当前位置:文档之家› 注塑工艺设计,橡胶混炼与硫化工艺设计

注塑工艺设计,橡胶混炼与硫化工艺设计

注塑工艺设计,橡胶混炼与硫化工艺设计
注塑工艺设计,橡胶混炼与硫化工艺设计

指导教师:黄先威刘拥君刘艳丽教研室主任:黄先威

教学副院长:陈建芳

2014 年5 月8日

目录

第一部分橡胶的塑化、混炼及硫化实验

1.实验目的------------------------------------------------------------------------------------2 2.实验设备及工作原理---------------------------------------------------------------------2 3.配方及实验步骤---------------------------------------------------------------------------3 4.影响因素------------------------------------------------------------------------------------4 5.试验数据及其分析------------------------------------------------------------------------6

第二部分聚乙烯注射成型工艺试验

1.实验目的------------------------------------------------------------------------------------8 2.注塑机的结构和功能 ----------------------------------------------8 3.注塑机的工作原理和操作过程---------------------------------------------------------10 4.聚乙烯的主要成型条件 -------------------------------------------11 5.热塑性塑料注塑成型常见问题及原因 -------------------------------11 6.数据记录与分析 -------------------------------------------------13

6.1 聚乙烯的注塑工艺参数 -----------------------------------------13

6.2成型制品的图像-----------------------------------------------------------------------17

6.3数据分析 -----------------------------------------------------18 7.各种工艺参数的影响 ---------------------------------------------18

7.1温度的影响 ---------------------------------------------------18

7.2 注射压力的影响 -----------------------------------------------18

7.3 保压压力的影响 -----------------------------------------------18

7.4保压时间的影响 -----------------------------------------------18

7.5流量的影响-----------------------------------------------------------------------------19

第三部分总结---------------------------------------------------------------------------------------19课程设计总结

附录 ----------------------------------------------20 参考文献 --------------------------------------------------------20

第一部分橡胶的塑化、混炼及硫化实验

1、实验目的

橡胶配合与混炼工艺实验主要内容是根据实验配方,准确称量生胶、各种配合剂的用量,将配合剂与生胶混合均匀并达到一定分散度,制备符合性能要求的混炼胶。该实验的目的是使学生熟悉并掌握橡胶配合方法,熟练掌握开炼机混炼的操作方法、加料顺序,了解开炼机混炼的工艺条件及影响因素,熟悉无转子硫化仪的操作及对实验影响的因素,培养对曲线分析的能力,了解天然橡胶和丁苯橡胶的基本性质与用途。进行混炼操作的能力。

2、实验设备及工作原理

2.1 TR-502BD开炼机

开炼机混炼的工作原理是利用两个平行排列的中空辊筒,以不同的线速度相

对回转,加胶包辊后,在辊距上方留有一定量的堆积胶,堆积胶拥挤、结塞产生许多缝隙,配合剂颗粒进入到缝隙中,被橡胶包住,形成配合剂团块,随胶料一起通过辊距时,由于辊筒线速度不同产生速度梯度,形成剪切力,橡胶分子链在剪切力的作用下被拉伸,产生弹性变形,同时配合剂团块也会受到剪切力作用而破碎成小团块,胶料通过辊距后,由于流道变宽,被拉伸的橡胶分子链复卷曲状态,将破碎的配合剂团块包住,使配合剂团块稳定在破碎的状态,配合剂团块变小。胶料再次通过辊距时,配合剂团块进一步减小,胶料多次通过辊距后,配合剂在胶料中逐渐分散开来。采取左右割刀、薄通、打三角包等翻胶操作,配合剂在胶料中进一步分布均匀,从而制得配合剂分散均匀并达一定分散度的混炼胶。

2.2 无转子硫化仪

无转子硫化仪工作原理是测定胶料在硫化过程中剪切模量的变化,而剪切模量与交联密度成正比,因此测定结果反映了胶料在硫化过程中交联程度的变化,可以测出胶料初始黏度、焦烧时间、硫化速度、正硫化时间和过硫返原性等重要参数。

棍距上方留有适量的堆积胶,可通过调整挡胶板的距离来实现。

4.3 辊距

减小辊距,剪切变形速率增大,橡胶分子链和配合剂团块受到的剪切作用增大,配合剂团块容易破碎,因此有利于配合剂的分散,但橡胶分子链受剪切断裂的机会也增大,容易使分子链过度断裂,造成过炼,橡胶分子量降得过低,使胶料的物理机械性能降低。辊距过大,剪切作用大小,配合剂不易分散,给混炼操作带来困难。因此开炼机混炼时,辊距要合适。

4.4 速比与辊速

速比和辊速增大,对混炼效果的影响与减小银距的规律一致,会加快配合剂的分散,但对橡胶分子链剪切也加剧,易过炼,使胶料物性降低,使胶料升温加快,能耗增加。速比过小,配合剂不易分散,生产效率低。开炼机混炼的辊筒速比一般在1. 15 - 1.27 范围内。

4.5 辊温

随辊温升高,胶料的粘度降低,有利于胶料在固体配合剂表面的湿润,吃粉加快; 但配合剂团块在柔软的胶料中受到的剪切作用会减弱,不容易破碎,不利于配合剂的分散,结合橡胶的生成量也会减少。因此开炼机混炼时辊筒的温度要合适。由于温度对不同胶料包根性的影响不同,因此不同胶料混炼时辊温也应不同。NR 包热辊,前辊温度要高于后辊;而大多数合成橡胶包冷辊,前辊温度要低于后辊。

4.6 加料顺序

混炼时加料顺序不当,轻则影响配合剂分散不均,重则导致焦烧、辊脱或过炼,加料顺序是关系到混炼胶质量的重要因素之一,因此加料必须有一个合理的顺序。加料顺序的确定一般遵循用量小、作用大、难分散的配合剂先加,用量多、易分散的配合剂后力口,对温度敏感的配合剂后加,硫化剂与促进剂分开加等原则。因此开炼机混炼时,最先加入生胶、再生胶、母炼胶等包辊,如果配方中有固体软化剂如石蜡,可在胶料包辑后加入,再加入小料如活化剂(氧化传、硬脂酸)、促进剂、防老剂、防焦剂等,再次加炭黑、填充剂,加完炭黑和填充剂后,再加液体软化剂,如果炭黑和液体软化剂用量均较大时,两者可交替加入,最后加硫化剂。如果配方中有超速级促进剂,应在后期和硫化剂一起加。配方中如有白炭黑,因白炭黑表面吸附性很强,粒子之间易形成氢键,难分散,应在小料之前加入,而且要分批加入。对NBR,由于硫黄与其相容性差,难分散,因此要在小料之前加,将小料中的促进剂放到最后加。

4.7 加料方式

加料方式不同也会影响吃粉速度和分散效果。如果配合剂连续加在某一固定位置,其它部位胶料不吃粉,相当于减少了吃粉面积,吃粉时间延长,吃粉慢,配合剂由吃入位置分散到其他地方需要的时间延长,因此也不利于配合剂的分散。加料时应将配合剂沿辊筒轴线方向均匀撒在堆积胶上,使堆积胶上都覆盖有配合剂,这样会缩短吃粉时间,也有利于配合剂在胶料中的分散,缩短混炼时间,较小对橡胶分子链的剪切破坏。

5、实验数据及其分析

5.1天然橡胶曲线图

在2min以内,曲线呈下降趋势,由于在这一阶段出现焦烧现象,2min到40min 曲线上升,没有出现热硫化现象,实验失败。

5.2丁苯橡胶曲线图

如图二,设置参数温度为180℃,硫化时间为40min,在该曲线上,出现很短时间内呈下降趋势,当达到1min左右趋于上升处在热硫化阶段,在1min至32min依旧处于上升阶段,无平坦期和够硫化阶段,其原因在于硫化时间太短。

