当前位置:文档之家› 多元函数微积分练习题

多元函数微积分练习题

多元函数微积分练习题
多元函数微积分练习题

练习题

一 多元函数微分学部分练习题

1 求函数y

x y

x z -+

+=

11的定义域.

2已知xy y x xy y x f 5),(2

2

-+=-,求),(y x f . 3计算下列极限 (1)

22)

0,1(),()

ln(lim

y x e x y y x ++→ (2) 442

2),(),(lim y x y x y x ++∞∞→

(3)

2

43lim

)

0,0(),(-+→xy xy y x (4)

x

y x xy 1)

1,0(),()1(lim +→

(5)2222)1,2(),(2lim y x y x xy y x ++→ (6)2222)0,0(),()

(2sin lim y

x y x y x ++→ 4 证明极限

y x y

x y x +-→)0,0(),(lim

不存在.

5 指出函数2

2),(y x y

x y x f -+=

的间断点.

6计算下列函数的偏导数 (1))ln(2y x z =

(2)x xy z )1(-=

(3)),(2

y x f x z = (4))

(xy x

z ?=

(5)y xy y x z 234

4+-+= (6))ln(22y x z +=

(7))3cos(22y x e z y

x += (8)y xy z )1(+=

(9)2

2

2

1z

y x u ++=

(10)?

=

220

sin y x dt t z

7 计算下列函数的二阶偏导数

(1)2

4

3y xy x z -+= (2))ln(xy y z = (3)y e

z xy sin = (4)),(2y x f x z =

(5)2

(,)z f xy x =

8求下列函数的全微分

(1)xy

xe z = (2)2

21

y x z +=

(3)xy z arcsin = (4)),(y x yf xy z += 9 设?

=

xy

dt t y x f 1

2sin ),(,求df .

10 (1)2

2

uv v u z -=,其中y x u cos =,x y v sin =,求

x z ??,y

z ?? (2))arctan(),,(z y x z y x f u ++==,其中)cos(xy z =,求

x z ??,y

z ?? (3)v

u e

z -=, t u sin =,2

t v =,

dz dt

(4)),(2

2

y x y

x f z -=,求

x z ??,y

z ?? (5)设),()2(xy x g y x f z +-=,求

x z ??,y

z ??; 11 (1)设0)ln(22

=+-+y x xy x ,求dx

dy . (2)设xyz e z

=,求

y

z x z ????,. (3)已知??

?=++=++1

02

2z y x z y x ,求dz dx ,dz dy

. 12 求曲线????

?

????

=+=+=2

11t z t t y t t x 在点1=t 的切线及法平面方程.

13求曲线???=++=++0

6

222z y x z y x 在点)1,2,1(0-M 处的切线与法平面方程.

14求曲面3=+-xy z e z

在点)0,1,2(M 处的切平面和法线方程. 15求函数2

2

)1(-+=y x z 的极值.

16求函数32

z xy u =在条件a z y x =++)0,,,(>a z y x 下的极值.

17求函数32z xy u =在曲面032

22=-++xyz z y x 上点)1,1,1(P 处,沿曲面在该点朝上的法线方向的方向导数.

18 设2

2

2

(,,)3f x y z x y z xy x y z =+++-++,求(1,2,3)gradf .

二 多元函数积分学部分练习题

1、改变下列二次积分的积分次序 (1)??

11

2),(x

dy y x f dx (2)?

?--y

y dx y x f dy 2

1110

),(

(3)

????

+2

2

42

2

20

),(),(y y y dx y x f dy dx y x f dy

2、计算下列二重积分 (1)??D xyd σ,其中区域D 是曲线x

y 1

=

,2=x 及x y =所围成的区域. (2)??

+D

d y x σ)(,其中区域D 是曲线x y 42=及x y =所围成的区域. (3)

??+D

d y x σ)(,其中区域D :1≤+y x .

(4)??+D d y x σ)cos(,其中区域D 是曲线x y =,0=y 及2

π

=

x 所围成的区域.

(5)??--D

y x

d e σ2

2

,其中积分区域D 为中心在原点,半径为a 的圆周所围成的闭区域.

(6)

??

+D

d y x σ22,其中积分区域为D :122≥+y x ,x y x 222≤+,0≥y .

3、设函数),(y x f 连续,且??

+=D

dxdy y x f xy y x f ),(),(,其中D 是由0=y ,2

x y =和1=x 所围成的区域.

4、设函数)(u f 具有连续导数,且0)0(=f ,3)0(='f ,求3

220

2

22)(

lim

t

d y x f t y x t πσ

??≤+→+.

