当前位置:文档之家› FEKO喇叭天线

FEKO喇叭天线

喇叭天线地设计1206030201

微波技术与天线课程设计—— 角锥喇叭天线 :吴爽 学号:1206030201

目录 一.角锥喇叭天线基础知识 (3) 1. 口径场 (3) 2. 辐射场 (4) 3.最佳角锥喇叭 (7) 4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7) 二.角锥喇叭设计实例 (7) 1. 工作频率 (8) 2.选用作为激励喇叭的波导 (8) 3.确定喇叭的最佳尺寸 (8) 4.喇叭与波导的尺寸配合 (9) 5.天线的增益 (10) 6.方向图 (10)

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定角开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)虚顶点到口径中点的距离为R E,H 面(xz 面)虚顶点到口径中点的距离为R H。 1. 口径场 角锥喇叭的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x和y两个方向均为平方律变化。

按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H -==+-)2(022)cos( (1.1) 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- (2.1) 其中:

第一章 天线增益测量

天线与电波教学实验指导书 实验三 天线增益测量 3.1实验内容和目的: 用绝对测量法(即测传播损耗的方法)和相对测量法(即比较法)测量喇叭天线的增益,掌握天线增益的一般测量方法。 3.2测量原理 1.天线增益的绝对测量 根据福里斯公式,当发射功率为P t ,发射天线增益为G t ,接收天线增益为 G r ,收发天线相距 R ,则位于远场区的接收天线的最大接收功率为 2244??? ? ??=?=R G G P A R G P P r t t r er t t r πληπ 当收发天线完全相同即G t =G r =G 时,接收功率为 2244??? ? ??=?=R G P A R G P P t r er t t r πληπ 由此可求出每个天线的增益为 G P P R r t =?4πλ 如用dB 表示,则为 ??? ? ???+??? ??=t r P P R dB G lg 10214lg 10)(λπ 因此,如果测出收发电平差、工作频率和收发距离,即可通过上式求出被测天线的增益。 2.天线增益的相对测量 被测天线增益G 和参考天线增益G 0间存在简单的关系: G=gG 0 式中,g 是被测天线相对于参考天线的增益。

因此如果参考天线的增益已知,只要测出g ,即可按上式求出被测天线的增益。 用比较法测天线增益,常用半波对称振子(或折合振子)作线天线的标准增益天线(其增益约为1.64或2.15dB );常用按最佳方向性系数设计的标准增益喇叭作面天线的增益标准天线,其增益理论设计值和实际值相当吻合,可按下式估算: )(4lg 102dB Ak D G λ π≈≈ 式中,A 是喇叭口面面积,k 是口面利用率。对角锥喇叭天线k 取0.51。 3. 天线增益的综合测量 设三个不同天线的增益分别为G G G 010203、、,先用比较法测得1和2对3的相对增益 03 02 203011G G G G G G ==, 当G 03已知时,则 03 20203101G G G G G G ==,, 用dB 表示,即 ) ()()()()()(0320203101dB G dB G dB G dB G dB G dB G +=+=, 当G dB 03()未知时,可用上述1项(天线增益的绝对测量)的方法测出G dB G dB 0102()()+,与上两式联立求出G dB 03()。 3.3 测量方框图: 3.4主要测试设备: 发射源:厘米波分频锁相源(带隔离器,具连续波或1KHz 内方波调制输出,带数字频率指示和功率相对指示,工作频率11GHz ±250MHz ,输出功率连续可调,

喇叭天线的设计1206030201

微波技术与天线课程设计——角锥喇叭天线 姓名:吴爽 学号:01

目录 一.角锥喇叭天线基础知识............. 错误!未定义书签。 1.口径场 错误!未定义书签。 2.辐射场 错误!未定义书签。 3.最佳角锥喇叭.................... 错误!未定义书签。 4. 最佳角锥喇叭远场 E 面和 H面的主瓣宽度错误!未定义书签。 二.角锥喇叭设计实例................. 错误!未定义书签。 1.工作频率 错误!未定义书签。 2.选用作为激励喇叭的波导....... 错误!未定义书签。 3.确定喇叭的最佳尺寸........... 错误!未定义书签。 4.喇叭与波导的尺寸配合......... 错误!未定义书签。 5.天线的增益................... 错误!未定义书签。 6.方向图....................... 错误!未定义书签。