第二部分聚乙烯注塑成型工艺

1.实验目的

1.1 掌握PE、PP等材料的性能和基本用途。

1.2了解螺杆式注塑机的结构、性能参数、操作规程及注塑工艺参数的设定及调

掌握注塑机的基本操作技能。

1.3 熟悉工艺参数对实验的影响。

2.注塑机的结构和功能

注塑机通常由注射系统、合模系统、液压传达动系统、电气控制系统、润滑系统、加热及冷却系统、安全监测系统等组成。

(1)注塑系统

注射系统的作用:注射系统是注塑机最主要的组成部分之一,一般有柱塞式、螺杆式、螺杆预塑柱塞注射式3种主要形式。目前应用最广泛的是螺杆式。其作用是,在注塑料机的一个循环中,能在规定的时间内将一定数量的塑料加热塑化后,在一定的压力和速度下,通过螺杆将熔融塑料注入模具型腔中。注射结束后,对注射到模腔中的熔料保持定型。

注射系统的组成:注射系统由塑化装置和动力传递装置组成。

螺杆式注塑机塑化装置主要由加料装置、料筒、螺杆、射咀部分组成。动力传递装置包括注射油缸、注射座移动油缸以及螺杆驱动装置(熔胶马达)

(2)合模系统

合模系统的作用:合模系统的作用是保证模具闭合、开启及顶出制品。同时,在模具闭合后,供给予模具足够的锁模力,以抵抗熔融塑料进入模腔产生的模腔压力,防止模具开缝,造成制品的不良现状。

合模系统的组成:合模系统主要由合模装置、调模机构、顶出机构、前后固定模板、移动模板、合模油缸和安全保护机构组成。

(3)液压系统

液压传动系统的作用是实现注塑机按工艺过程所要求的各种动作提供动力,并满足注塑机各部分所需压力、速度、温度等的要求。它主要由各自种液压元件和液压辅助元件所组成,其中油泵和电机是注塑机的动力来源。各种阀控制油液压力和流量,从而满足注射成型工艺各项要求。

(4)电气控制系统

电气控制系统与液压系统合理配合,可实现注射机的工艺过程要求(压力、温度、速度、时间)和各种程序动作。主要由电器、电子元件、仪表、加热器、传感器等组成。

一般有四种控制方式,手动、半自动、全自动、调整。

(5)加热/冷却系统

加热系统是用来加热料筒及注射喷嘴的,注塑机料筒一般采用电热圈作为加热装置,安装在料筒的外部,并用热电偶分段检测。热量通过筒壁导热为物料塑化提供热源;冷却系统主要是用来冷却油温,油温过高会引起多种故障出现所以油温必须加以控制。另一处需要冷却的位置在料管下料口附近,防止原料在下料口熔化,导致原料不能正常下料。

(6)润滑系统

润滑系统是注塑机的动模板、调模装置、连杆机铰等处有相对运动的部位提供润滑条件的回路,以便减少能耗和提高零件寿命,润滑可以是定期的手动润滑,也可以是自动电动润滑;

(7)安全保护与监测系统

注塑机的安全装置主要是用来保护人、机安全的装置。主要由安全门、液压阀、限位开关、光电检测元件等组成,实现电气——机械——液压的联锁保护。

监测系统主要对注塑机的油温、料温、系统超载,以及工艺和设备故障进行监测,发现异常情况进行指示或报警。

3.注塑机的工作原理和操作过程

注塑机的工作原理:与打针用的注射器相似,它是借助螺杆(或柱塞)的推力,将已塑化好的熔融状态(即粘流态)的塑料注射入闭合好的模腔内,经固化定型后取得制品的工艺过程。

注塑成型是一个循环的过程,每一周期主要包括:定量加料—熔融塑化—施压注射—充模冷却—启模取件。取出塑件后又再闭模,进行下一个循环。注射模具安装在注射机的动模板和定模板上,由锁模装置合模并锁紧,塑料在料筒内加热呈熔融状态,由注射装置将塑料熔体注入型腔内,塑料制品固化冷却后由锁模装置开模,并由推出装置将制品推出。注塑机操作项目包括控制键盘操作、电器控制系统操作和液压系统操作三个方面。分别进行注射过程动作、加料动作、注射压力、注射速度、顶出型式的选择,料筒各段温度的监控,注射压力和背压压力的调节等。

一般螺杆式注塑机的成型工艺过程是:首先将粒状或粉状塑料加入机筒内,并通过螺杆的旋转和机筒外壁加热使塑料成为熔融状态,然后机器进行合模和注射座前移,接着向注射缸通人压力油,使螺杆向前推进,从而以很高的压力和较快的速度将熔料注入温度较低的闭合模具内,经过一定时间和压力保持(又称保压)、冷却,使其固化成型,便可开模取出制品。

注塑成型的基本要求是塑化、注射和成型。塑化是实现和保证成型制品质量的前提,而为满足成型的要求,注射必须保证有足够的压力和速度。同时,由于注射压力很高,相应地在模腔中产生很高的压力,因此必须有足够大的合模力。由此可见,注射装置和合模装置是注塑机的关键部件。

4.聚乙烯的主要成型条件

料筒温度:料筒温度主要是与PE的密度高低和熔体流动速率大小有关,另外还与注塑机的类型和性能,一级塑件的形状有关。由于PE为结晶型聚合物,在熔融时晶粒要吸收一定热量,因此料筒温度应高于它的熔点10度。度于LDPE来说,料筒温度控制在140-200℃,HDPE的料筒温度控制在220℃,料筒后部取最小值,前端取最大值。

模具温度:模温对塑件的结晶状况有较大影响,模温高,熔体结晶度高,强度高,但收缩率也会增大。通常LDPE的模具温度控制在30℃~45℃,而HDPE的温度相应再高10-20℃。

注塑压力:提高注塑压力有利于熔料的充模,由于PE的流动性很好,因此除薄壁细长制品外,应该精良选择较低的注射压力,一般注射压力为50-100MPa。形状简单。壁后较大的塑件,注射压力可以低些,反之则高。