5 计算下列三重积分 (1)???Ω

++dxdydz z y x )sin(,其中Ω是由三个坐标面与平面2

π

=

++z y x 所围成的立

体;

(2)计算???

Ω

zdxdydz ,其中Ω是由曲面2

22y x z --= 以及22y x z +=所围成的空间形体.

(3)计算积分

???Ω

xyzdxdydz ,其中Ω是球面4222

≤++z y x

在第一卦限的部分.

6 试计算立体Ω由曲面2

2

8y x z --=及2

2

y x z +=所围成的体积. 7计算

???Ω

dxdydz e z ,其中Ω是球面12

22≤++z y x . 8 计算下列曲线积分 (1)L

xydS ?

,其中L 为圆222a y x =+在第一象限内的部分;

(2)222()x y z dS Γ

++?

,其中Γ是球面9222=++z y x 与平面0=++z y x 的交线.

(3)

?

+-+L

dy y x dx y )2()1(3,其中L 是曲线23x y =上从点)0,0(O 到点)1,1(A 的一段

弧; (4)计算?

+L

xdy ydx ,其中L 为圆周θcos r x =,θsin r y =上由0=θ到πθ2=的一

段弧.

(5)在过点)0,0(O 和)0,(πA 的曲线族)0(sin >=a x a y 中求一条直线L ,使沿该曲线到点O 到点A 的积分

?

+++L

dy y x dx y )2()1(3的值最小.

(6)计算??∑

dS z 1,其中∑为球面4222=++z y x 被平面1=z 截出的上半部分. (7)计算??

++dS z y x )(2

22,其中∑为锥面222y x z +=介于平面0=z 与1=z 之间的部分. (8)计算??

+dxdy y x e z 2

2,其中∑是锥面22y x z +=夹在平面1=z 和2=z 之间部

分的外侧.

(9)计算??∑

++=

dxdy z dzdx y dydz x I 3

33,其中∑为以点)0,0,1(A ,)0,1,0(B ,)1,0,0(C 为顶点的三角形的上侧.

9求曲线Γ:

a x =,at y =,2

2

1at z =(10≤≤t ,0>a )的质量,设其线密度为a

z 2=ρ. 10 (1) 设L 为取正向的圆周92

2

=+y x ,计算曲线积分?

-+-L

dy

x x dx y xy )4()22(2的值.

(2)利用Stokes 公式计算曲线积分?

++=

L

xdz zdy ydx I ,其中L 是球面

2222a z y x =++与平面0=++z y x 的交线,由z 轴的正向看去,圆周沿逆时针方向.

(3)计算对坐标的曲线积分?+

+L dy x dx x xy 2

)(2

,其中L 为222R y x =+的第一象限由),0(R 到)0,(R 的一段弧.

(4)已知1)(=π?,试确定)(x ?,使曲线积分

?+-B

A

dy x dx x

y

x x )()]([sin ?? 与路径无关,并求当A ,B 分别为)0,1(,),(ππ时线积分的值 (5)计算??

++=

yzdxdy xydzdx xzdydz I ,其中∑是圆柱面2

22R y x =+与平面0=x ,0=y ,0=z 及h z =)0(>h 所围成的在第一卦限中的立体的表面外侧. 11(1)设k z j y i x r ++=,计算r rot

.

(2)设()A xyz xi yj zk =++,计算divA

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

微积分第一章

高等数学教案 、

第一章 函数、极限与与连续 本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。具体的要求如下: 1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中 逐步加深理解,对于给出ε求N 或δ不作过高要求)。 2. 掌握极限四则运算法则。 3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。 4. 了解无穷小、无穷大及无穷小的阶的概念。能够正确运用等价无穷小求极限。 5. 理解函数在一点连续的概念,理解区间内(上)连续函数的概念。 6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。 7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。 第一章共12学时,课时安排如下 绪论 §1.1、函数 §1.2初等函数 2课时 §1.4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1.4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时 绪论 数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科。数学具有高度的抽象性、严密的逻辑性和应用的广泛性。 关于数学应用和关于微积分的评价: 恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里。 华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。 张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。航天飞机,宇宙飞船等现代化交通工具都是微积分的直接后果。数学一下子到了前台。数学在人类社会的第二次浪潮中的作用比第一次浪潮要明显多了(《数学通报》数学与文化2001.1.封二) 初等数学与高等数学的根本区别:用初等数学解决实际问题常常只能在有限的范围内孤立的静止的观念来研究,有很多问题不能得到最终答案,甚至无法解决。高等数学用运动的辨正观点研究变量及其依赖关系,极限的方法是研究变量的一种基本方法,贯穿高等数学的始终。用高等数学解决实际问题,计算往往比较简单,且能获得最终的结果。

