当前位置:文档之家› PZT压电陶瓷元件制备工艺中的几个问题

PZT压电陶瓷元件制备工艺中的几个问题

PZT压电陶瓷元件制备工艺中的几个问题
PZT压电陶瓷元件制备工艺中的几个问题

摘要:介绍了pzt压电陶瓷元件制备工艺,采用喷雾塔造粒,干压成型,烧结后作机械加工,丝网印银,烧渗银,最后极化;本文对以上系列工艺作了分析和讨论,通过实验得出最佳工艺参数,制备出的压电陶瓷元件致密度高,压电性能优良,得到了客户认可。

关键词:pzt压电陶瓷元件、干压成型、喷雾造粒、丝网印银

1、引言

pzt压电陶瓷由于具有居里温度[1]高、压电性强、易掺杂改性[2]、稳定性好等特点,自20世纪60年代以来,一直是人们关注和研究的热点,在压电陶瓷领域中占主导地位。目前,市场上需求的pzt压电陶瓷元件的型号规格越来越多样化,片状、管状、柱状、条状及梯形状等,大型元件长度或直径可至200mm以上,而小型元件厚度只有0.2mm,甚至0.1mm,对于超长超大或超小超薄等特殊规格的元件来说,必须有更加先进的制备工艺技术。

pzt压电陶瓷元件常用的坯件制备方式,如轧膜成型,操作简单且效率高,但也存在许多不足,密度低,均匀性差,压电性能低;如等静压成型,压制的样品均匀致密且压电性能好,但制作成本太高。而干压成型,不仅制作成本相对低廉,而且各方面性能相对较优,一般软性材料,密度可达7.6×10-3kg/m3以上,平面机电耦合系数kp可达0.65左右。采用干压成型制备pzt压电陶瓷坯件,后续的烧结和机械加工,以及上电极和极化工艺也是值得注意的环节,本文针对以上几个关键问题作了分析讨论,同时对pzt压电陶瓷元件制备工艺的改进方向提出了建议。

2、坯件制备

采用干压成型的方式制备坯件,干压成型前应先将粉料造粒,即在粉料中加入占料中约5%的黏合剂,搅拌均匀并过粗筛(如40目筛),再以1t/cm2的压强进行预压块,最后将预压块研碎并过细筛(如30目筛)。造粒的目的不仅使黏合剂更加均匀的分布在粉料中,而且由于颗粒本身已经压紧,压料中空气较少,并较易排出,因此利于成型,使成型样品的密度更加均匀。如果采用喷雾干燥塔来造粒,与人工造粒相比,当然会得到更细更均匀的造粒料。值得注意的是,喷雾造粒的过程中,所加黏合剂的比例、粉料的细度都是需要控制的环节。通过实验,6%~8%的黏合剂含量最佳,粉料的细度一般以可通过20目筛为好。通过喷雾干燥塔造粒出的粉料因未经预压块呈现出更加松散的状态,干压成型时需要更高的压强,但因采用高温喷雾的方法,黏合剂的分布比人工造粒料更加均匀,所以成型样品的密度更高更均匀。

造粒后,利用油压机和模具成型,即制备坯件。成型压强对烧结后产品密度有很大关系,产品的密度也直接影响着pzt压电陶瓷元件的压电性能。成型压强太小,密度小,压强太大时,容易出现裂缝和分层。实验表明,采用手工造粒料成型,一般成型压强为1.0~1.5 t/cm2,采用喷雾造粒料成型,一般成型压强为1.5~2.0 t/cm2。

3、瓷件烧结和机械加工

干压成型后的坯件,需要通过高温烧结[3]才能成瓷。烧结是颗粒重排靠近,使材料致密化以及晶粒生长的过程,过高的烧结温度使陶瓷晶粒生长过大或组织机构不均匀,而烧结温度过低则会导致晶粒发育不完全,这些都会导致pzt压电陶瓷元件的压电性能受到影响。在工艺上,我们通常采用计算收缩率的方式来判断烧结情况。实验表明,采用手工造粒料成型的坯件,烧结后收缩率一般为12%~13%,采用喷雾造粒料成型的坯件,烧结后收缩率一般为13%~14%。一般来说,烧结温度适当的瓷件,收缩率正常,瓷件间不粘结或只有轻微粘结,瓷件折断后,可看到断面各处均匀致密,平坦而有光泽;而烧结温度过低的瓷件,收缩率小,无粘结,密度低,颜色浅,易折断,断面粗糙;烧结温度过高的瓷件,收缩率大,出现变形和粘结现象,颜色深,易折断,断面粗糙或很亮。