5.热塑性塑料注射成型常见问题及原因

(1)制品填充不足

1)料桶,喷嘴及模具的温度偏低 2)加料量不足

3)料桶内的剩料太多 4)注射压力太小

5)注射速度太慢

6)流道和浇口尺寸太小,浇口数量不够

7)型腔排气不良 8)注射时间太短

9)浇注系统发生堵塞 10)塑料的流动性太差(2)制品有溢边

1)料桶,喷嘴及模具温度太高

2)注射压力太大,锁模力太小

3)模具密合不严,有杂物或模板已变形

4)型腔排气不良 5)塑料的流动性太好

6)加料量过大。

(3)制品有气泡

1)塑料干燥不够,含有水分 2)塑料有分解

3)注射速度太快

5)麻烦温太底,充模不完全 4)注射压力太小

6)模具排气不良 7)从加料端带入空气(4)制品凹陷

1)加料量不足 2)料温太高

3)制品壁厚与壁厚相差过大 4)注射和保压的时间太短5)注射压力太小 6)注射速度太快

7)浇口位置不恰当。

(5)制品有明显的熔合纹

1)料温太低,塑料的流动性差 2)注射压力太小

3)注射速度太慢 4)模温太低

5)型腔排气不良 6)塑料受到污染。(6)制品的表面有银丝及波纹

1)塑料含有水分和挥发物 2)料温太高或太低

3)注射压力太小 4)流道和浇口的尺寸太大5)嵌件未预热回温度太低 6)制品内应力太大。(7)制品的表面有黑点及条纹

1)塑料有分解

2)螺杆的速度太快,背压力太大

3)喷嘴与主流道吻合不好,产生积料

4)模具排气不良5)塑料受污染或带进杂物

6)塑料的颗粒大小不均匀。

(8)制品翘曲变形

1)模具温度太高,冷却时间不够

2)制品厚薄悬殊

3)浇口位置不恰当,切浇口数量不合适

4)推出位置不恰当,且受力不均

5)塑料分子定向作用太大。

(9)制品的尺寸不稳定

1)加料量不稳定

从左至右分别为1,6,10,12。

6.3数据分析

注射成型的关键控制因素主要有温度,注射压力,保压压力、流量,在PE扁平试样中,第一组数据是厚度较小片状模型且工艺参数调好的情况下生产出的产品。第二组数据是在模具厚度变厚其工艺参数不变的情况下生产出的产品,有明显的溢出现象,其原因在于薄的制品要求其流动性好,一旦换为厚模具时,由于其流动性好,容易溢出模具。第三组数据是通过降低温度和注射压力,制品大小有较小的变化,第四组数据是通过继续降低温度和注射压力,制品有一定的变小。第五组数据是通过降低流量和注射压力,制品有了一定的改善。第六组数据是通过降低流量,样品边缘有微量变化,第七组数据是通过降低压力,制品无明显的多于边缘。第八组数据是通过继续降低流量无明显变化,第九组数据是通过降低注射压力和保压压力,制品比较完美。

7各种工艺参数的影响

7.1温度的影响

成型温度指注射料筒温度、模具温度等。PE加工时应特别注意喷头温度,一般控制在前端温度的70%左右。温度过高,虽然熔体流动较好,但会出现熔料的收缩甚至缩孔物料韧性变差,对斜主流道脱模不利;温度过低会使制品粘接不牢强度较差,对斜主流道脱模也不利。料筒温度通常应控制在 180-260℃,模具温度控制为45-60℃,此时,产品质量稳定,应力小,指标均好。

7.2 注射压力的影响

注射速度对产品的表面质量和产品尺寸有着较大的影响。降低注射速度,保证模具内部应力相对均匀,保证零件尺寸的稳定性,速度过慢又会增大表面应力,电镀工艺性变差。注射速度过快,熔体流动过程中会夹杂部分气体,在产品表面形成气泡等,同时产品的致密度下降,易形成缩瘪和尺寸偏小。注射压力的设定主要是起到保护模具和设备的作用,注过程控制以速度控制为主。如果注塑压力过低。无法满足速度控制所需的压力时,按设定的注塑压力以恒定的压力进行注射,时熔体的流动速度会失控。因此注射压力的设定应该略高于实际所需的压力,以保证产品质量。

7.3 保压压力

在保压阶段,保压压力必须足够大时才能克服浇口阻力进行补缩,而浇口阻力由于熔体粘度增加而加大。提高保压压力会使凝固推迟,有助于减少制品收缩率。保压压力对制品的密度也有很大的影响,提高保压压力,可以提高制品的密度;但是保压压力过高会增加制品的内应力,使制品难以脱模。

7.4 保压时间

保压时间和制品重量之间呈现一种非线性关系。在保压的初期阶段,制品重量随保

压力过早切换,模内熔体在浇口冻封之前发生倒流,导致制品由于补缩不足而出现孔穴,凹陷及内部质量下降等,制品收缩率加大,密度变小。但是过长的保压时间不仅会延长成型周期,增加能耗,而且会引起浇口处的应力集中,制品断裂。

7.5流量

注射的流量会影响到制品的出料量以及制品的外观和饱满度,也是保证制品质量的一个重要因素。

第三部分课程设计总结

一周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,与同学分工设计,和同学们相互探讨,相互学习,相互监督。学会了合作,学会了运筹帷幄,学会了宽容,学会了理解,也学会了做人与处世。

课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.

这次课程设计我们初步了解了注塑的原理和操作,也学会了简单的橡胶配合方法,掌握了塑炼和混炼的操作;学会了从硫化曲线找到正硫化时间。这次设计让我们有了从理论到实践的经历,收获颇多。

同时感谢对我帮助过的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。

由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。

三元乙丙橡胶

三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。 三元乙丙橡胶分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。 在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 EPDM第三单体的选择 第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化。第三单体的选择必须满足以下要求: 最多两键:一个可聚合,一个可硫化 反应类似于两种基本的单体 主键随机聚合产生均匀分布 足够的挥发性,便于从聚合物中除去 最终聚合物硫化速度合适

二烯烃类型和含量对聚合物特性的影响 三元乙丙生产中主要是用ENB和DCPD。 三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增: EPM

丁苯橡胶的制造工艺分解

高聚物合成工艺学 论文 学院:化学工程学院 专业:材料化学 班级:材料131 姓名:刘东杰 学号: 2013121531 2016年 4 月25 日

1.丁苯橡胶的分类、结构、性能及用途 1.1丁苯橡胶的分类 丁苯橡胶品种繁多,如按聚合方法、聚合温度、辅助单体含量及充填剂等的不同,丁苯橡胶简分为下列几类。 ①按聚合方法和条件分类 可以分为乳液聚丁苯橡胶和溶液聚丁苯橡胶;乳聚丁苯橡胶开发历史悠久, 生产和加工工艺成熟, 应用广泛, 其生产能力、产量和消耗量在丁苯橡胶中均占首位。溶聚丁苯橡胶是兼具多种综合性能的橡胶品种, 其生产工艺与乳聚丁苯橡胶相比, 具有装置适应能力强、胶种多样化、单体转化率高、排污量小、聚合助剂品种少等优点, 是今后的发展方向。 乳液聚丁苯橡胶又可以分为高温乳液聚合丁苯橡胶和低温乳液聚合丁苯橡胶,后者应用较广,前者趋于淘汰。 在生产工艺上,乳液聚合丁苯橡胶更加成熟,因此本文主要介绍低温乳液聚合生产丁苯橡胶的生产工艺。 ②按填料品种分类 可以分为充炭黑丁苯橡胶、充油丁苯橡胶和充炭黑充油丁苯橡胶等。 ③按苯乙烯含量分类 丁苯橡胶—10、丁苯橡胶—30、丁苯橡胶—50等,其中数字为苯乙烯聚合时的含量(质量),最常用的是丁苯橡胶—30 1.2丁苯橡胶的结构 典型丁苯橡胶的结构特征如表一:

