定该层的坚实度和碱化度,并可鉴定该层是否适于作临时灌溉和固 定灌溉渠槽。 C 层测定结果可以提供土壤保水情况及鉴定是否可以作为大型灌溉渠 道、渠槽的资料。 4.2 在选定的试验地上,用渗透筒采取原状土,取土深度为10cm ,将垫有滤 纸的底筛网盖好,带回室内待测定。 4.3 将渗透筒浸入水中,注意水面不要超过土柱。一般砂土浸4h~6h ,壤土浸8h~12h ,粘土浸24h 。 4.4 在预定时间将渗透筒取出,挂在适当位置,待重力水滴完后装上漏斗,漏斗下接一烧杯。

渗透系数

渗透系数 渗透系数 k 是一个代表土的渗流性强弱的定量指标,也是计算时必须用到的基本参数,不同种类的土,k 值差别很大。因此,准确测定土的渗透系数,是一项十分重要的工作。 实验室测定法 目前实验室中测定渗透系数k 的仪器种类和试验方法很多,但从试验原理上大体可分为常水头法和变水头法两种。 (1)常水头试验法 常水头试验法就是在整个试验过程中保持水头为一常数,从而水头差也为常数。适用于测量渗透性大的砂性土的渗透系数, 设试样的长度为L,截面积为A,试验时,先打开供水阀,使水自上而下通过试样并从溢流槽排除,试样两端部设有测压管测定其水头差Δ h,待水在试样中渗流稳定后,经过一段时间,测定历时t 流过试样的水量Q 和测压管水头差Δ h,即可按照达西定律得: (2)变水头试验法 对于黏性土来说,由于其渗透系数较小,故渗水量较小,用常水头渗透试验不易准确测定,因此这种渗透系数小的土可用变水头渗透试验。变水头试验在试验过程中水头是随时间而变化的。利用水头变化与渗流通过试样截面的水量关系测定土的渗透系数,试验装置如图3.6(b)所示。水流从一根直立带有刻度的玻璃管和U 形管自上而下流经试样。试验时,将玻璃管充以预处理好的

试验用水至适当高度后,开动秒表,测记起始水头差h1,经历时间t 后再测定水头差h2,便可利用达西定律推导出渗透系数的表达式。 渗透试验装置示意图 设玻璃管内截面积为a,试样长度为L,试样截面积为A。试验开始后任意时刻t 的水头差为h,经历dt 时段,管中水位下降dh,则时段dt 内,流过试样的水量为: 式中,负号表示渗水量随h 的减小而增大。 根据达西定律,在时段dt 内流过试样的水量又可表示为: 令式(a)等于式(b),得到: 上式两边积分:

紧固件摩擦系数简介

紧固件摩擦系数简介 浙江长华汽车零件有限公司李大维 在汽车装配中,螺纹紧固件装配的质量将直接影响整车的装配质量和行驶的可靠性。为此,在施加外载荷之前,需拧紧螺纹紧固件,以加紧被联接件。称拧紧螺纹紧固件为预紧,称该力为轴向预紧力。保证螺栓的可靠服役,必须在装配时要保证有适当的轴向夹紧力。目前的装配工艺上最经济可行的方法是通过控制扭矩来间接实现对轴向夹紧力的控制。预紧力的大小是保证链接质量的重要因素,螺栓的拧紧过程是一个克服摩擦的过程,在这一过程中存在螺纹副的摩擦及端面摩擦。而影响预紧力的主要因素除了使用的工具及拧紧方法外就是紧固件的摩擦系数。 摩擦系数是一个明确的物理概念,它是摩擦力与正压力之间的比值,也可以理解为一个材料常数,当摩擦面的材料、表面处理状态和润滑条件确定后,摩擦系数也就确定下来。但是摩擦系数与零件表面状态和制造公差有关。摩擦系数的测量必须在一定的基准条件下进行,才能保证有良好的重复性。 紧固件摩擦系数检测、计算方法 试验设备要求 试验设备能 够应用扭紧扭矩 和用自动或手动 旋转螺帽和螺栓 头部,测量功能能 够显示表1中的 项目,显示精度值 要求±2%,除非有 其它的特殊要求。 角度的测量精度 要求无论什么条 件下必须达到显 示值的±2°或 ±2%。为了达到仲裁的目的,扭紧时使用能控制的动力工具并控制旋转速度保持恒定。测量结果能以电子记录方式记录。 目前汽车行业使用比较多的设备是德国Schatz 多功能螺栓紧固分析系统,此实验测试机传感器精度均为0.5%,符合各大汽车公司紧固件分析要求中的试 验测试机要求。实验测试机的测量项目不但包含表1中要求测量项目,通过测试分析系统软件程序,可以求得总摩擦系数、螺纹之间的摩擦系数及支承表面摩擦