在工艺上,机械加工也是必不可少的一个环节,烧结后瓷件外表面粗糙,有些出现略微失铅的现象,所以通过机械加工,磨削掉表面一层,既提高粗糙度,又使瓷件密度更加均匀,

通过机械加工还可以使所需瓷件外形尺寸更加精确,满足各种精度要求,通过机械加工还可以得到特殊形状(如梯形)的压电陶瓷瓷件。

4、上电极

pzt压电陶瓷元件两极间需要有金属电极才能导电,发挥压电性。传统的上电极方法有很多种,如烧渗银层、真空蒸镀、化学沉银和化学沉铜等,本文主要介绍烧渗银层。工艺上,最关键的是表面涂覆银浆的方式和烧渗银曲线。根据元件形状和电极花样,可选择不同银浆涂覆方式,一般圆片或圆环状元件可采用手工涂银的方式,条状或矩形状元件可采用喷枪喷银的方式,而这两种方式不仅银层不均匀且效率低,最佳方式为丝网印银。制作合适的夹具,将pzt压电陶瓷元件放置其中,上面放一层丝网,通过刮板将丝网上的银浆刷在pzt压电陶瓷元件表面,丝网印银的优点,银层均匀且效率高,还可印刷任何所需要的银层花样,尤其适用与薄型元件。

烧渗银曲线也是值得注意的一个环节,烧银的目的是使银浆中的氧化银还原成银,并使银在较高温度时渗入瓷件表面,形成紧密的结合。烧银时升温速度应控制好,最高温度要适当,实验表明,在400℃以前,速度一定要慢,一般不要超过100℃/h,最高温度一般为750℃~800℃。为了证明银层与瓷件结合的牢固程度,可以通过银层拉力实验来检测银层的抗拉强度,一般银层的抗拉强度可达30kg/cm2以上,抗拉强度高的甚至可达100kg/cm2以上。

5、极化

pzt压电陶瓷元件上电极后,需要经过极化才能显示压电效应。要使压电陶瓷得到完善的极化,充分发挥其压电性能就必须合理的选择极化条件,即极化电场、极化温度和极化时间。只有在极化电场作用下,电畴才能沿电场方向取向排列,极化电场越高,促使电畴取向排列的作用越大,极化就越完善。一般以kp达到最大值的电场为极化电场。在极化电场和极化时间一定的条件下,极化温度越高时,电畴取向排列较易,极化效果较好。同样,极化时间越长,电畴取向排列的程度高。在工艺上,针对不同的材料,我们往往需要选择一个最佳的极化条件。长期实验证明,一般硬性材料,电场在3~4kv/mm,温度90℃~120℃,时间15min以上;而软性材料,电场在2~3kv/mm,温度120℃~150℃,时间15min以上,若保持电压降温至60℃以下,效果更好。

6、结束语

pzt压电陶瓷的研究已半个多世纪,目前是国内外最重要的机敏材料之一,已经被广泛应用于电子、雷达、微位移控制、航天技术及计算机技术等领域,因此pzt压电陶瓷元件的制备也是至关重要。本文采用喷雾塔造粒,干压成型,烧结后作机械加工,丝网印银,烧渗银,最后极化,并对以上系列工艺作了分析和讨论,通过实验得出最佳工艺参数,制备出的压电陶瓷元件致密度高,压电性能优良,得到了客户认可。当然,目前工艺也存在很多缺陷,如制备出的pzt压电陶瓷元件压电性能批次间存在波动性、特殊形状或超大超小型的pzt压电陶瓷元件的成品率不是很高等,这些都需要我们进一步改进和完善工艺。

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

(工艺技术)压电陶瓷的压电原理与制作工艺

压电陶瓷的压电原理与制作工艺 1.压电陶瓷的用途 随着高新技术的不断发展,对材料提出了一系列新的要求。而压电陶瓷作为一种新型的功能材料占有重要的地位,其应用也日益广泛。压电陶瓷的主要应用领域举例如表1所示。

2.压电陶瓷的压电原理 2.1 压电现象与压电效应 在压电陶瓷打火瓷柱垂直于电极面上施加压力,它会产生形变,同时还会产生高压放电。在压电蜂鸣器电极上施加声频交变电压信号,它会产生形变,同时还会发出声响。归纳这些类似现象,可得到正、逆压电效应的概念,即:压电陶瓷因受力形变而产生电的效应,称为正压电效应。压电陶瓷因加电压而产生形变的效应,称为逆压电效应。2.2 压电陶瓷的内部结构 材料学知识告诉我们,任何材料的性质是由其内部结构决定的,因而要了解压电陶瓷的压电原理,明白压电效应产生的原因,首先必须知道压电陶瓷的内部结构。 2.2.1 压电陶瓷是多晶体 用现代仪器分析表征压电陶瓷结构,可以得到以下几点认识: (1)压电陶瓷由一颗颗小晶粒无规则“镶嵌”而成,如图1所示。 图1 BSPT压电陶瓷样品断面SEM照片 (2)每个小晶粒微观上是由原子或离子有规则排列成晶格,可看为一粒小单晶,如图2所示。 图2 原子在空间规则排列而成晶格示意图 (3)每个小晶粒内还具有铁电畴组织,如图3所示。