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定张角张开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)内虚顶点到口径中点的距离为R E,H 面(xz 面)内虚顶点到口径中点的距离为R H。 1.口径场 角锥喇叭内的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在 x和 y两个方向随喇叭的长度方向均是渐变

而逐渐扩展的, 因而要在一个正交坐标系下求得角锥喇叭内的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x 和 y 两个方向均为平方律变化。 按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H - ==+-) 2(022 )cos( () 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ] )cos 1([cos 2] )cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- ()

基于HFSS的圆锥喇叭天线设计

本科生科研训练结题报告——基于HFSS的圆锥喇叭天线设计 学院(系):电子工程与光电技术学院 姓名、学号:郝晓辉1104330111 席家祯1104330126 白剑斌1104330105 指导老师:钱嵩松

摘要 天线是对任何无线电通信系统都很重要的器件,其本身的质量直接影响着无线电系统的整体性能。天线可分为简单线天线,行波天线,非频变天线,缝隙天线与微带天线,面天线和智能天线等。圆锥喇叭天线属于面天线。 本文首先介绍了天线的基础知识和基本参数,其中着重介绍了喇叭天线及其设计,接着介绍了网络S参数及软件HFSS。在此基础上,进行了圆锥喇叭天线的设计,最后在软件HFSS中进行了仿真。 本文对圆锥喇叭天线的设计提供了一定的参考作用。 关键词:圆锥喇叭天线;仿真 Abstract Antenna is an important part in any radio communication systems.The quality of antenna can affect the performance of whole systems.Antenna can be divided into simple Wire Antenna,Traveling-Wave Antenna,Frequence-Independent Antenna,Slot Antenna and Microstrip Antenna,Aperture Antenna,Smart Antenna and so on.Cone horn antenna is one of the Aperture Antenna. In this paper,basic knowledge and basic parameters of antenna are presented firstly ,especially the horn antenna and its design be emphasized.Then S-parameter and HFSS software are briefly introduced. In the base of above ,the cone horn antenna is designed.At last ,the antenna is simulated in HFSS. This paper provides the reference to cone horn antenna. Keywords:conic horn antenna;simulation

矩形天线书

天线原理设计说明书 矩形喇叭天线 学生姓名:李帅学号:1205094219 学生姓名:王涛学号:1205094221 学生姓名:唐毓孝学号:1205094230 学院:信息与通信工程学院 专业:信息对抗技术 指导教师:姚金杰 2015年 6 月15日

目录

一、题目要求以及研究背景意义 1.1题目要求 设计一个(4GHz-6GHz)频段最佳增益矩形喇叭天线,其在5GHz时的增益需要大于15dB,喇叭采用WR430矩形波导来馈电,输入阻抗50欧。 (1)建立天线结构; (2)完成天线的设计与仿真; (3)完成仿真结果参数的分析。(频率、带宽、输入阻抗、方向图等) 1.2研究背景意义 喇叭天线是面天线,波导管终端渐变张开的圆形或矩形截面的微波天线,是使用最广泛的一类微波天线。它的辐射场是由喇叭的口面尺寸与传播型所决定的。其中,喇叭壁对辐射的影响可以利用几何绕射的原理来进行计算的。如果喇叭的长度保持不变,口面尺寸与二次方相位差会随着喇叭张角的增大而增大,但增益则不会随着口面尺寸变化。如果需要扩展喇叭的频带,则需要减小喇叭颈部与口面处的反射;反射会随着口面尺寸加大反而减小。喇叭天线的结构比较简单,方向图也比较简单而容易控制,一般作为中等方向性天线。频带宽、副瓣低和效率高的抛物反射面喇叭天线常用于微波中继通信。 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反射的能量很小。从原理上来说,波导开口端和喇叭天线是很简单的天线,但严格求解它们的口径场及外场却相当困难。首先,波导开口端面上与喇叭口面上的场分布与无限长波导内的场分布不同,而且空间传播的TEM波也不同,是结构较为复杂的波。其次,在口面上除了入射波,还有反射波。再次,在口面上除了主波以外,还有高次波型。此外由于波导和喇叭的开放性结构,波导开口和喇叭开口边缘处和外壁上都有电流存在,它们也参与辐射。 由于喇叭天线结构简单和方向图易于控制,通常用作中等方向性天线,如标准喇叭,最常见的是用作反射面的馈源。当它用作独立天线时,一般都加上校正相位的反射面或透镜。喇叭-抛物反射面天线具有频带宽、副瓣低和效率高等特性,常用于微波中继通信。而透镜因其重量较重和结构复杂等原因,已很少用作喇叭的相位校正。 喇叭天线常用于如下几个方面:1大型射电望远镜的馈源,卫星地面站的反射面天线馈源,微波中继通讯用的反射面天线馈源;2相控阵的单元天线;3在天线测量中,喇叭天线常用作对其它高增益天线进行校准和增益测试的通用标准等。 二、矩形喇叭天线设计方案 2.1设计原理 啊啊1、矩形喇叭天线的口面场结构为了说明喇叭天线的口面场结构,可用一个矩形喇叭来说明。图画出了一个矩形扇形喇叭天线的场分布图。