绩效工资分配办法(薪酬权重系数)

某三甲医院案例:绩效工资分配办法(薪酬权重系数) 国有医院运行机制改革的主要内容之一是分配制度的改革。随着国家公务员工资体制的改革,事业单位的工资改革已摆到我们面前,而改革的主要内容是绩效工资。如何在医院复杂的人力资源分类状态下设计一套符合市场经济规律,又体现公立医院社会事业属性特点的绩效工资方案十分重要。湖南省郴州市第一人民医院经过近十年的探索,根据医院不同系列、不同岗位设计的绩效工资方案,极大地激发了员工的创造性和积极性,推动了医院的快速发展。现介绍如下: 一、各类人员薪酬权重系数的设计 权重系数是指用于指导制定各类人员所有分配到的薪酬总额之间的比例参考数值。确定各类人员的权重系数供设计各类人员薪酬总额标准时作参考。目前国家对医院各类员工之间的分配差距并无明确规范,也无量化标准,但设计时要体现向高风险、高技术、高强度劳动和贡献大的岗位倾斜,并且与管理要素、技术要素分配相结合。在实际操作过程中,参照以下原则进行:1、根据地方政府文件规定;2、根据地方劳动部门发布的各类人员工资指导意见;3、根据医院的实际情况:员工的承受能力、医院的改革成本、领导的期望目标等。(见表一、二) 二、临床科主任年薪设计 年薪制是一种有效的激励管理者的薪酬形式之一,是一种将目标任务、权力、利益、风险融合在一起的分配模式。由于它有预先设定的目标压力,又有达到目标后的利益,同时承担风险,管理者就能有计划、有措施地为完成目标任务发挥所能,并能有效地运用职权,最大限度地激发管理者的积极性。 医院是以临床和医技科室为核算单位。而临床科室更具有相对独立性和主动性,对临床科室管理者实行年薪制,推动临床科室全面发展,推动临床科室两个效益增加,就可全面带动医技科室和医院其他部门发展。

各种材料摩擦系数表

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考

固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的 成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及 其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷 工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚 碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。

抽水试验确定渗透系数的方法及步骤

抽水试验确定渗透系数的方法及步骤 1.抽水试验资料整理 试验期间,对原始资料和表格应及时进行整理。试验结束后,应进行资料分析、整理,提交抽水试验报告。 单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。并利用单孔抽水试验资料编绘导水系数分区图。 多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。 群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。 注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。 多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。 2. 稳定流抽水试验求参方法 求参方法可以采用Dupuit 公式法和Thiem公式法。 (1) 只有抽水孔观测资料时的Dupuit 公式 承压完整井: 潜水完整井: 式中K——含水层渗透系数(m/d); Q——抽水井流量(m3/d); sw——抽水井中水位降深(m); M——承压含水层厚度(m); R——影响半径(m); H——潜水含水层厚度(m); h——潜水含水层抽水后的厚度(m); rw——抽水井半径(m)。 (2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式