图3 PZT陶瓷中电畴结构的电子显微镜照片 (4)整体看来,晶粒与晶粒的晶格方向不一定相同,排列是混乱而无规则的,如图4所示。这样的结构,我们称其为多晶体。 图4 压电陶瓷晶粒的晶格取向示意图 2.2.2 压电陶瓷的晶胞结构与自发极化 (1)晶胞结构 目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、K x Na1-x NbO3、Pb(Zr x Ti1-x)O3等。 该类材料的化学通式为ABO3。式中A的电价数为1或2,B的电价为4或5价。其晶胞(晶格中的结构单元)结构如图5所示。 图5 钙钛矿型的晶胞结构

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。 关键词:压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电陶瓷材料的制作方法

一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅2030份、二氧化锆25份、碳酸钡25份、氧化铜15份、二氧化钛13份、镍13份。本技术的成分配比合理,易加工,减少了能源消耗,提高产品质量,增强压电陶瓷性能。 权利要求书 1.一种压电陶瓷材料,其特征在于:其组分及各组分的质量份数为:四氧化三铅20-30份、二氧化锆2-5份、碳酸钡2-5份、氧化铜1-5份、二氧化钛1-3份、镍1-3份。 技术说明书 一种压电陶瓷材料 技术领域 本技术属于陶瓷材料领域,特别是涉及一种压电陶瓷材料。 背景技术 压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物。

技术内容 本技术的目的在于提出一种压电陶瓷材料,本技术的制作工艺在坯料成型过程中避免了添加聚乙烯醇,废除了排胶过程,缩短了加工时间,减少了能源消耗,排除在锻烧结晶时的杂质渗入,提高产品质量,增强压电陶瓷性能。 本技术的目的及解决其技术问题是采用以下技术方案来实现。依据本技术提出的一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅20-30份、二氧化锆2-5份、碳酸钡2-5份、氧化铜1-5份、二氧化钛1-3份、镍1-3份。 本技术的成分配比合理,易加工,减少了能源消耗,提高产品质量,增强压电陶瓷性能。 上述说明仅是本技术技术方案的概述,为了能够更清楚了解本技术的技术手段,而可依照说明书的内容予以实施,并且为了让本技术的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例详细说明。 具体实施方式 实施例一: 一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅20份、二氧化锆2份、碳酸钡2份、氧化铜1份、二氧化钛1份、镍1份。 实施例二: 一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅30份、二氧化锆5份、碳酸钡5份、氧化铜5份、二氧化钛3份、镍3份。 实施例三: 一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅25份、二氧化锆3份、碳酸

电子工程师必备知识

电子工程师的设计经验笔记(经典) 关键字:电子工程师设计经验 电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 更多阅读:电容性负载的稳定性—具有双通道反馈的RISO(1) 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电陶瓷片制作工艺

工作原理 当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。 实际应用 压电陶瓷片,俗称蜂鸣片。 压电陶瓷片是一种电子发音元件,在两片铜制圆形电极中间放入压电陶瓷介质材料,当在两片电极上面接通交流音频信号时,压电片会根据信号的大小频率发生震动而产生相应的声音来。压电陶瓷片由于结构简单造价低廉,被广泛的应用于电子电器方面如:玩具,发音电子表,电子仪器,电子钟表,定时器等方面。 超声波电机就是利用相关的性质制成的。 工艺 工艺流程图如下:配料--混合磨细--预烧--二次磨细--造粒--成型--排塑--烧结成瓷--外形加工--被电极--高压极化--老化测试。 一、配料:进行料前处理,除杂去潮,然后按配方比例称量各种原材料,注意少量的添加剂要放在大料的中间。 二、混合磨细:目的是将各种原料混匀磨细,为预烧进行完全的固相反应准备条件.一般采取干磨或湿磨的方法。小批量可采取干磨,大批量可采取搅拌球磨或气流粉碎的方法,效率较高。 三、预烧:目的是在高温下,各原料进行固相反应,合成压电陶瓷.此道工序很重要。会直接影响烧结条件及最终产品的性能。 四、二次细磨:目的是将预烧过的压电陶瓷粉末再细振混匀磨细,为成瓷均匀性能一致打好基础。 五、造粒:目的是使粉料形成高密度的流动性好的颗粒。方法可以手工进行但效率较低,目前高效的方法是采用喷雾造粒。此过程要加入粘合剂。 六、成型:目的是将制好粒的料压结成所要求的预制尺寸的毛坯。 七、排塑:目的是将制粒时加入的粘合剂从毛坯中除掉。