喇叭天线设计要点

1 课题背景 喇叭天线是一种应用广泛的微波天线,其优点是结构简单,频带宽,功率容量大,调整与使用方便。合理地选择喇叭天线尺寸,可以获得很好的辐射特性、相当尖锐的主瓣、较小副瓣和较高的增益。因此,喇叭天线应用非常广泛,它是一种常见的天线增益测试用标准天线。 喇叭天线就其结构来讲可以看成由两大部分构成:一是波导管部分,横截面有矩形,也有圆形;二是真正的喇叭天线部分。 波导部分相当于线天线中的馈线,是供给喇叭天线信号和能量的部分。对工作于厘米波或毫米波段内的面天线,如采用线状馈线,将因馈线自身的辐射损耗太大不能把能量传送到面天线上,所以,必须采用自身屏蔽效果很好的波导管作馈线。普通喇叭天线结构原理图如1.1所示。 图1.1 普通喇叭天线结构原理图 HFSS全称为High Frequency Structure Simulator,是美国Ansoft公司(注:Ansoft公司于2008年被Ansys公司收购)开发的全波三维电磁仿真软件,也是世界上第一个商业化的三维结构电磁仿真软件。该软件采用有限元法,计算结果

精准可靠,是业界公认的三维电磁场设计和分析的工业标准。 HFSS采用标准的Windows图形用户界面,简洁直观;拥有精确自适应的场解器和空前电性能分析能力的功能强大后处理器;能计算任意形状三维无源结构的S参数和全波电磁场;自动化的设计流程,易学易用;稳定成熟的自适应网格剖分技术,结果准确。使用HFSS,用户只需要创建或导入设计模型,指定模型材料属性,正确分配模型的边界条件和激励,准确定义求解设置,软件便可以计算并输出用户需要的设计结果。 HFSS软件拥有强大的天线设计功能,可以提供全面的天线设计解决方案,是当今天线设计最为流行的软件。使用HFSS可以仿真分析和优化设计各类天线,能够精确计算天线的各种性能,包括二维、三维远场和近场辐射方向图、天线的方向性系数、S参数、增益、轴比、输入阻抗、电压驻波比、半功率波瓣宽度以及电流分布特性等。

cst喇叭天线

题目:喇叭天线 作者1:胡庭班级11级通信五班学号1110405012 作者2:宋恒阳班级11级通信五班学号1110405029 喇叭天线的设计 一、实验目的: 1、熟悉CST软件的使用; 2、掌握喇叭天线分析和求解方法,喇叭天线基本设计方法; 3、利用CST软件对喇叭天线进行分析,掌握喇叭天线的规律和特点。 二、预习要求 1、喇叭天线原理。 2、CST软件基本使用方法。 三、实验原理 1天线的辐射场可利用惠更斯原理由口面场来计算。口面场则由喇叭的口面尺寸与传播波型所决定。可用几何绕射理论计算喇叭壁对辐射的影响,从而使计算方向图与实测值在直到远旁瓣处都能较好地吻合。它的辐射特性由口面的尺寸与场分布决定,而阻抗由喇叭的颈部(始端不连续处)和口面的反射决定。当喇叭长度一定时,若使喇叭张角逐渐增大,则口面尺寸与二次方相位差也同时加大,但增益并不和口面尺寸同步增加,而有一个其增益为最大值的口面尺寸,具有这样尺寸的喇叭就叫作最佳喇叭。 2 喇叭和角锥喇叭传播的是球面波,而在一个面(E或H面)张开的扇形喇叭中传播的则是柱面波。喇叭口面场是具有二次方相位差的场,二次方相位差的大小与喇叭的长度和口面大小有关。 为了扩展喇叭的频带,必须减小喇叭颈处与口面处的反射。口面尺寸加大,则反射减小。此外,把波导与喇叭的过渡段尽量做得平滑些,也可以减小该处的反射。由于该位置附近的喇叭尺寸还很小,因此,不能传播高次模,一般都传输单模。为了控制辐射方向图,有时口面上需要多模场分布,这时应在喇叭内适当位置引入能产生高次模的器件。这种喇叭叫作多模喇叭,可用作单脉冲雷达或高