静摩擦系数

畅悠防滑地板地表面的静摩擦系数现场检验为0.61 2013年2月28日中华人民共和国中央人民政府的门户网站公布了国家体育总局令第17号—《经营高危险性体育项目许可管理办法》—将于2013年5月1日起正式施行。其中游泳项目的审批条件涉及21项标准,各游泳场所需经国家相关部门审核通过后,方可办理许可手续。 《经营高危险性体育项目许可管理办法》中的第六条和第十一条分别规定:游泳池四周铺设有防滑走道,其地表面的静摩擦系数不少于0.5;更衣室与游泳池中间的走道地表面的静摩擦系数不小于0.5。在这一段文字中涉及到了一个新词语——静摩擦系数,这个词语对于游泳场所的经营者来说无疑是陌生的,那么什么是静摩擦系数?铺设什么样的防滑走道才能使地表面的静摩擦系数达到0.5?对于游泳场所的经营者来说解决这一系列关于静摩擦系数的问题迫在眉睫。 面对如此现状,专业从事游泳场所防滑事业的畅悠防滑地板就静摩擦系数的问题,专门请教了国家体育用品质量监督检验中心的相关专家:什么是静摩擦系数?铺设什么样的防滑走道才能使地表面的静摩擦系数达到0.5?专家就这样的问题为大家做出了解答。 一、什么是静摩擦系数 专家解释静摩擦系数指的是:使物体客服静摩擦力作用产生滑动或有滑动趋势时作用于物体上的切向力和垂直方向上力(需大于70N)的比值。 二、铺设什么样的防滑走道才能使地表面的静摩擦系数达到0.5 专家指出目前市场上防滑材料种类繁多,主要有普通防滑垫、防滑砖、防滑液等防滑材料,但目前只有铺设专业的防滑地板才能够使游泳场所地表面的静摩擦系数达到国家标准0.5。专家支招如果想使游泳场所地表面的静摩擦系数达标,就要在地面铺设防滑地板来形成一个安全的防滑走道。 畅悠防滑地板作为防滑地板行业的领先品牌,在国家颁布静摩擦系数检测方法及标准的第一时间,就委托国家体育用品质量监督检验中心的高级工程

吕荣值和渗透系数

吕荣值(q )表示使用灌浆材料作为试验流体时地层的渗透系数。吕荣(Lugeon),1吕荣为1MPa 作用下1米试段内每分钟注入1L 水量。(在100m 的水柱压力下,每米长度标准钻孔内,历时10min ,平均每分钟压入岩石裂隙中的水量。)定义公式,q=Q/PL ,其中,Q 为压入流量,单位L/min ;P 为作用于试段内的全部压力,单位MPa ;L 为试段长度,单位m 。 渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=k ρg/η,式中k 为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g 为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数〉10米/昼夜;弱透水的亚砂土渗透系数为1~0.01米/昼夜;不透水的粘土渗透系数<0.001米/昼夜.据此可见土壤渗透系数决定于土壤质地。 地下水流速的确定:在地下水等水位图上的地下水流向上,求出相邻两等水位线间的水力梯度,然后利用公式计算地下水的流速V=kI 。式中:V---地下水的渗流速度(m/d ) K---渗透系数(m/d ) I----水力梯度 表示岩土透水性能的数量指标。亦称水力传导度。可由达西定律求得:q =KI ,式中q 为单位渗流量,也称渗透速度(米/日);K 为渗透系数(米/日);I 为水力坡度,无量纲。可见,当I =1时,q =K ,表明渗透系数在数值上等于水力坡度为 1时,通过单位面积的渗流量。岩土的渗透系数愈大,透水性越强,反之越弱。 透水率q 和渗透系数K 之间不是简单的对应关系,各种条件下通过q 计算K 的公式也很多。SL 31-2003《水利水电工程钻孔压水试验规程》推荐:当试段位于地下水位以下,透水率在10 Lu 以下,P—Q 曲线为A 型(层流型)时,可用下式求算渗透系数 r HL Q k 1ln 2π= 式中:K —地层渗透系数,m/d; Q —压水流量,m 3/d ;H—试验压力,以水头表示,m; L —试验段长度,m ; r —钻孔半径,m 。 按照上式,如假定压水试验的压力为1 MPa (即100 m 水头),每米试段的压人流量为 1 L/min (即1.44 m 3/d ),试段长度为5m 。即在透水率为1 Lu 的条件下,以孔径为56~150 mm