压电陶瓷测量基本知识

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1 、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,I C为同相分量,I R为异相分量,I C与总电流I的夹角为,其正切值为

2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时, 材料内部能量消耗程度的一个参数, 它也是衡 量压电陶瓷材料性能的一个重要参数。 机械品质因数越大, 能量的损耗越小。产生能量损耗 的原因在于材料的内部摩擦。机械品质因数 Q m 的定义为: 谐振时振子储存的机械能 c Qm 谐振时振子每周所 损失的机械能 2 兀 机械品质因数可根据等效电路计算而得 式中 R 1为等效电阻 (Q ) , s 为串联谐振角频率(Hz ), C 1为振子谐振时的等效电容 (F ),L 1为振子谐振时的等效电感。 Q m 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的 Q m 值的要求不同,在大多数的场合下(包括声波 测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的 Q m 值要高。 3、压电常数 压电陶瓷具有压电性, 即在其外部施加应力时能产生额外的电荷。 其产生的电荷与施加 tan 1 CR 其中3为交变电场的角频率, R 为损耗电阻,C 为介质电容。 s R 1C 1 s L 1 图1交流电路中电压-电流矢量图(有损耗时)

国内外压电陶瓷的新进展及新应用_李晓娟

第25卷第4期 硅 酸 盐 通 报 V o.l 25 N o .4 2006年8月 BULLET I N OF THE CH I N ESE CERAM IC SOC I ETY A ugust ,2006 国内外压电陶瓷的新进展及新应用 李晓娟,李全禄,谢妙霞,郝淑娟,杨贵考,周九茹,马 晴 (陕西师范大学物理学与信息技术学院,西安 710062) 摘要:主要综述了近年来国内外压电陶瓷材料的最新进展和最新应用状况,以及为使压电陶瓷材料更充分应用于 生产实践中所采取的一系列改性措施,其中包括锆钛酸铅(PZT )压电陶瓷、不含铅的铋层压电陶瓷、钛酸铋钠 (BNT )压电陶瓷及钛酸钡(BaT i O 3)压电陶瓷系统。最后,还简要介绍了压电陶瓷材料未来的发展趋势。 关键词:压电陶瓷材料;新进展;新应用;发展趋势 N e w H eadways and N e w App li cati ons of P iezocera m ics atH o m e and Abroad LI X iao -Juan ,LI Quan -Lu ,X I E M iao -X i a ,HA O Shu -Juan ,YA NG Gui -kao ,ZH OU J iu -ru ,MA Q i n g (School of Phys i cs and Infor m ation Technol ogy ,ShaanxiN or m alUn i versit y ,Xi 'an 710062) Abst ract :This paper summ arizes the new headw ay and ne w applicati o n of piezoelectric cera m ic m a terials at ho m e and abroad in r ecent years ,and a series of i m prove m en ts in order t o m ake t h e m fully applied i n t h e p r oduc tion w ere pr oposed ,i n cluding the p i e zoe lectric cera m ic o f PZT w ith lead ,the l e ad -free piezoelectric cera m ic w ith bis mu t h layer str uct u r e ,t h e p iezoelectric ce ra m ic of B NT and p iezoelectric ce r a m ic Ba T i O 3.I n addition ,ne w deve l o p m ent trends o f p iezoelectric cera m ic we r e in troduced . K ey w ords :piezoe lectric cera m ic m a teria ls ;ne w headw ay ;ne w applica tion ;deve lopm ent tr end 基金项目:国家自然科学基金资助项目(10374064);陕西省教育厅专项科研计划资助项目(03J K061).作者简介:李晓娟(1978-),女,硕士.从事压电陶瓷材料及器件研究. 压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料-压电效应,压电陶瓷除具有压电性 外,还具有介电性、弹性等,已被广泛应用于医学成像、声传感器、声换能器、超声马达等[1~3]。随着现代电子 信息技术的飞速发展,对于性能优异的压电陶瓷材料的开发和探索已成为各国研究的热点问题。目前,在性能改进方面主要采用2种方法[4~6]:一种是掺杂改性,即掺杂某种改性离子;另一种是改进制备工艺。本文将对国内外压电陶材料的最新研究进展及最新应用情况做一扼要的综述,其中包括含铅压电陶瓷与无铅压电陶瓷系统;并对压电陶瓷材料未来的发展动态进行了展望,目的在于使相关科研与教学人员能注意到该领域新的发展状况及有待解决的问题。 1 压电陶瓷的基本物理性质 1.1 介电性及弹性性质 压电陶瓷的介电性是反映陶瓷材料对外电场的响应程度,通常用介电常数ε来表示。在外电场不太大时,电介质对电场的响应可用线性关系P =ε0χE [7]表示,P 为极化强度,ε0为真空介电常数,χ 为电极化率,E 为外加电场。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨 率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力 通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