表一典型丁苯橡胶的结构特征 ①大分子宏观结构包括 单体比例、平均相对分子质量及分布、分子结构的线性或非线性,凝胶含量等。 ②微观结构主要包括 丁二烯链段中顺式—1,4、反式—1,4和1,2—结构(乙烯基)的比例,苯乙烯、丁二烯单元的分布等。 ③无定形聚合物 因掺杂有苯乙烯链节,所以丁苯橡胶的主体结构不规整,不易结晶。 ④丁二烯的微观结构的变化对丁苯橡胶性能的影响不大 在丁苯橡胶硫化时,丁二烯链节中顺式—1,4和反式—1,4两种结构会发生异构而相互转化,最后可达到一个平衡态。又在低温丁苯和高温丁苯中1.2—丁二烯链节的含量相差不太大.所以丁二烯微观结构的变化对丁苯橡胶性能的影响不大。 ⑤苯乙烯含量与玻璃化转变温度 丁苯橡胶的玻璃化温度取决于苯乙烯均聚物的含量。乙烯基的含量越低,玻璃化温度越低。可以按需要的比例从100%的丁二烯(顺式、反式的玻璃化温度都是-100℃)调够到100%的聚苯乙烯(玻璃化温度为90℃)。玻璃化温度对硫化橡胶的性质起重要作用,大部分乳液聚合丁苯橡胶含苯乙烯为23.5%,这种含量的丁苯橡胶具有较好的综合物理机械性能。 ⑥低温丁苯橡胶性能优于高温丁苯橡胶 高温(50℃)聚合时.支化较严重.凝胶物含量较高;在同等分子量下.分子量分布较宽。低温聚合下由于它的分子量分布较窄,硫化时不被硫化的低分子量部分较少,可均匀硫化.从而使交联密度较高。故由低温丁苯橡胶所得硫化胶的物理机械性能(如拉伸强度、弹性及加工性)均较高温丁苯为优。 1.3丁苯橡胶的性能及应用 1.3.1乳液丁苯橡胶 丁苯橡胶(生胶)外观是浅黄褐色的弹性体.分子量为15—20万(渗透压法),它的密度与Tg则随生胶中苯乙烯含量而改变。 ①乳液丁苯橡胶与天然橡胶的对比 丁苯生胶的介电性能、对氧及热的稳定性均比天然橡胶好。但是它的粘结性不好,可塑性低,所以不易加工。若用硫黄硫化时,它的硫化速度比天然橡胶慢,故须加入较多的硫化促进刑。丁苯橡胶硫化后的硫化胶中,若加有炭黑补强剂,其强度可大大增加。它的弹性、耐磨性、耐老化性能均可超过天然橡胶;耐酸性、

丁二烯工艺设计讲解

目录 1 引言 (37) 2 工艺路线 (37) 2.1 生产的基本原理 (37) 2. 2 工艺路线的对比与选择 (37) 2. 3 DMF法碳四抽提丁二烯装置的特点 (38) 2. 4 物料衡算 (39) 2. 5 装置工艺流程图 (40) 2. 6 工艺流程说明 (40) 2.6.1 第一萃取精馏部分 (40) 2.6.2 第二萃取精馏部分 (42) 2.6.3 丁二烯净化部分 (43) 2.6.4 溶剂净化部分 (44) 2. 7 工艺控制 (44) 2.7.1 原料质量变化对产品的影响及调节方法 (45) 2.7.2 主要工艺条件的变化对产品质量的影响 (46) 结论 (49) 参考文献 (50) 致谢 (51)

1 引言 丁二烯来源:从油田气、炼厂气和烃类裂解制乙烯的副产品中都可获得碳四馏分。碳四系列的基本有机化工产品主要有丁二烯、顺丁烯二酸酐、聚丁烯、二异丁烯、仲丁醇、甲乙酮等,它们是有机化学工业的重要原料。无论是裂解气深冷分离得到的碳四馏分,还是经丁烯氧化脱氢得到的粗丁二烯,均是以碳四各组分为主的烃类混合物,主要含有丁烷、正丁烯、异丁烯、丁二烯,它们都是重要的有机化工原料[1,2]。 C4的分离与C2、C3馏分相比,其最大的特点是各组分之间的相对挥发度很小,使分离变得更加困难,采用普通精馏方法在通常条件下将其分离是不可能的。为此工业生产中常用在碳四馏分中加入一种溶剂进行萃取的特殊精馏来实现对C4馏分的分离[3-5]。 2 工艺路线 2.1 生产的基本原理 由于碳四原料中大部分组分与丁二烯-1,3之间的沸点较为接近,而且相互之间有共沸物产生,这样采用一般的精馏方法很难进行分离开,所以为了得到目标产品(丁二烯)就必须采用特殊分离方法——萃取精馏。萃取精馏的原理就是:向被分离物料碳四原料中加入一种新的组分——萃取溶剂二甲基甲酰胺(DMF),它的加入使得原来物料中各组分之间的相对挥发度发生明显变化,从而使物料中难以用普通精馏方法分离的组分如:顺丁烯-2和反丁烯-2等组分在第一萃取精馏塔分离出来,乙基乙炔和乙烯基乙炔等组分在第二萃取精馏塔分离出来。 经过两段萃取精馏得到的粗丁二烯再经过两段普通精馏即得到产品丁二烯。普通精馏的原理是利用混合物中各组分在相同压力下相对挥发度不同的特点,使混合物处于气—液两相共存时各组分在液相和气相中的分配量不同从而将各组分分离开。 甲基乙炔和水等轻组分在第一精馏塔顶脱除,第二精馏塔则用于脱除在萃取精馏部分未能完全脱除的顺丁烯-2、丁二烯-1,2、乙基乙炔、碳五等重组分,塔顶得到产品丁二烯。 2. 2 工艺路线的对比与选择 目前世界上大规模工业化生产丁二烯-1,3的方法主要有三种:乙腈法(ACN)、二甲基甲酰胺法(DMF)和N-甲基砒硌烷酮法(BASF)。

丁苯橡胶的塑炼和混炼

丁苯橡胶的塑炼和混炼 宋啸 北京石油化工学院高063班 摘要:简单介绍了乳聚丁苯橡胶的塑炼和混炼方法。 关键词:丁苯橡胶塑炼混炼 丁苯橡胶是产量最大的通用合成橡胶,是橡胶工业的骨干产品,它是合成橡胶第一大品种,综合性能良好,价格低,在多数场合可代替天然橡胶使用,主要用于轮胎工业,汽车部件、胶管、胶带、胶鞋、电线电缆以及其它橡胶制品。下面介绍丁苯橡胶的两种加工技术——塑炼和混炼。 1 丁苯橡胶的塑炼 丁苯橡胶可以通过调节平均分子量来改善其加工性能,一般来说,丁苯橡胶的门尼粘度多在35—60之间。因此丁苯橡胶也可不用塑炼。但实际上经过塑炼后,可增进配合剂的分散性,有助于提高产品质量。特别是海绵橡胶创品,丁苯橡胶经过塑炼后,容易发泡,且泡孔大小均匀。因此,丁苯橡胶与天然橡胶一样,塑炼也是重要工艺之一。 1.1塑炼与分子量分布 丁苯橡胶的加工性能不仅受微观结构如顺式、反式及乙烯型等的影响,而且也受其平均分子量与分子量分布的影响。经过塑炼后,橡胶分子量中的大分子发生解聚,使得平均分子量降低,加工性能改善。研究表明丁苯橡胶比在相同条件下薄通的天然橡胶塑炼效果小,但高粘度的丁苯橡胶有较明显的塑炼效果。 1.2塑炼条件对塑炼效果的影响 丁苯橡胶塑炼时,炼胶机的辊筒转速、速比、辊距及橡胶混度等各种条件对塑炼效果均有影响。 辊筒速比愈大,亦即前后辊筒平均转速愈快,则塑炼效果亦愈大。此时也意味着橡胶通过辊缝次数愈多,塑炼效果愈好。另外根据炼胶机的塑炼条件,存在一定的极限粘度。随着辊筒平均转速的增加,辊距的减小及橡胶温度的降低极限粘度值也低。要想在某个极限粘度以下进行塑炼时,需要变换塑炼条件以适应低极限粘度要求。 辊筒大小对塑炼效果没有多大影响,而辊距大小确有显著影响。辊筒温度愈低,塑炼效果越大。辊距愈小,速比愈大,塑炼橡胶的门尼粘度愈低。 1.3塑炼条件与凝胶生成 塑炼温度对丁苯橡胶的塑炼效果影响颇大,当塑炼辊温超过120o C时,会迅速产生凝胶。在150o C时凝胶生成可高达44.3%,一般认为,在这么高温度下生成的凝胶属于自动氧化类型。凝胶含量与门尼粘度之间不一定成比例,在凝胶含量非常高时,会出现假门尼现象,门尼粘度反而会低。另外辊筒收缩性与凝胶含量关系也不大,与上述门尼现象相似。 1.4塑炼对硫化橡胶的影响 对不同塑炼程度的丁苯橡胶1502和丁苯橡胶1507进行温炼,其硫化橡胶橡胶物理性能要有所变化,研究结果表明,在塑炼过度时有降低抗张强度的趋向。 2 丁苯橡胶的混炼 丁苯橡胶混炼系指在其塑炼胶中均匀混入硫化剂、补强剂、软化剂等配合剂的作业。混炼胶质量对最终产品物理性能有直接影响,因此要认真操作。丁苯橡胶在设计时虽已考虑了使其易于加工,但由于聚合温度、乳化剂种类、结合苯乙烯含量及凝聚剂种类等制造条件的变化,也会产生种种性质上的差别。因此日本工业标准(JIS)在丁苯橡胶的试验方法中规定了

