当前位置:文档之家› 高职高等数学教案傅里叶级数部分

高职高等数学教案傅里叶级数部分

高职高等数学教案傅里叶级数部分
高职高等数学教案傅里叶级数部分

§7-3 傅里叶级数

一、傅里叶级数的定义

定义:形如01

(cos sin )2

n n n a

a nx

b nx ¥

=+

+?

的级数为三角级数,

其中0,,(1,2,3,)n n a a b n = 都是常数。

三角函数族的正交性:

把1,cos ,sin ,cos 2,sin 2,cos ,sin ,x x x x nx nx 称为三角函数族。

若,m n 是非负整数,则容易验证:

0,sin sin ,0π

πm n mx nxdx πm n -ì1??

=í?= ??ò

sin cos 0π

π

mx nxdx -=ò

0,cos cos ,0π

πm n mx nxdx πm n -ì1??

=í?= ??ò

以上性质称为三角函数族的正交性。

确定傅里叶级数及其系数:

假设()f x 是以2π为周期的周期函数,且可展开为三角级数:

01

()(cos sin )2

k k k a f x a kx b kx ¥

==+

+?

将上式两边同乘cos nx ,然后在区间[,]ππ-上逐项积分,得:

1

()cos cos (cos cos sin cos )2

π

πππk k

ππ

π

π

k a f x nxdx nxdx a kx nxdx b kx nxdx ¥

----==+

+?

蝌蝌

由前面正交性可得,等式右端除k n =项外,其余各项都等于零,于是有:

()cos cos cos ππn

n π

π

f x nxdx a

nx nxdx a π--==蝌

因此1()cos (0,1,2,)π

n π

a f x nxdx n π-==ò

同理,两边乘sin nx ,再逐项积分,得:

1()sin (1,2,)π

n πb f x nxdx n π

-=

=ò 定义:上述表达式中的,n n a b 称为()f x 的傅里叶系数,与之对应的三角级数

1

(cos sin )2

n n n a a nx b nx ¥

=++?

称为()f x 的傅里叶级数。

二、傅里叶级数的敛散性

定理:若()f x 是以2π为周期的周期函数,且在区间[,]ππ-上是分段光滑的,则傅里叶级数在区间[,]ππ-上收敛,且

(1)当x 是()f x 的连续点时,级数收敛于()f x

(2)当x 是()f x 的间断点时,级数收敛于1[(0)(0)]2

f x f x ++-

例1:设()f x 是周期为2π的函数,它在[,)ππ-上表达式为,0()0,0x πx f x x πì-???=í????

,将其展开为傅里叶级数

解:计算系数0

2011

11()22

πππππ

a f x dx xdx x ππ

π---==

==-蝌 0

11()cos cos πn ππ

a f x nxdx x nxdx ππ--==蝌

000

11(sin )(sin sin )πππxd nx x nx nxdx n πn π

---==-蝌 0021111sin cos [1(1)]n

ππnxdx nx n πn πn n π

--=-==--ò 0

11()sin sin πn ππ

b f x nxdx x nxdx ππ--==蝌

000

11(cos )(cos cos )πππxd nx x nx nxdx n πn π

---=-=--蝌

1011(1)cos [0()(1)]n n

πx nx πn πn πn

+--=-=----=

因为函数在[,)ππ-上连续,所以在(,)ππ-上傅里叶级数收敛于()f x ,即

1211(1)(1)()cos sin 4

n n n π

f x nx nx n πn +¥

=禳轾镲---犏镲镫 =-+

+睚镲镲镲铪? 2221111

(cos cos3cos5)(sin sin 2sin 3)43523

πx x x x x x π=-+++++-+- 当x π= 时,傅里叶级数收敛于[][]11(0)(0)()0222

π

f x f x π++-=-+=-

特殊形式的傅里叶级数:

1.当()f x 是周期为2π的偶函数时,()sin f x nx 是奇函数,()cos f x nx 是偶函数,则有:

012()cos ()cos (1,2,)ππ

n πa f x nxdx f x nxdx n ππ

-===蝌

1()sin 0(1,2,)π

n π

b f x nxdx n π-===ò

此时傅里叶级数01

cos 2

n n a

a nx ¥

=+

?