压电陶瓷材料

压电陶瓷材料 摘要: 本文包括压电陶瓷压电陶瓷的产生发展,机理,生产及其应用,从各方面阐述了压电陶瓷材料的种种物理性能,以及压电陶瓷为我们生活带来的便利,对科技发展带来的种种贡献。 前言: 压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料-压电效应 ,压电陶瓷除具有压电性外 ,还具有介电性、弹性等, 已被广泛应用于医学成像、声传感器、声换能器、超声马达等。随着现代电子信息技术的飞速发展 ,对于性能优异的压电陶瓷材料的开发和探索已成为各国研究的热点问题。本文专注介绍了压电陶瓷的产生发展,机理,生产及其应用,从各方面阐述了压电陶瓷材料。 压电陶瓷发展史: 1880年,居里兄弟首先发现电气石的压电效应,从此开始了压电学的历史。1881年,居里兄弟实验验证了逆压电效应,给出石英相同的正逆压电常数。 1894年,Voigt指出,仅无对称中心的二十种点群的晶体才有可能具有压电效应,石英是压电晶体的一种代表,它被取得应用。第一次世界大战,居里的继承人郎之万,最先利用石英的压电效应,制成了水下超声探测器,用于探测潜水艇,从而揭开了压电应用史篇章。第二次世界大战中发现了BaTiO3陶瓷,压电材料及其应用取得划时代的进展。1946年美国麻省理工学院绝缘研究室发现,在钛酸钡铁电陶瓷上施加直流高压电场,使其自发极化沿电场方向择优取向,除去电场后仍能保持一定的剩余极化,使它具有压电效应,从此诞生了压电陶瓷。 压电陶瓷概念: 压电材料分为压电晶体和压电陶瓷。 压电晶体一般指压电单晶体,是指按晶体空间点阵长程有序生长而成的晶体。这种晶体结构无对称中心,因此具有压电性。如水晶(石英晶体)、镓酸锂、锗酸锂、锗酸钛以及铁晶体管铌酸锂、钽酸锂等。 压电陶瓷则泛指压电多晶体。压电陶瓷是指用必要成份的原料进行混合、成型、高温烧结,由粉粒之间的固相反应和烧结过程而获得的微细晶粒无规则集合而成的多晶体。具有压电性的陶瓷称压电陶瓷,实际上也是铁电陶瓷。 压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料-压电效应,压电陶瓷除具有压电性外, 还具有介电性、弹性等, 已被广泛应用于医学成像、声传感器、声换能器、超声马达等。压电陶瓷利用其材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷即压电效应而制作,具有敏感的特性。笼统而言,压电陶瓷即通过外界

压电陶瓷材料的发展及应用

压电陶瓷材料的发展及应用 美国Sandia研究所的Haertling在1964年发现,如果在Pb(Ti,Zr)O 3 中 添加少量的Bi 2O 3 进行热压成型时,烧结得很好,这种多晶材料的铁电电滞回线呈 现明显的矩形特性。此后,兰德(Land)等人发现,这种陶瓷被研磨成薄片时透光度高,随着晶体粒度的不同显示出二种电光学效应,即粒度为2微米以上的极化了的粗晶粒陶瓷片,散射光的强度随着极化轴的角度发生变化;2微米以下的微细晶粒陶瓷片,则呈现出以极化为光轴的单轴性负光学各向异性,双折射率随偏置电压的改变而变化.这种陶瓷是一种很有价值的新型电光学材料.这一发现是铁电性透明陶瓷展的开端。 1971年美国Haertling和Land用La置换一部分Pb的 Pb 1-x La x (Zr y Ti i-y ) 1-(x/4) O 3 组成(简称PLZT)进行热压烧结成型,所得陶瓷研磨的薄片 具有电控双折射、电控可变光散射等特性,可用作关阀、电光调制器和光记忆元件,PLZT是一种很有价值的新型电子材料,是20世纪70年代铁电陶瓷的重大进展。 透明铁电压电陶瓷的问世,一方面是由于客观上性技术的发展对铁电压电陶瓷材料在电光方程面的应用提出了要求,另一方面,是由于长期以来人们对铁电压电陶瓷进行了大量的研究实践(特别是热压工艺)的结果。具体的工作在1967年左右开始,1970年5月宣布了透明铁电陶瓷试制成功,随后报道了各种应用研究,1972年改进了工艺方法,提高了厚片的透明度,1973年又发展了不用热压而用通氧烧结的方法成功地制造了较大面积的透明铁电压电陶瓷。在此期间,陆续报道的各种有关的应用或实验结构有铁电显示器、光阀、光信息存贮器、偏置应变存贮显示器件、反射式偏置应变存贮显示器件、散射式存贮显示器件、染料激光波长选择器件、全息存贮输入器件等等。各方面应用的研究正在不断发展中. 透明铁电压电陶瓷的发展,给铁电压电陶瓷开辟了新的应用领域-电光应用,过去电光器件用的是单晶铁电材料,但由于单晶材料存在一些缺点,例如尺