效率天线馈源。由于各模在喇叭内的相速不同,多模喇叭的频带比常规喇叭的要窄。 四、实验内容与步骤 1.点击打开软件选择如下图所示的图标 2.选择天线模板 3.设置单位

第四章 增益测量

第四章 增益测量 第一节 引言 天线的方向增益(通常称方向性系数)是表征天线所辐射的能量在空间分布情况的量,定义为在相同辐射功率情况下,该天线辐射强度),(?θp 与平均辐射强度之比,即 0p 0 ) ,(),(p p D ?θ?θ= (4﹒1) 由于辐射强度正比于电场强度的平方,因此,方向性系数也可写为 2 2),(),(E E D ?θ?θ= (相同辐射功率) (4﹒2) 式中,),(?θE 是该天线在),(?θ方向产生相同电场强度的条件下,点源天线的总辐射功率与该天线的总辐射功率之比,即 ) ,(),(0?θ?θT T P P D = (相同电场强度) (4﹒3) 一般情况均指最大辐射方向的方向性系数,因此,式(4﹒1)、(4﹒2)、(4﹒3)可写为 2 02 0E E p p D m m m == (相同辐射功率) mT oT P P = (相同电场强度) (4﹒4) 方向性系数是以辐射功率为基点,没有考虑天线能量转换率。为了更完整地描述天线的特性,我们以天线输入功率为基点,将该天线与点源天线作比较,于是,仿照方向性系数所定义的量就叫做天线的功率增益(通常称为增益系数),即 2 2),(),(E E G ?θ?θ= (相同输入功率) (4﹒5) 或 ) ,(),(0?θ?θin in P P G = (相同电场强度) (4﹒6) 式中,和in P 0),(?θin P 分别是点源天线和该天线的输入功率。 若指天线最大辐射方向的增益,则式(4﹒5)和(4﹒6)可写为 2 2E E G m m = (相同输入功率)

inm in P P 0= (相同电场强度) (4﹒7) 将式( 4﹒7)进行简单的换算,则有 A m inm mT mT oT oT in inm oin m D P P P P P P P P G ηη??=? ?== 00 (4﹒8) 式中,0η和A η分别是点源天线和某天线的效率。 令点源天线效率10=η,并因一般谈及方向性系数或增益系数均指最大发射方向,为简化书写,我们将足标“”去掉,于是式(4﹒8)就变为 m D G A η= (4﹒9) 可见,天线的增益系数等于天线的效率与方向性系数之积。如果天线效率为100%,则天线的方向性系数也就是天线的增益系数了。 天线增益的测量可以根据定义测取相对功率或相对场强而得到,基本方法有两大类:一类是比较法,另一类是绝对法。 第二节 比较法测天线增益 比较法是将待测天线与一已知增益的标准天线进行比较而测得其增益值的。定义增益时,以点源天线作比较标准,但辐射球状方向图的标准点源天线实际上难以实现。因此,测量时,通常是用有方向特性的天线(如半波偶极天线或喇叭天线等)作比较标准,相对于标准天线增益的待测天线增益则为 s G G P P G G s s = (相同电场强度) (4﹒10) 或 2 2s s E E G G = (相同输入功率) (4﹒11) 为了简单,式中功率P 和场强E 的足标已省掉。按式(4﹒10)或式(4﹒11)用比较法进行天线增益测量时,可以有多种方案。 一、标准天线和待测天线作发射 1. 相对功率法 测试电路如图4﹒1所示,步骤如下: ⑴辅助天线接入发射端,并调整匹配,是输出功率最大; ⑵辅助天线接入接收端,并使其最大辐射方向与发射天线的最大辐射方向对准; ⑶调节可变衰减器,使接收端指示器指示适当的值A,记下功率计读数; s P