分配系数和化学反应平衡常数的测定

西安交通大学实验报告 课程:物理化学实验 系别:化学系 专业班号: 组别: 实验日期:2016年3月 日 姓名: 学号: 交报告日期:2016年3月 日 同组者: 实验名称:分配系数和化学反应平衡常数的测定 一、 实验目的 (1)测定碘在四氯化碳和水中的分配系数。 (2)测定水溶液中碘与碘离子之间配合反应的标准平衡常数。 二、 实验原理 1. 碘在水和四氯化碳中分配系数的测定 在一定温度下,将一种溶质A 溶解在两种互不相溶的液体溶剂中,当系统达到平衡时此溶质在这两种溶剂中分配服从一定的规律。即如果溶质A 在这两种溶剂中既无解离作用,也无蒂合作用,则在一定温度下平衡时,该平衡可以表示如下: A(溶剂1) B (溶剂2) 根据相平衡规则,此时A 在这两种溶剂中的化学势相等。进一步根据溶质型组分的化学势表达式,,A 在这两种溶剂中的活度之比是一常数,可用K d 表示。若两种溶液都比较稀,则它们相对浓度之比近似等于K d ,称为分配系数; 12 12//c c c c c c K d ==θ θ 如果溶质A 在溶剂1和溶剂2中的分子形态不同,则分配系数的表示式就不同。例如,如果A 发生蒂合作用并主要以A n 形式存在,则该平衡可以表示为: A(溶剂1) nA (溶剂2) 其中n 是缔合度,它表明缔合分子A n 是由单分子组成的。此时分配系数可表示为: θ θc c c c K n d /)/(12= 若将I 2加入CCl 4和H 2O 这两种互不相溶的液体中,则会在这两相中建立如下平衡:

I 2 (H 2 O) I 2(CCl 4) 分别滴定CCl 4层和H 2O 层中I 2的浓度。 2. 在水溶液中碘与碘离子配合反应的标准平衡常数的测定 在水溶液中会发生配合反应并建立碘负离子与碘三负离子平衡,其平衡 常数可表示为: ) /()/() /(23 2 3 2 3 θ θθθγγγc c c c c c a a a K I I I I I I I I I ?? ?= ?= --- --- 若溶液比较稀,则溶液中各组分活度系数都近似为1,那么 θθθ c K c c c c K c I I I ?=??≈ -- 2 3 在一定温度和压力下,把浓度为c 的KI 水溶液与I 2的CCl 4溶液按一定比 例混合后,用滴定方法测得浓度后可得出水层中配合碘的浓度为d=(b+d)-b,进一步可得出水溶液中碘和碘离子配合反应的标准平衡常数为: b d c c d c K K c ?-?= ?=)(θ θ θ 三、 仪器和药品 150ml 分液漏斗3个,250ml 磨口锥形瓶3个,100ml 量筒1个,5ml 微量滴定管1支,20ml 移液管(有刻度)2个,5ml 移液管3支,25ml 移液管3支,CCl 4(分析纯),0.1mol/L 的KI 溶液,0.1mol/L 的Na 2S 2O 3溶液,I 2的CCl 4溶液(饱和),淀粉指示剂。 四、 实验步骤 (1) 先将三个洗净烘干的锥形瓶按实验表加入不同液体。 (2) 将上述装好溶液的锥形瓶塞号塞子,并剧烈摇动30min ,使碘在CCl 4 层和水层充分达到分配平衡。摇动时勿用手握瓶壁,以免温度发生变化,然后倒入分液漏斗静置。 (3) 待两层完全清晰后,用移液管吸取各样品的CCl 4层5ml 放入干净的锥 形瓶中,并用量筒加入KI 溶液10ml ,促使I 2被提取到水层中。摇动锥形瓶,然后用Na 2S 2O 3滴定。待淡至淡黄色时,加入淀粉指示剂继