锆钛酸铅压电陶瓷的制备实验

锆钛酸铅压电陶瓷的制备实验 引言: 压电陶瓷 我们将具有压电效应的陶瓷称为压电陶瓷,而压电效应分为正压电效应和负压电效应。 ★正压电效应:当对某些晶体施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端面将出现数量相等、符号相反的束缚电荷,这种现象称为正压电效应,如下图所示; ★逆压电效应:当在晶体上施加电场引起极化时,将产生与电场强度成比例的变形或机械应力,这种现象称为逆压电效应。 注:实线代表形变前的情况; 虚线代表形变后的情况。 自从十九世纪五十年代中期,由于钙钛矿的 PZT 陶瓷具有比 BaTiO3更为优良的压电和介电性能,因而得到广泛的研究和应用。图 1-1 为 Pb(Zr x Ti 1-x )O 3体系的低温相图[1]。在居里温度以上时,立方结构的顺电相为稳定相。在居里温度以下,材料为铁电相,对于富 Ti 组分(0≤x ≤0.52)为四方相;而低 Ti 组分(0.52≤x ≤0.94)为三方相。两种晶相被一条 x=0.52 的相界线分开。在三方相区中有两种结构的三方相:高温三方相和低温三方相,这两种三方相的区别在于前者为简单三方晶胞,后者为复合三方晶胞。在靠近 PbZrO3组分(0.94≤x ≤1)的地方为反铁电区,反铁电相分别为低温斜方相和高温四方相。 正压电效应示意图

如图 1-2 所示[10],对于四方相,自发极化方向沿着六个<100>方向中的一个方向进行,而三方相的自发极化方向沿着八个<111>方向中的一个方向进行。由于自发极化方向的不同,在不同的晶体结构中产生不同种类的电畴,在四方相中产生 180o 和 90o电畴,三方相中产生 180o、109o、71o电畴。 一、实验目的: 本实验主要是通过对具有压电性能的陶瓷材料PZT(锆钛酸铅)的制备来掌握特种陶瓷材料的整个工艺流程,并掌握一定的性能测试手段。 二、实验仪器: 电子天平、粉末压片机、箱式电阻炉、成型模具、温度控制仪、准静态d33测量仪、极化装置、阻抗分析仪等。 三、实验原理: 实验室制备PZT压电陶瓷的工艺路线为: 配方设计→PZT粉体混合研磨制备→预烧→成型→排塑→烧结→上电极→极化→性能

压电陶瓷的测试--

第二章压电陶瓷测试 2.4 NBT基陶瓷的极化与压电性能测试 2.4.1 NBT基陶瓷的极化 1. 试样的制备 为对压电陶瓷进行极化和性能测试,烧结后的陶瓷需要进行烧银处理。烧银就是在陶瓷的表面上涂覆一层具有高导电率,结合牢固的银薄膜作为电极。电极的作用有两点:(1)为极化创造条件,因为陶瓷本身为强绝缘体,而极化时要施加高压电场,若无电极,则极化不充分;(2)起到传递电荷的作用,若无电极则在性能测试时不能在陶瓷表面积聚电荷,显示不出压电效应。 首先将烧结后的圆片状样品磨平、抛光,使两个平面保持干净平整。然后在样品的表面涂覆高温银浆(武汉优乐光电科技有限公司生产,型号:SA-8021),并在一定温度干燥。将表面涂覆高温银浆的样品放入马弗炉进行处理,慢速升温到320~350℃,保温15min 以排除银浆中的有机物,快速升温到820℃并保温15min后随炉冷却,最后将涂覆的银电极表面抛光。 2. NBT基压电材料的极化 利用压电材料正负电荷中心不重合,对烧成后的压电陶瓷在一定温度、一定直流电场作用下保持一定的时间,随着晶粒中的电畴沿着电场的择优取向定向排列,使压电陶瓷在沿电场方向显示一定的净极化强度,这一过程称为极化[70]。极化是多晶铁电、压电陶瓷材料制造工艺中的重要工序,压电陶瓷在烧结后是各向同性的多晶体,电畴在陶瓷体中的排