天线理论学习总结(20101203)

天线理论学习总结 (3) 1天线基础理论 (3) 1.1 天线的定义和分类 (3) 1.2 天线的辐射场计算 (3) 1.2.1 辅助位函数法 (3) 1.2.2 电偶极子的场 (6) 1.3天线的基本参数 (9) 1.3.1 辐射方向图 (9) 1.3.2波束宽度和副瓣电平 (11) 1.3.3 波束范围或波束立体角 (11) 1.3.4 辐射强度 (13) 1.3.5 波束效率 (13) 1.3.6 方向性系数D与天线分辨率 (13) 1.3.8 辐射功率和辐射阻抗 (15) 1.3.9 输入阻抗 (17) 1.3.10 天线的效率和增益 (18) 1.3.11 有效面积(有效口径)和口径效率 (18) 1.3.12 天线极化 (19) 1.3.13 天线的带宽 (22) 1.3.14 天线驻波比、反射系数和回波损耗 (23) 2 喇叭天线基础理论 (25) 2.1 喇叭天线的结构特点与分类 (25) 2.2 喇叭天线的口径场和辐射场分布与方向性 (29) 2.2.1矩形喇叭天线口面场分布规律 (29) 2.2.1.1 矩形喇叭天线的口面场结构 (29) 2.2.1.2 矩形喇叭天线口面场相位分布特点 (31) 2.2.1.3 矩形喇叭天线口面场振幅分布 (33) 2.2.2 喇叭天线辐射场的方向性与最佳喇叭 (35) 2.3 喇叭天线的参数选择 (39) 3 抛物面天线基础理论 (40) 3.1 抛物面天线的结构特点与工作原理 (40) 3.1.1 结构特点和要求 (40) 3.1.2 抛物面的几何尺寸及特性 (41)

3.1.3 抛物面天线的工作原理 (42) 3.2 抛物面天线的口径场和辐射场分布与方向性 (43) 3.2.1 口径场分布 (43) 3.2.2 抛物面天线辐射场的方向性 (44) 3.3 抛物面天线的技术要求 (45) 3.3.1 对照射器的要求 (45) 3.3.2 照射器对反射面的影响 (47) 3.3.3 反射面对照射器的影响 (49) 3.3.4 反射面技术公差对辐射场的影响 (52) 3.4 抛物面天线的参数选择 (53) 参考文献 (53)

天线理论基础

环测威官网:https://www.doczj.com/doc/ed5616538.html,/ 接收天线以无线电,电视或无线电话信号的形式捕获电磁辐射。在距接收天线一定距离处- 例如无线电台或电视台- 原始声音和/或图像被转换成电信号并通过发射天线发出。这与接收天线相反,尽管两者可能看起来相同。 根据您发送或接收的信号频率以及发射和接收天线的方向,高度和功率等因素,需要调整天线的尺寸,形状和设计以获得最佳性能。对于这种现象的简单示例,可以考虑典型AM / FM 无线电使用的两种不同天线。 对于88至108 MHz频率范围内的FM广播接收,大多数无线电都配备了一个外部安装的伸缩杆天线,可以旋转以最好地捕获FM电台。 然而,用于在540kHz至1.705MHz频率范围内进行AM广播接收的天线通常是位于内部的铁氧体棒,其上缠绕有细线。 基本思想是天线的设计受其意图接收的信号的影响。

环测威官网:https://www.doczj.com/doc/ed5616538.html,/ 常见的天线理论 为了更好地理解天线设计,了解以下常见的天线属性和理论是有帮助的。 ?方向性:天线设计中需要考虑的基本属性是天线的方向性- 或测量其辐射方向的指向。理论上,全向天线具有零方向性,而发送或接收在一个方向上聚焦的信号的天线将具有更高的方向性。 ?通常,像偶极天线这样的较小的电天线具有较低的方向性。对于具有高方向性的天线,可以考虑那些尺寸为几个波长的天线,如卫星或喇叭天线。 ?3DBF:三维波束成形- 或3DBF - 是一种在发送或接收信号时考虑仰角和方位角以确保最佳到达角度的方法。在动态3DBF中,广播信号天线自动倾斜到预期用户的位置。 ?天线增益:天线增益表示天线在假设相同情况下与理想天线相比在特定方向上发送或接收的信号强度。对于您知道信号始发方向的电视天线,您需要一个高增益天线。 但是,对于可以连接到任意数量卫星的移动GPS天线,您需要一个增益相对较低的天线。