土的渗透性和渗流问题

第四章 土的渗透性和渗流问题 第一节 概述 土是由固体相的颗粒、孔隙中的液体和气体三相组成的,而土中的孔隙具有连续的性质,当土作为水土建筑物的地基或直接把它用作水土建筑物的材料时,水就会在水头差作用下从水位较高的一侧透过土体的孔隙流向水位较低的一侧。 渗透:在水头差作用下,水透过土体孔隙的现象 渗透性:土允许水透过的性能称为土的渗透性。 水在土体中渗透,一方面会造成水量损失,影响工程效益;另一方面将引起土体内部应力状态的变化,从而改变水土建筑物或地基的稳定条件,甚者还会酿成破坏事故。 此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。 本章将主要讨论水在土体中的渗透性及渗透规律,以及渗透力渗透变形等问题。 第二节 土的渗透性 一、土的渗透规律——达西定律 (一)渗流中的总水头与水力坡降 液体流动的连续性原理:(方程式) dw v dw v w w ??=2 211 2211v w v w = 1 221w w v v = 表明:通过稳定总流任意过水断面的流量是相等的;或者说是稳定总流的过水断面的 平均流速与过水断面的面积成反比。 前提:流体是连续介质 流体是不可压缩的; 流体是稳定流,且流体不能通过流面流进或流出该元流。 理想重力的能量方程式(伯努利方程式1738年瑞士数学家应用动能定理推导出来的。) c g v r p Z =++22 饱和土体空隙中的渗透水流,也遵从伯努利方程,并用水头的概念来研究水体流动中 的位能和动能。 水头:实际上就是单位重量水体所具有的能量。 按照伯努利方程,液流中一点的总水头h ,可以用位置水头Z ,压力水头U/r w 和流速水

渗透试验报告

双环渗透 8.1试验的目的 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 8.2试验的适用范围 对砂土和粉土,可采用试坑法或单环法,对粘性土应采用试坑双环法 8.3试验的基本原理 水在土中的流动符合达西定律,水在土的孔隙中流动时,大多数情况下流速较小,可以认为属于层流(即水流流线相互平行的流动)。则渗透速度与水力坡降成正比。当水力坡降为1时的渗透速度称为土的渗透系数。对于饱和土的渗透现象常用达西定律来表示。即 v= k =或 kIF q I 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。在坑底嵌入两个高约50cm,直径分别为0.25m和0.50m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 8.4 试验仪器及制样工具 双环、铁锹、水平尺、量筒、笔直的树枝 双环:(外环:上底0.5m,下底0.5m,高0.25m;内环:上底0.25m,下底0.25m,高0.25m)。 8.5试验的操作步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验; (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,