(完整版)第7章多元函数微积分测试题讲义

第7章 多元函数微积分 测试题 一、单项选择题。 1.设23)12(++=y x z ,则 =??y z ( D )。 A .13)12)(23(+++y x y B .13)12)(23(2+++y x y C .)12ln()12(23+++x x y D .)12ln()12(323+++x x y 2.设)ln(y x z +=,则=) 0,1(d z ( B ) 。 A .y x d d +- B .y x d d + C .y x d d - D .y x d d -- 3.下列说法正确的是( A )。 A .可微函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; B .函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; C .若),(00y x f x 0),(00==y x f y ,则函数),(y x f 在点),(00y x 处达到极值。 D .若),(00y x f x 或),(00y x f y 有一个不存在,则函数),(y x f 在点),(00y x 处一定没有极值。 4.设uv z =,v u x +=,v u y -=,若把z 看作y x ,的函数,则 =??x z ( A ) 。 A .x 21 B .)(21 y x - C .x 2 D .x 5.下列各点中( B )不是函数x y x y x z 9332233-++-=的驻点。 A .)0,1( B .)1,0( C .)2,1( D .)0,3(- 6.二元函数?????=≠+=)0,0(),( 0)0,0(),( ),(2 2y x y x y x xy y x f 在点)0,0(处( C )。 A .连续,偏导数存在 B .连续,偏导数不存在 C .不连续,偏导数存在 D .不连续,偏导数不存在 7.函数xy y x z ++=22的极值点为( A )。 A .)0,0( B .)1,0( C .)0,1( D .不存在

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)

第六章多元函数微分学 [单选题] 1、 设积分域在 D由直线x+y二0所围成,则 | dxdy 如图: [单选题] 2、 A 9 B、4 C 3

【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】 [单选题] 3、 设H 二才,则y=() A V 皿2-1) B 、xQnx-1) D 【从题库收藏夹删除】 【正确答案】C 【您的答案】您未答题 【答案解析】 首先设出-,J ' 二一;,然后求出 最后结果中把二】用’’次方代换一下就可以得到结果. [单选题] 4、 Ft F'y,尸空二 dx F f y

[% I 设Z = 则去九£ |() km ,(心+& J D )L 『(也几) AK^*° A'X ?■ 【从题库收藏夹删除】 【正确答案】D 【您的答案】您未答题 【答案解析】本题直接根据偏导数定义得到 [单选题] 5、 设z=ln (x+弄),示=() A 1 B 、 X+旷" C 1-2妒 盂+沙 D X + 帘 一" 【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】 B 、 lim U m /侃+山+ 3) — / (险用) Ay 了0+山』0)—/(兀 几) Ar lim /(x+Ax.y)-/^) 4y

|"S 1 I 对x求导,将y看做常数,小门?八 [单选题] 6、 设U 了:,;_丁;:£=() 【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】<■■-?■■■■■:川[单选题] 7、 设f(x r x+y) = ^ + x2t则£0,卩)+ £(尽刃二() A丨; B、… C : D ', 【从题库收藏夹删除】 【正确答案】B 【您的答案】您未答题 【答案解析】 f(x,兀+y)=砂+ F二疏》+兀) /fcy) = ^y X '(^y)=y 二兀 £(2)+另(“)=曲 [单选题] 8

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

一元函数微积分重点

微积分的基本内容可以分为三大块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数和常微分方程与差分方程。一元函数微积分学的知识点是考研数学三微积分部分出题的重点,应引起重视。多元函数微积分学的出题焦点是二元函数的微分及二重积分的计算。无穷级数和常微分方程与差分方程考查主要集中在数项级数的求和、幂级数的和函数、收敛区间及收敛域、解简单的常微分方程等。 一、熟记基本内容 事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。对基本内容的复习不能只注重速度而忽视质量。在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。 二、紧抓内容重点 在看教材及辅导资料时要依三大块分清重点、次重点、非重点。阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。这个部分也是每年必定会出题考查的,必须引起注意。多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。 三、检测学习效果 大量做题是学习数学区别与其他文科类科目的最大区别。在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。并不是对两个院系的同学有什么诟病,这种状况只是所学专业特点使然。在备考研究生考试数学的时候,如果充分了解其特点,就能对症下药。微积分的选择及填空题考查的是基本知识的掌握程度及技巧的灵活运用,可做做《考研数学客观题1500题》,必定能达到所希望的结果。微积分的解答题注重计算及综合应用能力,平时多做这方面的题目既可以练习做题速度及提高质量,也能检测复习效果。 高考数学中关于一元函数微积分学所考查的知识点高考数学中关于一元函数微积分学所考查的知识点:

多元函数微积分复习题

多元函数微积分复习题 一、单项选择题 1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ). (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( ). C A. 若0 lim x x y y A →→=, 则必有0lim (,)x x f x y A →=且有0 lim (,)y y f x y A →=; B. 若在00(,)x y 处 z x ??和z y ??都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处 z x ??和z y ??存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ??和22z y ??都存在, 则. 22z x ??=22 z y ??. 5.二元函数(,)z f x y =在点00(,)x y 处满足关系( ). C A. 可微(指全微分存在)?可导(指偏导数存在)?连续; B. 可微?可导?连续; C. 可微?可导, 或可微?连续, 但可导不一定连续; D. 可导?连续, 但可导不一定可微. 6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 2

一元函数微积分学内容提要

第四部分 一元函数微积分 第11章 函数极限与连续[内容提要] 一、函数:(138-141页) 1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。 2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反 三角函数的统称);复合函数([()]y f x ?=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。 3、函数的特性:奇偶性;单调性;周期性;有界性. 二、极限: 1、极限的概念:(141-142页) 定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向 于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞ →lim ,若{}n x 没有极限,则称数列{} n x 发散。 定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,) U x δo 内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于 A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0 。 左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作0 0(0)lim ()x x f x f x A -→-==。 右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作0 0(0)lim ()x x f x f x A +→+==。 定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义, 若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小,

《微积分(下)》第7章 多元函数微积分学--练习题

第七章 多元函数微积分学 第一部分:多元函数微分学 一、二元函数的极限专题练习: 1.求下列二元函数的极限: (1) ()2 1 1(,)2,2lim 2;y xy x y xy +? ? →- ? ? ?+ (2) () ()2222 (,),3 lim sin ;x y x y x y →∞∞++ (3) ()(,)0,1sin lim ;x y xy x → (4) ( (,)0,0lim x y → 2.证明:当()(,)0,0x y →时,() 44 3 4 4(,)x y f x y x y =+的极限不存在。 二、填空题 3. 若22),(y x y y x f -=+,则=),(y x f ; 4. 函数22(,)ln(1)f x y x y =+-的定义域是D = ; 5. 已知2 (,)x y f x y e = ,则 '(,)x f x y = ; 6. 当23(,)5f x y x y =,则 '(0,1)x f = ; 7. 若2yx e z xy +=,则=??y z ; 8. 设)2ln(),(x y x y x f + =,则'(1,0)y f =; 9. 二元函数xy xe z =的全微分=dz ;

10.arctan()Z xy =设,则dz= . 三、选择题 11.设函数 ln()Z xy =,则 Z x ?=? ( ) A 1y B x y C 1x D y x 12.设2sin(),Z xy = 则 Z x ?=? ( ) A 2cos()xy xy B 2cos()xy xy - C 22cos()y xy - D 22cos()y xy 13.设 3xy Z =,则 Z x ?=? ( ) A 3xy y B 3ln 3xy C 13xy xy - D 3ln 3xy y

第六章多元函数微分法及其应用试题答案

第六章 多元函数微分学 答案及评分标准 一、1、B 解:原式6)11(3lim )11(3lim 0 000=++=++=→→→→xy xy xy xy y x y x . 2、A 解:2R D =,当022≠+y x 时,),(y x f 连续;当022=+y x 时 22222221)(210),(y x y x y x y x f +=++≤-.即)0,0(0),(lim 0 0f y x f y x ==→→. 3、B 4、D 解:)0,0()0(111222?>≥?≥++≥z z y x z 是最小值点,由于)0,0(为定义域内点,所以)0,0(也是极小值点. 5.C 解:由方向导数的定义可得. 二、1、 2ln 2、xy xyz xyz yz -- 3、21f z f '+',2212 2f xz f x f ''+''+' 解:21211f z f z f f x u '+'=?'+?'=??, 故22122222122f xz f x f x f z f x f z x u ''+''+'=?''+'+?''=???. 4、{2x -4,4y -6,6z -8} 解:grad f ={2x -4,4y -6,6z -8};grad f |(2,1,2)={0,-2,4}, |grad f |(2,1,2)=,即f 在点(2,1,2)处方向导数 的最大值为. 5、 dy dx +2ln 2 三、解:1cos sin ?+?=????+????=??v e y v e x v v z x u u z x z u u )]cos()[sin(y x y y x e xy ++?+= ……………5分 1cos sin ?+?=????+????=??v e x v e y v v z y u u z y z u u )]cos()[sin(y x x y x e xy ++?+= ……………10分 四、解:xy x z 2=?? y x y z cos 2+=?? (4分) x y x z 22=??? (7分) y y z sin 22-=?? (10分)