称为余弦级数。

2. 当()f x 是周期为2π的奇函数时,()sin f x nx 是偶函数,()cos f x nx 是奇函数,则有:

0(1,2,)n a n ==

02()sin (1,2,)π

n b f x nxdx n π

=

=ò 此时傅里叶级数1

sin n n b nx ¥

=?

称为正弦级数。

例2:设()f x 是周期为2π的函数,它在(,]ππ-上表达式为()f x x =,将其展开为傅里叶级数

解:所给函数为奇函数,则0n a =

0000

222sin (cos )(cos cos )πππ

π

n b x nxdx xd nx x nx nxdx πn πn π==-=--蝌

10222cos cos (1)π

n x nx nx n πn n

+=-=-=- 所给函数在(,)ππ-上连续,则在(,)ππ-上傅里叶级数收敛于()f x ,即

11

()2(sin sin 2sin 3)23f x x x x =-+- 当x π= 时,傅里叶级数收敛于:11

[(0)(0)][()]022

f x f x ππ++-=-+=

例3:设()f x 是周期为2π的函数,它在[,)ππ-上表达式为2

()f x x =,将其展开为傅里

叶级数

解:所给函数为偶函数,则0n b =

2

20123

πππa x dx π-==ò

22

11cos (sin )ππn ππ

a x nxdx x d nx πn π--==蝌

2

1(sin 2sin )ππππx nx x nxdx n π

--=-ò

12

22(1)2

(1)4

sin n n ππx nxdx n πn n n

+---=-=-?ò 所给函数在[,]ππ-上连续,则在[,]ππ-上傅里叶级数收敛于()f x ,

即22211

()4(cos cos 2cos3)323

πf x x x x =+-+-+

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

高职高专高等数学第一章教案

第一章 函数、极限、连续 教学要求 1.了解分段函数、复合函数、初等函数等概念。 2.理解数列极限、函数极限的定义。 3.掌握极限的四则运算法则。 4.了解无穷大、无穷小及其比较的概念,了解函数及其极限与无穷小的关系。理解无穷小的性质。 5.了解夹逼准则和单调有界数列极限存在准则。熟练掌握两个重要极限求极限。 6.理解函数连续与间断概念,会判断间断点类型,了解初等函数连续性及闭区间上连续函数性质。 教学重点 函数的概念、复合函数的概念,基本初等函数的图形和性质;极限概念,极限四则运算法则;函数的连续性。 教学难点 函数与复合函数的概念;极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 函数 一、函数的定义与性质 1.集合; 2.邻域; 3.常量与变量; 4.函数的定义; 5.函数的特性。 二、初等函数 1.反函数; 2.复合函数; 3.初等函数。 三、分段函数 一、 函数的定义与性质 1集合定义 具有某种特定性质的事物的总体;组成这个集合的事物称为该集合的元素,元素a 属于集 合A ,记作a A ∈, 元素a 不属于集合A, ,a A ? 2集合的表示法: 列举法 12{,, ,}n A a a a = 描述法 {}M x x =所具有的特征 3集合间的关系: 若,x A ∈则必,x B ∈就说A 是B 的子集,记做A B ?;若A B ?且A B,≠ A B 则称是的真子集;若A B ?且B A ?,则A B =。