摩擦系数等级

刹车片基本知识 一、摩擦系数等级: 1、摩擦系数: 表示刹车片摩擦效能的参数叫摩擦系数,摩擦系数大概意思就是这个片有多“粘”越粘的片阻力越大制动越灵敏,但舒适性和耐热性越差,轻踩就会点头狠踩很快就烧了。 高温刹车片是指在更高温度下能保持摩擦系数,并不一定高温刹车片摩擦系数就大。刹车片的等级用两个英文字母表示,第一个是在0~600(315.5摄氏度)华氏度间取4个点测量摩擦系数,如果都能在0.5~0.45之间,那么片的低温等级就是F。然后在600~1112(600度)华氏度间取10个点测摩擦系数,如果也能在0.35~0.45之间高温等级也是F,那么这个片就是FF级别的片。常说的陶瓷刹车片的摩擦系数级别就是这种FF级的。 常见的E表示摩擦系数是0.25~0.35,F上面说了,G表示在0.45~0.55之间。1112华氏度大概合600摄氏度。高温允许在更高温度下保持原来的摩擦系数,所以高温片并不一定就灵敏,只是很多高温片也通过增加摩擦系数来帮助达到更高温度。我们常说的普通半金属的刹车片就是这种EF级的。 卧车刹车片大部分都能做到FF,再高的摩擦系数片的金属含量会大,踩刹车会响,舒适度下降。轴重大的车会通过用大直径的刹车盘、用通风盘、用划线盘等方法来提高制动力和减缓热衰减。 EE级:0.25-0.35适用于欧美车系,刹车片比较大,摩擦系数比较低; FF级:0.35-0.45 国际标准摩擦系数 GG级:0.45-0.55适用于欧洲车型 HH级:0.55-0.65 赛车专用 制动的方式是靠摩擦把车辆行驶的动能转化成热能散掉,散热越快减速就越快。而热量的增加和散热之间也是平衡,如果热量增加太多超过制动部分能承受的极限让零件变化就会失去制动能力,这种情况主要表现在制动系统产生热衰减,热衰减主要是超过刹车片耐受温度使刹车片表面烧蚀造成。 2、热聚集和热衰减的解释: 热聚集:由于摩擦产生热量,当热量不能被100%散掉就会产生累积聚集,热聚集导致温度升高。 热衰减:热聚集到一定程度超过摩擦材料能耐受的极限材料就会烧掉,制动力大幅下降产生热衰减现象,就是踩刹车不管用了。 所以刹车片的耐受温度是很重要的参数,通常民用刹车片都限定在200℉~600℉之间,在此范围制造不同系数效能的刹车片。

土力学计算公式

一、 土的不均匀程度: C U = 10 60 d d 式中 d 60——小于某粒径颗粒含量占总土质量的60%时的粒径, 该粒径称为限定粒径 d 10——小于某粒径颗粒含量占总土质量的10%时的粒 径,该粒径称为有效粒径。 C U 小于5时表示颗粒级配不良,大于10时表示颗粒级配良好 二 1、土的密度ρ和土的重力密度γ ρ= v m (t/m 3或g/cm 3) γ=ρg(KN/m 3 ) 一般g=10m/s 2 ρ 表示土的天然密度称为土的湿密度 γ 表示天然重度。 天然状态下土的密度和重度的变化范围较大, 一般ρ=1.6——2.2(t/m 3),γ=16——22(KN/m 3 ) 2、土粒比重ds (相对密度) d s =w s s v m ρ ρw ——水的密度,可取1t/m 3 3 土的含水量 = ωs m m ω×100%

换算指标 4、土的孔隙比e e=s v v v 5、土的孔隙率n n=%100?v v v 6、土的饱和度Sr Sr=v w V V 7、土的干密度ρd ρd =v m s (t/m 3 ) γd =ρd g(KN/m 3 ) 8、土的饱和密度ρsat ρsat =v v m w v s ρ+ ( t/m 3 ) 饱和重度 9、土的有效密度ρ, 和有效重度γ, ρ, =v v m w v s ρ- ( t/m 3 ) =ρsat –ρw γ, = ρ, g=γsat -γw 土的三相比例指标换算公式