列是杂乱无章的,对陶瓷整体来说不显示压电性。经过极化处理后,陶瓷转变为各向异性的多晶体,即宏观上具有了极性,也就显示了压电性。 对于不同类型的压电陶瓷,进行合适的极化处理才能充分发挥它们最佳的压电特征。决定极化条件的三个因素为极化电压、极化温度和极化时间。为了确定NBT基压电材料的最佳极化条件,本文采用硅油浴高压极化装置(华仪电子股份有限公司生产,型号:7462)详细研究了样品的极化行为,并确定了最佳的极化条件。 2.4.2 NBT基陶瓷的压电性能测试 1.压电振子及其等效电路 图2.11 压电振子的等效电路 利用压电材料的压电效应,可以将其按一定取向和形状制成有电极的压电器件。输入电讯号时,若讯号频率与器件的机械谐振频率f r一致,就会使器件由于逆压电效应而产生机械谐振,器件的机械谐振又可以由于正压电效应而输出电讯号,这种器件称为压电振子,广泛用于制作滤波器、谐振换能器件和标准频率振子。在其谐振频率附近的电特征可用图2.11来表示,它由电容C1,电感L1和电阻R1的串连支路与电容C0并联而成,在谐振频率附近可以认为这些参数与频率无关。 2.压电材料的性能测试 压电参数的测量以电测法为主。电测法可分为动态法、静态法和准静态法。动态法是

压电陶瓷参数整理

压电材料的主要性能参数 (1) 介电常数ε 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为 ε=C ·t/A 式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距 当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。由于所需的检测频率较低,所以ε应大一些。因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。 (2)压电应变常数 压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U = 式中 U ——施加在压电晶片两面的压电; △t ——晶片在厚度方向的变形。 压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。其值大,发射性能好,发射灵敏度越高。 (3)压电电压常数33g 压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小: 31(m/N)P U g V P =? 式中 P ——施加在压电晶片两面的应力; P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。 压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。其值大,接收性能好,接收灵敏度高。 (4)机械品质因数 机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。产生损耗的原因在于内摩擦。

m E E θ=储损 m θ值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持 续振动时间长,脉冲宽度大,分辨率低。 (5)频率常数 由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 0 22L L C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。 则: 02 L t C N tf == 这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。 (6)机电耦合系数K 机电耦合系数K 是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为 K =转换的能量输入的能力 探头晶片振动时,同时产生厚度方向和径向两个方向的伸缩变形,因此机电耦合系数分为厚度方向t K 和和径向p K 。t K 大,检测灵敏度高;p K 大,低频谐振波增多,发射脉冲变宽,导致分辨率降低,盲区增大。 (7)居里温度C T 压电材料与磁性材料一样,其压电效应与温度有关。它只能在一定的温度范围内产生,超过一定温度,压电效应就会消失。使压电材料的压电效应消失的温度称为压电材料的居里温度,用C T 表示。 探头对晶片的一般要求: (1) 机电耦合系数K 较大,以便获得较高的转换效率。

PZT压电陶瓷制备方法

PZT压电陶瓷制备方法 摘要:PZTR基压电陶瓷材料具有性能稳定、容易制造、价格低廉等优点,已被广泛应用于电子元器件中。但由于采用传统的高温固相法烧结铅大量挥发,从而导致化学计量比偏离、性能下降。本文介绍了压电陶瓷的几种制备方法。 关键字:;PZT陶瓷制备方法 引言:PZT压电陶瓷由于具有居里温度高、压电性强、易掺杂改性、稳定性好等特点。自20世纪60年代以来,一直是人们关注和研究的热点,在压电陶瓷领域中占主导地位。就PZT压电陶瓷的制备工艺而言,PZT粉体合成和致密化烧结对PZT制品质量影响最大。PZT超微粉体具有粒度细、比表面积大、反应活性高等优点,可降低烧结温度,减少铅挥发,保证准确的化学计量,提高PZT制品性能,因而超微PZT粉体的制备已成为PZT压电陶瓷研究的重点。 近年来对超微PZT粉体制备的研究开发了许多新的方法。固相法除传统周相法外,还包括微波辐射法、机械化学法口、反应烧结法等。液相法具有合成温度低、设备简单、易操作、成本低等优点,纷纷被用于PZT粉体的制备,如溶胶一凝胶法、水热法、沉淀法等。但对PZT压电陶瓷的制备及性能研究仍存在许多不足,主要包括:粉体团聚、化学计量及制品性能易老化等。 2、PZT陶瓷的制备方法 2.1水热法合成制备PZT压电陶瓷粉 实验原料为:Pb(Ac)2·3H20、ZrOCl2·8 H20、Ti(OC4H9)4、Na()H(均