4常见的数集 N----自然数集;Z----整数集;Q----有理数集;R----实数集 它们间关系: ,,.N Z Z Q Q R ??? 5例 {1,2}A =,2{320}C x x x =-+=,则A C = 不含任何元素的集合称为空集, 记作? 例如, 2 {,10}x x R x ∈+==? 规定 空集为任何集合的子集. 6运算 设A 、B 是两集合, 则 1) 并 A ?B ? {x ∣x ∈A 或x ∈B}; 2) 交 A ?B ?{x ∣x ∈A 且x ∈B} 3) 差“A \B” ?{x ∣x ∈A 且x ?B} 4) 补(余)?S/A ,其中S 为全集 5) 其运算律 (1) A ?B= B ?A , A ?B =B ?A (2)(A ?B )?C =A ?(B ?C) , (A ?B)= A ?(B ?C) (3)(A ?B ) ? C =(A ? C )?(B ? C) (A ? B ) ? C =(A ? C ) ? (B ? C) (4) (),()c C C c c c A B A B A B A B ?=??=? 注意A 与B 的直积A ?B ?{(x,y)∣x ∈A 且y ∈B} 例如:R ?R={(x,y)∣x ∈R 且y ∈R} 表示xoy 面上全体点的集合, R R ?常记为2 R 7邻域: 设a 与δ是两个实数且0δ>,称集合{}x a x a δδ-<<+为点a 的δ邻域。点a 叫做这邻域的中心,δ叫做这邻域的半径。记作(){}U a x a x a δδδ=-<<+ 点a 的去心δ邻域记做0 ()U a δ ,0(){0}U a x x a δδ=<-<。 注意:邻域总是开集。 8常量与变量: 在某个过程中变化着的量称为变量,保持不变状态的量称为常量, 注意:常量与变量是相对于“自变量变化过程”而言的. x δ δ

同济第六版《高等数学》教案WORD版-第11章 无穷级数

第十一章 无穷级数 教学目的: 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P 级数的收敛与发散的条件。 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 4.掌握交错级数的莱布尼茨判别法。 5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 6.了解函数项级数的收敛域及和函数的概念。 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。 8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。 9.了解函数展开为泰勒级数的充分必要条件。 10.掌握,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式,会用它们将一些简单函 数间接展开成幂级数。 11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。 教学重点 : 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式; 6、傅里叶级数。 教学难点: 1、比较判别法的极限形式; 2、莱布尼茨判别法; 3、任意项级数的绝对收敛与条件收敛; 4、函数项级数的收敛域及和函数;

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

(整理)傅里叶级数的数学推导

傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦

傅里叶级数的推导

傅立叶级数(Fourier Series) 推导 终于还是在外国人的教材上看到了原来傅立叶级数是大大的有道理的。 这本书名字叫做,就是偏微分方程导论。作者是Walter A.Strauss。 正是在建立经典物理学的过程之中,傅立叶在研究热的传播时,伯努利在研究波的传播和扩散时,得到了以下的偏微分方程(这个推导在物理课本上有,国内的诸多教材都有推导,也不是很难,不是这篇文章关注的焦点,就略提一下,不详谈了): (1) 当然,这个方程的第二个式子和第三个式子是偏微分方程的初值和边值条件,现在这个被称做是狄利克莱条件。在不同的场合下,初边值一般是不同的,比如其他还有纽曼条件,罗宾条件等,但是方程的解法却是大同小异。 傅立叶又是怎么解这个方程的呢。OK,接下来就来看看傅立叶是怎样给这个方程的解加上自己的名字的。 在上面这个方程的推导过程中,傅立叶发现,这个解u其实可以表示为 X(x)·T(t),如果哪位仁兄想问为什么,只好请您再屈驾看一下物理课本了。 u=X(x)T(t)代入上述方程就可以得到 (其中λ是一个常数。因为) 行了,现在得到两个二阶常微分方程,自己都会解了。经过一番尝试,我们会发现,只有当λ>0时,这两个方程的解才会有一些意义。我们就来看一看吧,现在已经假设λ=β*β>0并且β>0 那么这个常微分方程组的解就具有以下形式 其中A,B,C,D都是常数。 第二步就是把边界条件加进来