10、砂的相对密度Dr Dr=m in m ax m ax e e e e -- 11、塑性指数I P I P =ωL -ωP (不要百分号) 液性指数I L

吕荣值和渗透系数K之间关系

透水率q 和渗透系数K 之间不是简单的对应关系,各种条件下通过q 计算K 的公式也很多。SL 31-2003《水利水电工程钻孔压水试验规程》推荐:当试段位于地下水位以下,透水率在10 Lu 以下,P —Q 曲线为A 型(层流型)时,可用下式求算渗透系数 r HL Q k 1ln 2π= 式中:K —地层渗透系数,m/d; Q —压水流量,m 3/d ;H —试验压力,以水头表示,m; L —试验段长度,m ; r —钻孔半径,m 。 按照上式,如假定压水试验的压力为1 MPa (即100 m 水头),每米试段的压人流量为1 L/min (即1.44 m 3/d ),试段长度为5m 。即在透水率为1 Lu 的条件下,以孔径为56~150 mm 计算得的渗透系数为(1.37~1.11)×10-5 cm/s 。由此可见,作为近似关系,1 Lu 相当于渗透系数为10-5 cm/s 。 严格地讲,渗透系数K 与单位吸水量w 间并无固定关系。但有时为设计计算方便起见,通过实践大致有以下几种认识: (1)K =(1.5~2)×w (K 的单位为m/d,w 的单位为L/min.m.m ) 例如:某大坝基岩透水性,单位吸水量w 平均值为0.08L/min.m.m ,试求其相应的渗透系数K 。 若采用K=2w 时,则K =2×0.08=0.16(m/d )=1.85×10-4cm/s 。 采用K =1.5w 时,则K =1.5×0.08=0.12(m/d )=1.39×10-4cm/s 。 (2)国外资料认为 1Lu =1.3×10-5cm/s 。 (3)国外有些学者和单位给出了渗透系数K 与吕荣值的相关关系图,见下图。由图中可以看出:当K =10-7m/s (即10-5cm/s )时,吕荣值大约为1~3;当K =10-5m/s (即10-3cm/s )时,各曲线的吕荣值均大于30。

8弯矩分配法分配系数计算过程及结果8

弯矩分配法分配系数计算过程及结果: 6第层各节点的弯矩分配系数 I 节点 0.000 μ=上 4415.780.43644415.78420.42 i i i μ?= = =+?+?下下下 4420.420.56444420.42415.78 i i i μ?= = =+?+?IO 下 O 节点 0.000 μ=上 4415.78 0.313442415.78420.42228.58 i i i i μ?= = =++?+?+?下 下下 4420.42 0.404442415.78420.42228.58 i i i i μ?= ==++?+?+?左 左下 4428.58 0.283442415.78420.42228.58 i i i i μ?= ==++?+?+?右 右下 U 节点 0.000 μ=上 4415.780.35644415.78428.58 i i i μ?= = =+?+?下下下 4428.580.64444428.58415.78 i i i μ?= = =+?+?OU 下 第5、4层各节点的弯矩分配系数 H 、G 节点 4415.78 0.304 444415.784 15.78420.42 i i i i μ?= = =++?+?+? 上 上下上 4415.78 0.304444415.78415.78420.42 i i i i μ?== =++?+?+?下 下下上 4420.42 0.392444415.78415.78420.42 H N G M i i i i μ?= = =++?+?+?、下上 N 、M 节点

0.2384442415.78415.78420.42228.58 i i i i μ= = =+++?+?+?+?上 上下上 4415.78 0.2384442415.78415.78420.42228.58 i i i i i μ?= ==+++?+?+?+?下 下下上 4420.42 0.3084442415.78415.78420.42228.58 i i i i i μ?= = =+++?+?+?+?NH 、MG 下上 4228.58 0.216 4442415.784 15.78420.42 228.58 i i i i i μ?= = =+++?+?+? +?NT 、MS 下 上 T 、S 节点 4415.78 0.262 444415.784 15.78428.58 i i i i μ?= = =++?+?+? 上 上下上 4415.78 0.262444415.78415.78428.58 i i i i μ?= = =++?+?+?下 下下上 4428.58 0.47644415.78415.78428.58 i i i μ?= = =+?+?+?TN 、SM 下 第3层各节点的弯矩分配系数 F 节点 4415.78 0.266 444415.784 23.11420.42 i i i i μ?= = =++?+?+? 上 上下 上 4423.11 0.390444415.78423.11420.42 i i i i μ?= ==++?+?+?下 下下上 4420.42 0.344444423.11415.78420.42 i i i i μ?= = =++?+?+?FL 下上 L 节点 4415.78 0.2154442415.78423.11420.42228.58 i i i i i μ?= = =+++?+?+?+?上 上下上 4423.11 0.3144442415.78423.11420.42228.58 i i i i i μ?= ==+++?+?+?+?下 下下上 4420.42 0.2774442415.78423.11420.42228.58 i i i i i μ?= = =+++?+?+?+?LF 下上

相关主题
文本预览
相关文档 最新文档