为分析纯试剂),全部配制成水溶液使用。按照Pb(Zr0.58Ti 0.42)O3的组成配制水热反应混合溶液。铅的成分适当过量添加。反应在NaOH 水溶液介质中进行,反应设备采用100mI。反应釜,反应温度分别设定为240摄氏度、反应时间为4 h,反应结束后用定鼍滤纸进行过滤,然后用离子交换水超声波二遍清洗,生成物在100摄氏度下干燥24 h,以备测定各种性能。采用RIGAKU公司生产的D/MAX RB型X射线粉末衍射仪分析产物的物相组成,采用JSM一5010I。V型扫描电镜观察f)z1、粉末的形貌,最后采用Gemini 2360测试仪用BET、法测定粉末的比表面积。 2.2湿声化学法制备PZT(52/48)压电陶瓷粉体 实验用原料:乙酸铅(纯度为99.5%),钛酸丁酯(纯度为98%),二氧化锆和柠檬酸(纯度为99.5%).按照Pb(Zr0.52Ti0.48)O3的化学计量比称量各种原料.将乙酸铅和钛酸丁酯分别溶解在去离子水和乙醇溶液中,磁力搅拌(X85—2S恒温磁力搅拌器)20 min使其均匀混合将柠檬酸水溶液缓慢倒入乙酸铅和钛酸丁酯的混合溶液中,并加入少量氨水调节其pH值以使其形成溶胶.将二氧化锆加入到溶胶中并磁力搅拌30 min,再用超声雾化设备(25 kHz,150 W,自行研制)对混合物雾化处理3次.将雾化处理后的混合物在120℃干燥10 h形成干凝胶,将干凝胶在300—800℃下煅烧(马弗炉,SX-1)一定时间后得到PZT粉体材料. 2.3溶胶一凝胶法制备PZT超细粉体 1、按Pb(Zr0.52Ti0.48)03比例称取乙酸铅、硝酸氧锆,分别溶于冰

压电陶瓷性能及PZT制备工艺

压电陶瓷性能及PZT制备工艺 王幸福无机非金属材料工程 80308113 摘要: 简单综述了压电陶瓷的性能及锆钛酸铅压电陶瓷制作方法,重点分析了锆钛酸铅压电陶瓷的掺杂改性的机理和作用。以及压电陶瓷PZT未来发展的前景。 关键词: 锆钛酸铅;制作方法。 引言 锆钛酸铅一Pb(Zr,Ti)03:(PZT)是一种具有多种应用功能的钙钦矿型ABO3结构铁电材料,是由铁电相PbTiO3(Tc=490℃)和反铁电相PbZrO3(Tc=230℃)组成的固溶体。PbZrO3一PbTiO3:系固溶体(PZT)相图中,在x约为0.52一0.53附近存在一个铁电四方相(FT)和菱形相(FR)的交界区,就是我们通常称之为的准同型相界(MPB)。在PZT的MPB上具有高的压电和介电特性,具有高的的居里温度,因此受到国内外相关研究者的广泛重视,使之成为迄今为止,应用最广的压电陶瓷材料。 一、PZT压电陶瓷结构特征及特点 1.1钙钛矿结构特征 PZT 陶瓷是指锆钛酸铅( PbZr x Ti1 - xO3 , PZT)陶瓷,它是ABO3 型钙钛矿(perovs kites) 结构,Zr ,Ti 处于氧八面体的中心,Pb 处于氧八面体的间隙。单元结构如图1 所示[1]。 1.2锆钛酸铅(PZT)结构特点 PZT压电陶瓷是属于钙钦矿结构的压电晶体。向PbTIO3:中掺入Zr形成锆钛酸铅(PZT)陶瓷材料,用途广泛。Ti与Zr在结构中呈完全类质同像,但Z/rTi比值不同使材料的结构也不同,在铁电四方和三方相界附近,PZT材料具有优良的压电、介电和热电性能。锆钛酸铅固溶体相图如图1.4所示[2],在相变温度以下,当错/钦比z/rTi=53/47时,存在一条准同型相界。准同型相界的右边(富钦一边)为四方晶相,左边(富错一边)为三方晶相。实际上,准同型相界有一定的宽度范围,在此范围内,两相共存,数量关系遵从“杠杆定理”。

电子工程师必备基础知识

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应 1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。 电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。

相关主题
文本预览
相关文档 最新文档