EPDM--三元乙丙橡胶

EPDM中文名:三元乙丙橡胶 英文全称:Ethylene-Propylene-Diene Monomer(简称:EPDM) 三元乙丙橡胶介绍 三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。 在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 EPDM第三单体的选择 第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化。第三单体的选择必须满足以下要求:最多两键:一个可聚合,一个可硫化

反应类似于两种基本的单体 主键随机聚合产生均匀分布 足够的挥发性,便于从聚合物中除去 最终聚合物硫化速度合适 目前工业化生产三元乙丙橡胶用第三单体只有如下三种: 乙叉降冰片烯(ENB) 双环戊二烯(DCPD) 1,4-己二烯(HD) CH3-CH=CH-CH2-CH=CH2 (此种单体目前只有美国Du Pont公司一家使用) 二烯烃类型和含量对聚合物特性的影响 三元乙丙生产中主要是用ENB和DCPD。 三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增:EPM

天然橡胶跟丁苯橡胶并用绝缘料配方设计橡胶配方设计原则

天然橡胶与丁苯橡胶并用绝缘料配方设计 橡胶配方设计原则 橡胶 来源:橡胶人才网橡胶配方设计原则,橡胶配方设计原则,常用橡胶介绍添加时间:2010-08-03 浏览次数:59 次进入论坛交流橡胶配合剂以恰当的品种与比例组合,通过一定的加工工艺,按橡胶制品的结构而制成橡胶制品。其结构设计、配方设计、加工工艺作为橡胶制品生产过程三个重要组成成分。它们相互独立,同时又想和联系、协同、制约,它们本身之间的橡胶配合剂以恰当的品种与比例组合,通过一定的加工工艺,按橡胶制品的结构而制成橡胶制品。其结构设计、配方设计、加工工艺作为橡胶制品生产过程三个重要组成成分。它们相互独立,同时又想和联系、协同、制约,它们本身之间的作用都有可能对橡胶制品的物化性能、使用性能、寿命、外观质量、生产成本起决定性作用,配方设计者首先应该确立“整体协调统一”的观念,其次应该在整体统一的基础上最求和体现配方设计者或企业的风格、特长以及实力,使在竞争中出于某种优势地位。此外作为配方设计者栽培放研究中还应该追求高技术含量;追求新知识、新技术的综合灵活运用;追求技术创新和技术突破;追求资源的综合而充分的利用和环境效益。这就要求皮放设计人员应该具有丰厚而且全面的基础知识和丰富的配方设计经验,以及对产品的深入认识、研究和超前的市场竞争意识。有机的结合设备能力和工艺条件,已做到配方设计和其他要素的有机统一。最终的期望值应该是:将材料性能利用到极限,尽可能的充分利用结构因素、设备能力和工艺条件,工艺成熟、可靠油尽可能简化,人工、设备、能源、原材料成本尽可能低或消耗尽可能韶,质量可靠而效率尽可能高。在某些方面有独特性能。橡胶配方设计原则:1、保证硫化酸具有指定的技术性能。2、所用的生胶、聚合物和各种原料容易得到。3、在胶料和产品制造过程中加工工艺性能良好,使产品能顺利生产。4、成本、价格便宜。橡胶配方设计指导思想及设计原则橡胶品种(简写符号)化学组成性能特点主要用途1.天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易橡胶品种(简写符号)化学组成性能特点主要用途1.天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。缺点是耐氧和耐臭氧性差,容易老化变质;耐油

橡胶塑炼与混炼

一 生胶的塑炼工艺 生胶的塑炼原理 一.塑炼的定义 通过机械应力、热、氧或加入某些化学试剂等方式,使橡胶由强韧的高弹性状态转变为柔软的塑性状态的过程。 塑性(可塑性):橡胶在发生变形后,不能恢复其原来状态,或者说保持其变形状态的性质。

二.塑炼的目的和要求 1.塑炼的目的 减小弹性,提高可塑性;降低粘度;改善流动性;提高胶料溶解性和成型粘着性。 2.塑炼胶的质量要求 (1)可塑度要适当 应满足加工工艺要求,在此基础上应具有最小的可塑性。过度塑炼会降低硫化胶的强度、弹性、耐磨性等,而且会增加动力消耗。 塑炼程度:根据混炼胶工艺性能和制品性能的要求来确定。 如:供胶、浸胶、刮胶、擦胶和制造海绵等用途的胶料,要求的可塑度较大,生胶的塑炼程度要高些。供模压用的胶料,则要求可塑性宜小。 一般:胶管外层胶可塑度:~; 胶管内层胶:~; 胎面胶:~; 胎侧胶左右; 海绵胶~ (2)塑炼均匀 三.生胶的增塑方法和原理 (一)增塑方法 (二)塑炼原理 生胶的分子量与可塑性有着密切的关系。分子量越小,可塑性就越大。生胶经过机械塑炼后,分子量降低,粘度下降,可塑性增大。由此可见,生胶在塑炼过程中,可塑性的提高是通过分子量的降低来实现的。 η0—聚合物熔体的最大粘度;A—特性常数;M W—聚合物的重均分子量 1.机械塑炼过程机理 在低温下:在机械力作用下首先切断橡胶大分子链生成大分子自由基。 (机械力引发橡胶大分子的断链,氧作为自由基接受体,起着阻断自由基的作用。) 在高温下:机械力切断橡胶大分子生成自由基的几率减少。橡胶大分子在机械力的活化作用下,氧引发橡胶大分子的断链。 (机械力起到应力活化作用,氧作为自由基引发体,引发橡胶大分子的断链。) 链终止:橡胶氢过氧化物不稳定,分解生成较小的大分子,连锁反应终止。 2.影响塑炼的因素: (1)机械力的作用 根据理论分析,机械力对橡胶分子的断链作用,可表示为: 式中ρ—分子链断链的几率;K1、K2—常数;E—分子链的化学键能;F0—作用于分子链上的