喇叭天线的设计1206030201

喇叭天线的设计1206030201

微波技术与天线课程设计—— 角锥喇叭天线 姓名:吴爽 学号:1206030201

目录 一.角锥喇叭天线基础知识 (4) 1.口径场 4 2.辐射场 5 3.最佳角锥喇叭 (8) 4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (8) 二.角锥喇叭设计实例 (9) 1.工作频率 (9) 2.选用作为激励喇叭的波导 (9) 3.确定喇叭的最佳尺寸 (10) 4.喇叭与波导的尺寸配合 (10) 5.天线的增益 (12) 6.方向图 (12)

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定张角张开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)内虚顶点到口径中点的距离为R E,H 面(xz 面)内虚顶点到口径中点的距离为R H。 1. 口径场 角锥喇叭内的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭内

的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x 和 y 两个方向均为平方律变化。 按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H -==+-)2(022)cos( (1.1) 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- (2.1)

增益测量

第一章概念 1.1 定义 1.1.1 功率增益 天线在某方向上的辐射强度(每单位立体角内天线所辐射的功率)与天线从其信号源所得的净功率的比值称为天线在该方向的功率增益。 功率增益表征天线固有的性质,不包括因阻抗或极化失配所引起的系统损失。在确定整个系统的功率传递时,要测量和考虑天线的输入阻抗与天线的极化。1.1.2 峰值功率增益 功率增益的最大值称为峰值功率增益。本文所指的公路增益测量均为峰值功率增益测量,知道了辐射方向图就可确定任何其它方向的增益。 1.2 测量方法概述 1.2.1功率增益测量方法分类 功率增益测量方法可分为两大类:绝对法和比较法。 1.2.1.1 绝对法分类 绝对增益测量不需要预先知道测量中所使用的任一天线的增益。这种方法通常用于增益标准天线的定标。除了专门从事标准定标的实验室外,其它实验室很少采用这种方法。 1.2.1.2 增益传递法 增益传递发也称增益比较法,它是增益测量最常用的方法。用这种方法进行测量时,需使被测天线的增益与增益标准的增益天线进行比较。 1.2.2 确定天线功率增益所采用的技术 确定天线功率增益所采用的技术因天线的工作频率而异。 1.2.2.1 1GHz以上的频率 在1GHz以上的频率,通常采用自由空间测试场进行功率增益测量。对这些频率,可采用微波技术,例如可采用电磁喇叭等波导元件。 1.2.2.2 0.1--1GHz之间的频率 对于0.1--1GHz之间的频率,通常用地面反射测试场进行测量。在这一频率范围内工作的天线通常安装在诸如飞机之类的构件上,这些构件会影响天线的性能。此时可采用比例模型技术。然而,只要比例模型天线制作的合适,其方向性与原型天线的方向性是相同的,故可以测量比例模型天线的方向性,再用其它方法测出原型天线的效率,从而求得功率增益。可使装有原型天线的飞机相对于一个适当的地面站按规定的路线飞行,以证实方向性测量结果。可用原型被测天线测出系统性能,并与比例模型的测量结果进行比较。 1.2.2.3 低于0.1Ghz的频率 当频率低于0.1GHz时,地面对天线特性的影响变得十分明显,使功率增益的测量更加困难。在这一频率范围内,定向天线的尺寸是相当大的,必须在现场进行测量。通常可满意地计算天线的增益并估算地面的影响。再之,也可采用比例模型,然而,由于地面对天线特性的严重影响,地面的电器特性也应该按比例模拟。 1.2.2.4 低于1MHz的频率 对低于1MHz的频率,通常不测量天线的功率增益,而测量天线所辐射的地波的场强。