(完整版)高等数学第一章函数与极限试题2

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1 )(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1-,x ≠0,1,则f [)(1 x f ]= ( D ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( C ) A ) lim 0 + →x )x 1 +1(x =1 B ) lim 0 + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e

5.已知9)( lim =-+∞→x x a x a x ,则=a ( C )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1(lim ( C ) A.1; B.∞; C.2-e ; D.2e 7.极限:∞ →x lim 332x x +=( A ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0 -+→ =( C ) A.0; B.∞; C 2 1; D.2. 9. 极限:)(lim 2x x x x -+∞ +→=( D ) A.0; B.∞; C.2; D. 2 1 . 10.极限: x x x x 2sin sin tan lim 30-→=( C ) A.0; B.∞; C. 16 1; D.16. 二. 填空题 11.极限1 2sin lim 2+∞ →x x x x = 2 . 12. lim 0 →x x arctanx =_______________. 13. 若)(x f y =在 点 x 连续,则 f )]()([lim 0→-0 x f x f x x =______f ’(xo)_________; 14. =→x x x x 5sin lim 0_________0.2__; 15. =-∞→n n n )2 1(lim _______e*e__________; 16. 若函数2 31 22+--=x x x y ,则它的间断点是___________2___1_____

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

一元函数微分

第二部分 一元函数微分 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2. 已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2 -∈?≤x x x f ,则0=x 必是 )(x f 的( ) (A )间断点。 (B )连续而不可导的点。

(C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x (B )0≠x (C )0>x (D )0≤x 答C

第六章多元函数微积分复习概要

第六章多元函数微积分复习要点 一、基本概念及相关定理 1.多元函数的极限定义:函数(,)z f x y =在区域D 内有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数 A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于 000(,)P x y 时的极限.记作0 lim (,)x x y y f x y A →→=,或00(,)(,) lim (,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或 lim (,)f x y A ρ→=,或 (,)f x y A →,0ρ→.其中 , ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义,如果对任意 0(,)()P x y U P ∈,都有 0000(,)(,) lim (,)(,)x y x y f x y f x y →=(或 0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,) P x y 处连续. 3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义. (1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导 数定义为00000 (,)(,)lim x f x x y f x y x ? →+?-?,记作 00 x x y y z x ==??,或 00 x x y y f x ==??, 或00(,)x z x y ',或00(,)x f x y ',即 x x y y z x ==??=00000 (,)(,) lim x f x x y f x y x ? →+?-?. (2)函数(,)z f x y =在点000(,)P x y 处对 y 的偏导

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

自考高等数学第六章多元函数微积分试题

第六章 多元函数微积分 一、单项选择题 二、填空题 1.设z=22y x +,则)2,1(dz =___________. 2.设z =x y cos ,则全微分d z =___________. 3.设z=x e xy ,则y x z ???2=______________________. 4.设z =(2x +y )2y ,则x z ??=________. 5.设z=y x 322e -,则y x z ???2=_______________. 6.设函数v u w w v u w v u f ++-=)(),,(,则=-+),,(xy y x y x f . 7.设函数z =22y x +,则偏导数 =??x z _________. 三、计算题 1.设z=arctan x y ,求y x z 2???. 2.设隐函数z (x,y )由方程x+2y+z=2xyz 所确定,求 x z ??. 3.计算二重积分I=??+D 22dxdy )y x (x ,其中D 是由直线x=0, y=0及x+y=3所围成的闭区域. 4.设z =z (x ,y )是由方程e xyz +z -sin(xy )=1所确定的隐函数,求 x z ??,y z ??. 5.计算二重积分I = ??D y x xy x d d )cos(2,其中D 是由直线x =1,y =x 及x 轴所围成的平面区域. 6.计算二重积分??D y x y x d d 2,其中D 是由直线y =x ,x =1以及x 轴所围的区域. 7.计算二重积分??=D y x x I d d ,其中区域D 由曲线x y = ,直线x =2以及x 轴围成. 8.方程xyz -ln(xyz )=1确定了隐函数z =z (x,y ),求y z x z ????,.

相关主题
文本预览
相关文档 最新文档