不同硬度三元乙丙橡胶配方

不同硬度三元乙丙橡胶配方 硬度57三元乙丙橡胶配方原材料名称基本配置物理机械性 能标准实测 三元乙丙胶 100 拉伸强度(Mpa) 13 硫磺 0.5 扯断伸长率(%) 520 过氧化二异丙苯(DCP) 6.5 永久变形(%) 7 硬脂酸 1.5 硬度(邵氏) 57 高耐磨碳黑 20 撕裂强度(KN/m) 半补强碳黑 20 脆性温度 凡士林/防老剂D 5/1.5 合计 155 硫化条件:158℃×40′混炼工艺:生胶→碳黑→软化剂→硫磺→防老剂。用途和性能:该胶料制成胶管、密封件、垫片。耐中等浓酸、有机酸、无机酸、80%H2SO4. 硬度65三元乙丙橡胶配方原材料名称 基本配置物理机械性能标准 实测三元乙丙胶 100 拉伸强度(Mpa) 8.8 促进剂M 0.5 扯断伸长率(%) 478 促进剂TMTM 1.5 永久变形(%) 22 硫磺 1.5 硬度(邵氏) 65 氧化锌 5 撕裂强度(KN/m) 28 硬脂酸 1 脆性温度℃ -70 高耐磨碳黑 80 50#机油 50 合计 239.5 硫化条件:160℃×60′混炼工艺:生胶→填料、软化剂→ZnO→促进剂→S→硬脂酸,混匀后要经十次薄通。用途和性能:该胶料具有耐天候、耐臭氧、耐酸性能、耐磨、耐高低温、电绝缘和弹性等。介质:耐过热水、耐臭氧、耐辐射。温度:-40℃~160℃

硬度70三元乙丙橡胶配方原材料名称 基本配置物理机械性能标准 实测三元乙丙胶 100 拉伸强度(Mpa) 13.5 氧化 锌 5 扯断伸长率(%) 350 硬脂酸 1 永久变形(%) 8 高耐磨碳黑 50 硬度(邵氏) 70 聚苯硫醚 10 撕裂强度(KN/m) 28 硫磺 0.3 脆性温度 -65 DCP 3.5 合计 169.8 硫化条件:160℃×30′混炼工艺:生胶→碳黑→聚苯硫醚→氧化锌→DCP→硬脂酸,薄通十次下片。用途和性能:耐辐射剂量为1×107耐热、耐各种介质:耐乙酸。工作温度:-55~150℃,生产各种密封件、垫片。 硬度75三元乙丙橡胶配方原材料名称 基本配置物理机械性能标准 实测三元乙丙胶 100 拉伸强度(Mpa) 15.8 氧化锌 5 扯断伸长率(%) 264 三氧化二睇 5 永久变形(%) 4 防老剂2246 0.5 硬度(邵氏) 75 高耐磨碳黑 70 撕裂强度(KN/m) 海泊隆-20 5 脆性温度 DCP 4 合计 179.5 硫化条件:160℃×30′混炼工艺:混炼胶→(45℃以下)→填料→软化剂→氧化锌→三氧化二睇→防老剂→DCP→薄通十次下片。用途和性能:用于磁粉轴封、胶圈。可在-50~+150℃下长期工作,用来密封粒度为97μ以下的金属粉,工作轴起动,换向灵活,密封性良好,满足使用。该胶料耐磨性高、耐热和弹性优良。

丁苯橡胶聚合工艺设计书说明书

丁苯橡胶聚合工艺设计书说明书 第1篇设计说明书 第1章绪论 1.1 设计依据、指导思想 1.1.1 设计依据 主要设计依据是吉林化工学院下发的“年产6.5万吨丁苯橡胶装置聚合工段的工艺设计”本科生毕业设计任务书。 1.1.2 指导思想 本设计的指导思想是: (1)利用传统乳液聚合生产技术,确保产品质量高,生产过程安全; (2)生产过程尽量采用自动控制,机械化操作; (3)对于易燃易爆场所,设计采用可靠的控制,报警消防设施; (4)设计采用技术成熟完善的传统乳液聚合方法,达到环保的要求,对生产过程中的化学污水的排放要经过处理,以保证环保要求; (5)厂房、车间、设备布置要严格按土建标准,以保证生产和正常进行及操作人员的安全。 1.2 设计地区的自然条件 本设计的丁苯橡胶车间拟建在吉林市江北吉化有机合成厂院内。 设计地区自然条件如下: 土壤最大冻土深度:1.8米土壤设计冻土深度:1.7米 全年主导风向:西南风夏季主导风向:东南风 年平均风速:3.4米/秒地震裂度:7度 年平均降雨量:668.4毫米日最大降雨量:119.3毫米

平均气压:745.66mmH 最高气温:36.6℃ 最低气温:-38℃平均相对温度:71% 最大降雪量:420毫米水温:15℃ 第2章工艺论证 2.1 工艺原理 丁苯橡胶是1,3-丁二烯和苯乙烯的共聚物,是一种最通用的橡胶品种,它是按自由基反应机理于乳液中合成的。其反应方程式为: 2.2 生产方法论证 丁苯橡胶的生产包括溶聚和乳聚两种工艺。溶聚丁苯橡胶具有低的滚动阻力,又具有很高的抗湿滑性与耐磨性,其滚动阻力比乳聚丁苯橡胶减少20%一30%,抗湿滑性优于顺丁橡胶,耐磨性能也很好,是全天候轮胎的最合适胶料。近几年国际上溶聚丁苯橡胶的消费是一直处于上升趋势。西欧和日本溶聚丁苯橡胶所占总丁苯橡胶消费量的比例为31%左右,一些公司正计划扩大溶聚丁苯橡胶生产能力或新建装置。 1992年以来,溶聚丁苯橡胶的产量呈递增趋势。据有关资料报道,1992年至2000年西欧、美国、日本三地区SSBR平均年增长率为5.9%,而SBR平均年增长率约为1.2%0 1995年,拜耳公司决定停止其在ESBR方面的投资,Hill,的ESBR停产。拜耳认为轮胎制备技术会有一个根本转变,欧洲的消费者将逐步接受“绿色轮胎”;另外,还应该看到以下因素[13]: (1)在现有的溶液聚合装置上花较少的费用就能有效地扩大SR的能力。 (2)溶聚工艺优于乳液聚合和气相聚合工艺,SSBR和BR更能接受长期挑战。 (3)目前越来越趋向于采用优等填料,SSBR可在此方面降低轮胎的滚动阻力做出贡献。

Q_SH 3635 0103-2017低顺式聚丁二烯橡胶

ICS83.060 G 35 Q/SH 中国石化上海高桥石油化工有限公司企业标准 Q/SH 3635 0103—2017 代替Q/ SH 3165 251-2014 低顺式聚丁二烯橡胶 2017-12-01发布2018-01-01实施

前言 本标准按照GB/T 1.1-2009给出的规则起草。 本标准代替Q/SH 3165 251-2014《低顺式聚丁二烯橡胶》。本标准与Q/SH 3165 251-2014的主要差异: ——原GB/T 1232.1 不注日期引用,修改为GB/T 1232.1-2016 注日期引用; ——原GB/T 4498.1 不注日期引用,修改为GB/T 4498.1-2013 注日期引用; ——增加引用GB/T 8170。 本标准附录A~附录F为规范性附录。 本标准由中国石化上海高桥石油化工有限公司技术质量处提出。 本标准由中国石化上海高桥石油化工有限公司归口。 本标准起草单位:中国石化上海高桥石油化工有限公司。 本标准主要起草人:朱晓娟应俊扬 本标准所代替标准的历次版本发布情况为: ——Q/SH 3165 251-2011; ——Q/SH 3165 251-2014。

低顺式聚丁二烯橡胶 1 范围 本标准规定了低顺式聚丁二烯橡胶(简称低顺橡胶或LCBR)的要求、试验方法、检验规则、标志、包装、运输和贮存等。 本标准适用于1,3-丁二烯在锂系催化体系下经溶液聚合制得的的低顺橡胶。该低顺橡胶主要用于塑料改性。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 1232.1-2016 未硫化橡胶用圆盘剪切粘度计进行测定第1部分: 门尼粘度的测定 GB/T 4498.1-2013 橡胶灰分的测定第1部分:马弗炉法 GB/T 8170 数值修约规则与极限数值的表示和判定 GB/T 15340 天然、合成生胶取样及其制样方法 GB/T 19187 合成生胶抽样检查程序 GB/T 24131 生橡胶挥发分含量的测定 3 要求 3.1 外观 低顺式聚丁二烯橡胶为白色或无色透明固体。 3.2 低顺式聚丁二烯橡胶的技术指标 3.2.1 A35R低顺式聚丁二烯橡胶应符合表1的技术指标 表1 A35R低顺式聚丁二烯橡胶的技术指标