天线原理与设计 讲义

第八章 口径天线理论基础 在第七章以前我们讨论的是线状天线,其特点是天线呈直线、折线或曲线状,且天线的尺寸为波长的几分之一或数个波长。所构成的基本理论称之为线天线理论。既使是第七章的开槽缝隙天线,在分析时也是借助了缝隙天线的互补天线—金属线天线来分析。 在实际工作中,还将遇到金属导体构成的口径天线和反射面天线。有时我们统称为口面天线。它们包括:喇叭天线、透镜天线、抛物面天线、双反射面的卡塞格伦天线等。见P169图8-1。它们的尺寸可以是波长的十几到几十倍以上。 口面天线的分析模型如图8-1所示: 图8-1 口面天线的分析模型 S ′为天线金属导体面,为开口面,S S ′+构成一个封闭面,封闭面内有一源。 S 对这样一个分析模型,要求解空间某点p 处的电磁场E P 、H P 。它们可描述为由两部分组成:一部分是源的直达波,一部分是由天线导体面上感应电流产生的散射场。这种分析方法我们称之为面电流法。面电流法对反射面天线有效,它是分析反射面天线的方法之一。但是,面电流法对喇叭天线、波导口天线一类的口径天线无效,或者说处理很难。我们可采用口径场法。 口径场法步骤: 1、解内问题,即由场源求得口面上的场分布; 2、解外问题,即由口面上场分布求解远区辐射场。 由此可见,反射面天线也可用口径场法分析。 喇叭天线一类:口径场法; 反射面天线一类:口经场法,面电流法。(近似方法) 有的反射面天线如抛物环面,由于口径场不易确定,还只得用面电流法。 口径场法和面电流法都是近似的方法,它们只能求出口径面前方半空间的辐射场,口面后方半空间的场无法求得。实际上口面天线的外表面及口径边缘L 上均有感应电流。这部分电流就是对口面天线后向辐射的主要贡献。但通常的做法是采用几何绕射理论,求由边缘L 产生的绕射。 值得说明的是,口面天线的边缘绕射场与前方半空间的场相比是微不足道的。 如果采用口径场法,那么,现在的问题是:能否用口径天线口面上的场分布来确定天线辐射场?回答是肯定的,这就须由惠更斯—菲涅尔原理来说明。

喇叭天线基础理论

2喇叭天线基础理论 2.1喇叭天线的结构特点与分类 喇叭天线就其结构来讲可以看成由两大部分构成:一是波导管部分,横截面有矩形. 也有圆形;二是真正的喇叭天线部分。 波导部分相当于线天线中的馈线,是供给喇叭天线信号和能董的部分。对工作于厘米波或毫米波段內的面天线,如采用线状馈线,将因馈线自身的辐射损耗太大不能把能量传送到面天线上,所以,必须釆用自身屏蔽效果很好的波导管作馈线。 田6-5-1晋通痢叭天攵邛i5构廉理田 图2. 1普通喇叭天线结构原理图 矩形波导中能够传输的波形(或叫模式)一般表示成TEnm,英中第一个下标表示电场在宽边x方向上分布的半波长个数,第二个下标n表示电场在窄边y方向分布的半波长个数。也表示电场在矩形波导中沿x, y方向上为驻波分布,z方向为行波分布,而且,m, n可以有一个为零,但不能同时为零,否则各横向电磁场量就全部变为零,导致H为一常数,相当于矩形波导中没有电磁波存在。如下图所示: 对于矩形波导管,其内部传输的主波型,也叫主模是TEw模,

对于姗皴辱管,其內部劇的主鯉,也叫議是%型,称膨电战该电磁枝械导管纵向理以行播方離输,畅分量胸垂直波能播方耐即沿毓踽訥窄边理方亂大小財沿宽边X轴作变北,且为驻波分布,即要槻边油機正妊等于半个瞅刍把理枝中宽边也度等于半瞅纟整数倍的其它齡为高熾或 2 2 高次模,高次模械导传输糠减瞰频率更高的高次犍至不能砌皴导中传轨对于现渡中的磁场分量可以沿^形披寻的横截酚帝也可以沿披的传播方冋分布。 对于矩开皴导中传输的波型还有-种叫橫蹴,即皿点,谢鮒是电磁波只有垂直于传播方向的磁场分量,而对电场分量可以蹴囱传播方亂也可牆垂直于波的传播方亂下标处询含义与乓波相同。 肝删披导亀其内部翳的主模是岛,即波寻管的内?正牆于半饨 拌,其鵝管半径也正好等于半饨长刍对不龊此条件舸高次模沿鹼離树 2 2 衰淞度很快,传輸距离自綁近,陨认为不能进施 由于横电械中附电场握-定是垂直于枝的传輪方阿而与翳横电躺鵝管相连接瓣叭天练棊口面场中的电场£,只能碱导中的电场处于同」方亂磁场ffjD 嫣中的磁场同方航根駆祥的分布特為耙与矩蹴导相翳膵如逐渐断(宽茲保持不变)构成朋叭砂,称为E面就飘雉,脈651(b)所示; 把与劇斤对应的宽边x逐渐张开(窄边y保持筱)构成的輙天统称为H 面 扇辦叭袈,如图淸?1(潮示;