对于C=D=0这样的平凡解,我们当然不感兴趣,所以我们还是让βl=nπ A和B是一些确定的常数,这些解的和仍然是一个解,所以任意的有限和是原方程的一个解 呵呵,到此为止,看到傅立叶级数了。接下的任务就是计算A和B。 幸好,我们有以下规律 于是,有以下推导 (2) 有了这个公式以后,方程(1)的解才算是完全地得到了。 接下来,人们自然会想,那么什么样的函数才可以用傅立叶级数来表示呢?经过近一个世纪的争论,才惊讶地知道原来所有函数都可以表示为傅立叶级数(这句

高等数学教案

高等数学教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学教案

教 学 过 程 §1 函数 一、 集合与区间 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A , B , C ….等表示. 元素: 组成集合的事物称为集合的元素. a 是集合M 的元素表示为a M . 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A {a , b , c , d , e , f , g }. 描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A {a 1, a 2, , a n }, M {x | x 具有性质P }. 例如M {(x , y )| x , y 为实数, x 2y 21}. 几个数集: N 表示所有自然数构成的集合, 称为自然数集. N {0, 1, 2, , n , }. N {1, 2, , n , }. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z {, n , , 2, 1, 0, 1, 2, , n , }. Q 表示所有有理数构成的集合, 称为有理数集. },|{互质与且q p q Z p q p +∈∈=N Q 子集: 若x A , 则必有x B , 则称A 是B 的子集, 记为A B (读作A 包含于B )或B A . 如果集合A 与集合B 互为子集, A B 且B A , 则称集合A 与集合B 相等, 记作A B . 若A B 且A B , 则称A 是B 的真子集, 记作A ≠?B . 例如, N ≠?Z ≠?Q ≠?R. 不含任何元素的集合称为空集, 记作. 规定空集是任何集合的子集. 2. 集合的运算 设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A B , 即 A B {x |x A 或x B }. 设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A B , 即 A B {x |x A 且x B }. 设A 、B 是两个集合, 由所有属于A 而不属于B 的元素组成的集合称为A 与B 的差集(简称差), 记作A \B , 即 A \ B {x |x A 且x B }. 如果我们研究某个问题限定在一个大的集合I 中进行, 所研究的其他集合A 都是I 的子集. 此时, 我们称集合I 为全集或基本集. 称I\A 为A 的余集或补集, 记作A C . 集合运算的法则: 设A 、B 、C 为任意三个集合, 则 (1)交换律A B B A , A B B A ; (2)结合律 (A B )C A (B C ), (A B )C A (B C );

傅里叶级数通俗解析

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 φ1t,φ2t,…,φn t构成一个函数集,若这些函数在区间t1,t2上满足 φi tφj t t2 t1dt= 0 ,i≠j K i ,i=j(1) 如果是复数集,那么正交条件是 φi tφj?t t2 t1dt= 0 ,i≠j K i ,i=j(2) φj?t为函数φj t的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设φn t=cos nωt,φm t=cos mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt cos mωt dt t0+T t0 当n≠m时 =1 2 cos n+mωt+cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω +sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 再证两个都是正弦的情况 设φn t=sin nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=sin nωt sin mωt dt t0+T t0 当n≠m时

=1 2 cos n+mωt?cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω ?sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 最后证明两个是不同名的三角函数的情况 设φn t=cos nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt sin mωt dt t0+T t0 =1 2 sin n+mωt?sin n?mωt t0+T t0 dt =1 2 ?cos n+mωt (n+m)ω +cos n?mωt (n?m)ωt t0+T =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设φn t=?jnωt,φm t=?jmωt,则φj?t=??jmωt把φn t,φj?t代入(2)得 φi tφj?t t0+T t0dt=?jnωt t0+T t0 ??jmωt dt =?j(n?m)ωt t0+T t0 dt 当n≠m时,根据欧拉公式 =cos n?mωt+j sin?(n?m)ωt t0+T t0 dt =sin n?mωt n?mω?j cos?(n?m)ωt n?mωt t0+T =0 (n,m=1,2,3,…,n≠m)

傅里叶级数的推导

傅里叶级数的推导 2016年12月14日09:27:47 傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数:

首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn 及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

高职高等数学课件

高职高等数学课件 (二)高职高等数学教育虽重要,但没引起足够重视。 高职教育是高等教育的重要组成部分,《高等数学课程对高职生素质培养的重要性》中阐述了高等职业教育的目标、人才规格决定了高等数学教育不容忽视的重要地位,并针对高职教育现状与高职生特点,结合高等数学特质与素质教育的功能,说明了高等数学课程的重要性,但由于客观与某些人的主观臆断,以高等数学课程为代表的公共课并没有得到足够重视。鉴于此,在此呼吁高等数学日后教育教学的改革方向是增强师资力量、提高教师素养、改革教学方法提高学生学习兴趣等。 (三)高职高等数学的教学有待改革。 虽然高职教育在整体趋势上是积极进取的,是逐渐适应这个社会发展的,但面临社会的发展与生源的紧缺、就业率有待提高的紧迫局势,高职院校仍然在教学上面临着诸多困难。郭倩茹在《浅谈高职院校中高等数学教学的现状及问题解决策略》一文中,认为高职院校中高等数学教育的教材编制不合理,与高职教育不适应;高等数学教学没高职特色,与专业脱轨;评价机制落后,考核体系陈旧。与此同时,在描述高等数学教育现状的同时,提出了诸如规范教材与专业接轨、活跃课堂气氛、构建评价、考核新体系等。最后,强调高职院校一定要以学生的特点作为教育的先决条件,因材施教。这正是教育工作者所要考虑的,也是我国高职院校培养人才的目标与宗旨,一切为了学

生,为了学生的一切。 二、高职高等数学教学中存在问题的成因 (一)高等数学不被重视。 大多数高职院校偏重于职业技能的培养和实践活动的开展,作为专业基础课的高等数学学时时多时少,只是专业教学计划里专业课的替补而已。这在综合性的职业院校不常见,但在专业系别少的管理不严格的小职业院校是家常便饭,这无形中也造成了高等数学可有可无的尴尬境地。 (二)高职教师知识更新跟不上,教学方法与教学手段单一,教学态度不积极、忽略学生的德育教育与职业生涯规划导向等。 有些高职院校是中专合并等形式转轨而成或新成立的,万事在摸索前进。大部分教师还停留在原来的教学步伐上,高职教育的先进理论知识不够,年纪大一点的教师甚至根本不关心高职教育的改革与发展,混退休的大有人在。一些教师虽然胜任课程知识的讲解,但不求创新,教学方法单一,教学手段传统,而且对学生的德育与职业生涯规划引导、管理漠不关心,认为只是班主任与学生管理人员的责任,这在某种程度上疏忽了学生课上的教育与管理,这也是教学质量不高的原因之一。 (三)学生入学的数学基础整体较差,学习动力不足,缺乏学好数学的信心。 随着高职院校的扩大招生,高职学生数学基础整体较差。中学的数学知识点繁多、灵活多变且有很大的连续性,这让中学基础差的学

傅里叶级数的三角形式和傅里叶级数的指数形式

周期信号的傅里叶级数分析 连续时间LTI 系统的时域分析: 以冲激函数为基本信号 系统零状态响应为输入信号与系统冲激响应之卷积 傅立叶分析 以正弦函数或复指数函数作为基本信号 系统零状态响应可表示为一组不同频率的正弦函数或复指数函数信号响应的加权和或积分; 周期信号: 定义在区间 (,)-∞∞ ,每隔一定时间 T ,按相同 规律重复变化的信号,如图所示 。它可表示为 f (t )=f ( t +m T ) 其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。 t ()t f 1 1 -T 2 /T 0 周期信号的特点: (1) 它是一个无穷无尽变化的信号,从理论上也是无始无终的,时 间范围为(,)-∞∞ (2) 如果将周期信号第一个周期内的函数写成 ,则周期信 号 ()f t 可以写成