注塑工艺,挤出工艺设计

专业方向课程设计题目:注塑工艺,挤出工艺设计 学院:化学化工学院 专业:高分子材料与工程班级: 1002学号:9 学生姓名:肖文建 导师姓名:黄先威刘拥君刘艳丽完成日期:2013年 5 月18 日

课程设计任务书 学院:化学化工学院专业:高分子材料与工程班级:1002 :肖文建同组人员姓名: 指导教师:黄先威刘拥君刘艳丽 教研室主任:黄先威 教学副院长:陈建芳 2013 年5 月10 日

目录 第一部分前言---------------------------------------------------------------------------------------------1 1.1 前言---------------------------------------------------------------------------------------------------1 第二部分成型工艺内容-----------------------------------------------------------------------2 2.1 注射机-------------------------------------------------------------------------------------2 2.1.1 注射机的类型--------------------------------------------------------2 2.1.2 注射机的结构和功能-----------------------------------------------5 2.1.3注射机工作原理及操作过程---------------------------------7 2.1.2 挤出机----------------------------------------------------------------------------8 2.2.1挤出机的结构与功能------------------------------------------8 2.2.2注射机操作过程----------------------------------------------10 第三部分工艺过程与结果分析----------------------------------------------------------11 3.1 PP注射成型工艺--------------------------------------------------------------------11 3.1.1 PP注射成型参数设定------------------------------------------------------11 3.1.2结果分析----------------------------------------------------------------------11 3.2 PP管材挤出成型工艺--------------------------------------------------------------17 3.2.1 挤出成型参数---------------------------------------------------------17 3.2.4 结果分析---------------------------------------------------------------------18 第四部分总结与讨论-----------------------------------------------------------------------18第五部分参考文献--------------------------------------------------------------------------19

丁二烯的精馏工艺设计

化工与材料工程学院毕业设计年产1.6万吨丁二烯的精馏工艺设计 学生学号 学生姓名 专业班级 指导教师金朝晖副教授 联合指导教师高华晶副教授 完成日期2011-8-29 化工学院 Chemical Technology

摘要 丁二烯是一种重要的石油化工基础有机原料和合成橡胶单体,是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。由于其分子中含有共轭二烯,可以发生取代、加成、环化和聚合等反应,使得其在合成橡胶和有机合成等方面具有广泛的用途,可以合成顺丁橡胶(BR)、丁苯橡胶(SBR)、丁腈橡胶、苯乙烯-丁二烯-苯乙烯弹性体(SBS)、丙烯腈-丁二烯-苯乙烯(ABS)树脂等多种橡胶产品,此外还可用于生产己二腈、己二胺、尼龙66、1,4-丁二醇等有机化工产品以及用作粘接剂、汽油添加剂等,用途十分广泛。 目前,世界丁二烯的来源主要有两种,一种是从炼油厂C4馏分脱氢得到,该方法目前只在一些丁烷、丁烯资源丰富的少数几个国家采用。另外一种是从乙烯裂解装置副产的混合C4馏分中抽提得到,这种方法价格低廉,经济上占优势,是目前世界上丁二烯的主要来源。根据所用溶剂的不同,该生产方法又可分为乙睛法(ACN法)、二甲基甲酰胺法(DMF法)和N-甲基吡咯烷酮法(NMP法)3种。 乙腈法,该法最早由美国Shell公司开发成功,并于1956年实现工业化生产。它以含水10%的乙腈(ACN)为溶剂,由萃取、闪蒸、压缩、高压解吸、低压解吸和溶剂回收等工艺单元组成。目前,该方法以意大利SIR工艺和日本JSR工艺为代表。二甲基甲酰胺法,二甲基甲酰胺法(DMF法)又名GPB法,由日本瑞翁N-甲基吡咯烷酮法(NMP法)由德国BASF公司开发成功,并于1968年实现工业化生产,建成一套7.5万吨/年生产装置。公司于1965年实现工业化生产,并建成一套4.5万吨/年生产装置。N-甲基吡咯烷酮法,N-甲基吡咯烷酮法(NMP法)由德国BASF公司开发成功,并于1968年实现工业化生产,建成一套7.5万吨/年生产装置。也是目前国内主要生产方法。 本次毕业设计结合吉林化工有机合成厂采用乙腈法(CAN法)年产14万吨丁二烯工艺,通过已给出的数据进行物料衡算,热量横算,设备计算和换热器等计算完成年产12000吨丁二烯的精馏工艺设计,并进行工艺流程图,设备布置图,设备配管图等设计与绘制,将所学系统知识与实际相联系。 关键词:丁二烯,乙腈法,C4馏分,物料衡算

丁苯橡胶毕业论文---年产7.5万吨丁苯橡胶装置聚合工段工艺设计

年产7.5万吨丁苯橡胶装置聚合工段工艺设计Annual production capacity of 75,000 tons polymerization styrene-butadiene rubber plant process design section

摘要 本设计为年产7.5万吨乳聚丁苯橡胶装置聚合工段工艺设计,在文献调研和现场调研的基础上,进行了丁苯橡胶生产方法及工艺的论证,确定了以丁二烯、苯乙烯为单体,采用氧化还原体系为引发剂,歧化松香酸甲皂为乳化剂,配合其他助剂进行低温乳液共聚合的生产工艺。在掌握各种物料的基本性质、聚合机理、聚合方法、工艺流程以及国内外的发展现状的基础上,进行聚合工段的物料衡算、热量衡算、设备选型计算,并对丁苯橡胶车间进行了技术经济分析。在此基础上绘制出丁苯橡胶工艺流程图、设备布置图、管道布置图,编制了设计说明书. 关键词:丁苯橡胶;乳液聚合;生产工艺

Abstract The design for the 65,000 tons annual production capacity ofpolystyrene-butadiene rubber emulsion polymerization plant process design section, in the literature research and field research on the basis of a styrene-butadiene rubber production methods and technology demonstration to determine a butadiene, styrene for the monomer, the redox initiator system, a disproportionation rosin acid soap as emulsifier, in conjunction with other additives for low-temperature emulsion copolymerization of the production process. In the grasp of the basic properties of various materials, polymerization mechanism, polymerization methods, the development process and the status quo at home and abroad based on the section of polymeric material balance, heat balance, calculation of equipment selection, and styrene-butadiene rubber plant techno-economic analysis carried out. On this basis SBR process to map out plans, equipment layout, piping layout, the preparation of the design specification and calculation of the book. Key Words:Emulsion; styrene-butadiene rubber ;production technology

丁二烯萃取精馏工艺设计资料

毕业设计(论文) 题目名称丁二烯萃取精馏工艺设计系部 专业班级 学生姓名 指导教师 辅导教师 时间

目录 任务书 (Ⅰ) 开题报告 (Ⅱ) 指导教师审查意见 (Ⅲ) 评阅教师评语 (Ⅳ) 答辩会议记录 (Ⅴ) 中文摘要 (Ⅵ) 外文摘要 (Ⅶ) 1.前言 (1) 1.1性质及用途 (1) 1.2国内/外生产概况 (1) 1.3生产方法 (3) 2.生产工艺 (8) 2.1生产原理 (8) 2.2工艺流程 (8) 2.3工艺流程图 (10) 3.基础计算 (12) 3.1物料衡算 (12) 3.2热量衡算 (22) 4.设备计算 (28) 4.1基础数据计算 (28) 4.2汽液负荷量 (29) 4.3脱重塔计算 (30) 4.4脱轻塔计算 (36) 5.结论 (44)