喇叭天线

Characterization of Millimeter Wave Phased Array Antennas in Mobile Terminal for 5G Mobile System Jakob Helander, Daniel Sj?berg, Mats Gustafsson Department of Electrical Information Technology LTH, Lund University Lund, Sweden Kun Zhao, Zhinong Ying Network Technology Laboratory SONY Mobile Communications AB Lund, Sweden Abstract — This paper presents a characterization method for millimeter wave (mmWave) phased array antennas in the mobile terminal for 5G communication. Arrays of different antenna designs, operating at 28 GHz, are evaluated according to novel characterization methods in this context - the total scan pattern of the phased array and its respective coverage efficiency. The results show the relevance of evaluating antenna array designs according to these characteristics, and illustrate, by introducing pattern diversity through sub-array schemes, that the coverage efficiency can be enhanced. I. I NTRODUCTION For supporting high quality multimedia applications in future smartphones, the massive increase in mobile data rates creates new challenges regarding the development of the 5th generation mobile system. Due to shortage of frequency spectrum below 6 GHz, bands at the mmWave frequencies (10 – 300 GHz) have been widely suggested as candidates, as the considerably larger bandwidths could be exploited to increase the capacity and enable the user to experience several gigabits per second data rates [1-3]. However, moving from the much lower cellular carrier frequencies used today (700 MHz – 2.6 GHz) up towards the mmWave bands results in a much higher free space path loss, as can be seen from Friis’ formula: R T T R 20log . (1) Here, is the distance between the antennas, the carrier frequency, the speed of light, and R,T and R,T the power and gain for receiving and transmitting antenna, respectively. In order to compensate for this increase in path loss without applying additional power, the antenna gains in both base station and mobile terminal need to be much higher than current cellular antennas. In the mobile terminal, the high gain could be realized by employing an antenna array, which is made possible as the physical antenna element aperture decreases with the increase of frequency. However, as gain is increased the resulting beamwidth will be narrowed accordingly, which will reduce the coverage of the mobile terminal array. Phased array configurations introduce the beamsteering function, and enable the system to achieve a good link when incoming signals are coming from different angles [2, 3], but the steering range will still be limited. Beamsteering using phased arrays as a concept is not new, but the idea of utilizing it in mmWave spectrum using small form factor antennas in the mobile terminal is just starting to be considered [4-6]. Thus, it is of great value to characterize mmWave phased arrays in mobile terminals, not only according to classical standards, but also to consider their total scan pattern and achievable coverage with respect to a gain threshold level , see Fig. 1. This paper introduces the total scan pattern and coverage efficiency, and presents simulated results of different phased arrays implemented in the mobile terminal and operating at 28 GHz, Moreover, some sub-array schemes have also been investigated in order to achieve pattern diversity and illustrate how the coverage efficiency can be enhanced. II. C HARACTERIZING A RRAY P ERFORMANCE Since mobile terminals are hand-held in non-fixed positions, incoming signals are assumed to be isotropically distributed. Our simplified physical model assumes urban cell sizes of ~200 m with a link being established either through line-of-sight (LOS) or minimum number of reflections. A. Total Scan Pattern and Coverage Efficiency ( ) The total scan pattern is obtained from all array patterns corresponding to the different phase shifts, by extracting the best achievable gain at every angular distribution point ( , ), such as to the right in Fig. 1. The coverage area of a mobile terminal phased array antenna can be found from the total scan pattern coverage with respect to . The coverage efficiency can thus be defined such as: C A . (2) The total area is the whole surrounding sphere. will depend on the parameters in (1), with the flexibility of adding Fig. 1. Left: The total scan pattern of phased array gain, and how its coverage is evaluated with respect to a gain threshold level. Right: Example of total scan pattern of phased array. 7978-1-4799-7815-1/15/$31.00 ?2015 IEEE AP-S 2015

相关主题
文本预览
相关文档 最新文档