参考文献 (45) 致谢 (47) 附录一:设备图 (48) 附录二:毕业设计查重报告 (50)

**********程技术学院毕业设计(论文)任务书分院专业化学工程与工艺班级化工61201 学生姓名指导教师/职称 1.毕业设计(论文)题目:丁二烯萃取精馏工艺设计 2.毕业设计(论文)起止时间:2015年10月15日~2016 年6月1日3.毕业设计(论文)所需资料及原始数据(指导教师选定部分) [1]黄春超.年产7万吨丁二烯工艺设计[D].大连理工大学,2014.5.7. [2]袁霞光.丁二烯生产技术进展[J].当代石油化工,2011,4:25~29. [3]王嵩智.乙腈萃取精馏分离丁二烯的工艺流程模拟[J].弹性体,1998,1:30~35. [4]王程琳,包宗宏.三种萃取精馏法生产1,3-丁二烯的经济评价[J].当代化工,2014,43(7),1252~1256. [5]朱淑军.C4馏分丁二烯萃取精馏塔的模拟和分析[J].科技进展,2001,4:23~28. [6]马沛生,李永红.化工热力学(通用型)第二版[M].化学工业出版社,2014,1:109~147;159~173. [7]贾绍义,柴诚敬.化工单元操作课程设计[M].天津:天津大学出版社,2014.1:108~171. [8]谭天恩,窦梅.化工原理,第四版.北京:化学工业出版社,2006.1:上下册. 4.毕业设计(论文)应完成的主要任务 (1)阅读文献和教科书,撰写开题报告; (2)学会物料衡算,能量衡算;

橡胶塑炼与混炼PowerPointTemplat

实验2—橡胶的塑炼与混炼

?_、实验目的------------ — ?1. 了解橡胶塑炼和混炼的基本原理乡?2.掌握橡胶塑炼和混炼工艺 ?3.掌握XK—160A开放式炼胶机的使用方法

—二、实验原理 ?:?生橡胶是由线形大分子或者带支链的线形大分子构成,在外力作用下,其力学性能较低,基本无使用价值,因此生胶需要通过一系列的加工才能制成有用的橡胶制品,其中橡胶的塑炼和混炼就是两个重要的橡胶加工过程。 ?:?生胶的分子量通常很高,从几十万到几百万以上,过高的分 LEE 子量带来的强韧高弹性给加工带来极大的困难,必须通过塑炼使之获得一定的可塑性和流动性,才能满足混炼、压延、压 出、硫化、模压注射等各种加工过程的工艺性能要求。因此将生胶由强韧的弹性状态转变为柔软和便于加工的塑性状态使生胶增加可塑性这一塑炼过程非常重要。

?目前生胶塑炼加工中使用最广泛而又行之有效的增塑方法为机械增塑法,其原理在于利用机械的高剪切力作用使橡胶大分子链破坏降解而获得可塑性。 ?本试验中选用开放式炼胶机进行机械法塑炼,橡胶置于开炼机的两个相向转动的辗筒间隙中,反复受到机械力作用受力降解,降解后的大分子自由基在空气中氧化,发生一系列化学反应,最终达到一定的可塑度,满足混炼的要求。塑炼的程度和效率主要与辐筒的间隙、温度有关,若间隙越少,温度越低,机械与化学作用越大,塑炼效率越高。此外。塑炼时间、工艺操作及是否加入化学塑解剂也会影响塑炼效果。

?混炼是在塑炼基础上的又一个炼胶工序。橡胶的混炼工 艺过程可以通过开炼机来实现。影响混炼效果的因素有:温度、辗距、装料容量、转速和转比、时间、混炼时的包辐性、加料顺序和翻炼方法等。这些条件和控制均以手工操作为主,尤其是翻炼方法,受人为因素影响较大。由于 开炼机只有一个方向的固定剪切力的分布所形成的呆滞层, 还需要采用人工翻炼的方法,不断改变物料的受力位置,以便在较短的 li 时间内有效地完成混合塑化。因此,混炼胶的质量(均匀的分散、均匀的分布、一定的可塑度)在很大程度上取决于操作者的经验和操作技术。熟练掌握这一操作技术,是得到正确的实验结果的重要保证。

高性能三元乙丙橡胶的制作方法

本技术提供一种高性能三元乙丙橡胶,其特征在于,其原料按重量份包括如下组分:三元乙丙橡胶140~160份,硫化剂18~25份,聚醚砜3~8份,邻苯二甲酰亚胺2~5份,甲基硅树脂20~25份,沥青6~10份。本技术的三元乙丙橡胶同时具有优异的耐热性、抗裂性和防水性,尤其适用于户外等直接暴露于太阳光下的橡胶软管或其他建筑材料,耐久性良好,大大延长了其使用寿命。 权利要求书 1.一种高性能三元乙丙橡胶,其特征在于,其原料按重量份包括如下组分: 三元乙丙橡胶140~160份,硫化剂18~25份,聚醚砜3~8份,邻苯二甲酰亚胺2~5份,甲基硅树脂20~25份,沥青6~10份。 2.根据权利要求1所述的一种性能三元乙丙橡胶,其特征在于,其原料按重量份包括如下组分: 三元乙丙橡胶155份,硫化剂22份,聚醚砜5份,邻苯二甲酰亚胺3.5份,甲基硅树脂23份,沥青7.5份。 3.根据权利要求1或2所述的一种高性能三元乙丙橡胶,其特征在于:所述硫化剂为过氧化苯甲酰或硫磺。 4.如权利要求1所述的一种高性能三元乙丙橡胶的制备方法,其特征在于,包括如下步骤: 1)按照配比依次将聚醚砜、邻苯二甲酰亚胺、甲基硅树脂加入到三元乙丙橡胶中充分混炼; 2)将步骤1)的混炼产物放置8~10h,加入沥青后在混炼机上进行返炼,再加入硫化剂,在硫化机中进行硫化;

3)将步骤2)所得硫化产物热压成型,即得到所述高性能三元乙丙橡胶。 5.根据权利要求4所述的一种高性能三元乙丙橡胶的制备方法,其特征在于:所述步骤2)中,硫化温度为180~210℃,硫化时间为20~35min。 技术说明书 一种高性能三元乙丙橡胶 技术领域 本技术涉及橡胶技术领域,具体涉及一种高性能三元乙丙橡胶。 背景技术 三元乙丙橡胶卓越的耐候性能使其成为传统橡塑材料的替代产品。它是以乙烯(CH2= CH2)、丙烯(CH2=CH-CH3)为主要单体,经溶液聚合并加入不饱和的第三单体(非共轭二烯烃)制成的三元共聚物,属于饱和碳链橡胶。三元乙丙橡胶具有优异的化学稳定性能、良好的电绝缘性能、耐老化性能和防水性能。它既可广泛用于对环境条件要求不高的体育用品、各类建筑和制冷、空调等行业中,也可广泛用于对环境要求更高的汽车零部件、医药、军工器械等领域。虽然三元乙丙橡胶具有优良的化学结构稳定性,但在长期使用过程中,受到光、氧、水、臭氧等的作用会从表面向内部逐渐发生老化,从而导致其耐老化性能、防水抗渗性等退化严重。 技术内容

相关主题
文本预览
相关文档 最新文档