0()() n f t f t nT ∞ =-∞ = -∑ (3)周期信号在任意一个周期内的积分保持不变,即有 ()()()a T b T T a b f t dt f t dt f t dt ++= =? ? ? 1. 三角形式的傅立叶级数 周期信号 f t () ,周期为1T ,角频率 11122T f π πω= = 该信号可以展开为下式三角形式的傅立叶级数。 []∑∞ =++ =++++++++=1 1 1 011121211110)sin()cos(...)sin()cos(... )2sin()2cos()sin()cos()(n n n n n t n b t n a a t n b t n a t b t a t b t a a t f ωωωωωωωω 式中各正、余弦函数的系数 n n b a , 称为傅立叶系数,函数通过它可以完全表示。 傅立叶系数公式如下

高职《高等数学》教学大纲

《高等数学》课程教学大纲一、课程基本信息

二、课程内容与基本要求 1.理解函数的定义;了解分段函数、基本初等函数、反函数、复合函数的概念;会建立简单实际问题的函数模型。 2.了解极限的描述性定义,了解无穷小、无穷大的概念及其相互关系和性质;会用两个重要极限公式求极限,掌握极限的四则运算法则。理解函数在一点连续的概念,知道间断点的分类;会用函数的连续性求极限。 3.理解导数和微分的概念及其几何意义,会用导数描述一些简单的问题;熟练掌握导数和微分的四则运算法则和基本初等函数的求导公式;熟练掌握复合函数、隐函数以及由参数方程所确定的函数一阶导数的求法;了解高阶导数的概念;了解可导、可微、连续之间的关系。 4.了解罗尔中值定理、拉格朗日中值定理与柯西中值定理;会用洛必达法则求极限;掌握利用一阶导数判断函数的单调性、极值和最值的方法;会用二阶导数判断函数图形的凹向及拐点,能描绘简单的函数图形。 5.了解原函数、不定积分的概念及性质;掌握不定积分的基本公式;会用换元法和分部积分法求不定积分。 6.理解定积分的概念及其性质,了解定积分的几何意义,了解变上限的定积分的性质;熟练掌握牛顿—莱布尼茨公式;掌握定积分的换元法和分部积分法。 三、学时分配表

四、对学生能力培养的要求 高等数学是各专业必修的一门重要基础课程,它对培养、提高学生的思维素质,创新能力,科学精神,治学态度以及用数学解决实际问题的能力都有着非常重要的作用。在授课中应紧密结合实际问题,分析一些代表性的专业相关问题,并建立数学模型。 本大纲所列内容为基本内容,它们是根据课程的基本要求和实用够用的原则规定的,是学生必须掌握的最低限度的基本知识,学生在规定教学时数内能够掌握和了解。 对理论教学内容的深浅程度,采用两个层次,即:对原理性和概念性内容采用“理解”和“了解”两个层次,对于运算性和应用性的内容采用“掌握”和“了解”两个层次。教师要求学生按不同层次理解教学内容的深度和广度。

傅里叶级数课程及习题讲解

第15章 傅里叶级数 § 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x 线性表出而得.不妨称 2 {1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下 面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积 为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,, ,,,n n a a b a b 为常数

傅里叶级数总结1

傅里叶级数总结 TASK1:(x f 在[-π ,π]上的周期函数,需展开成傅里叶级数,公式: ??--==π π π π nxdx x f b nxdx x f a n n sin )(cos )( 例1:将x x f 4sin )(=展开成傅里叶级数 x x x f x f n xdx x b n n n dx nx x nx x nx nxdx x a dx x x dx x a x x x x n n 4cos 8 1 2cos 2183)(,...) 3,2,1(0sin sin 1 )4(81) 2(2 1 ...)4,2(0)cos 4cos 81cos 2cos 21cos 83(2cos sin 24 3 )4cos 812cos 2183(sin 2 24cos 1412cos 2141)22cos 1(sin :40040 4024+-=∴=== ????????? ==-≠=+-=== +-== +- -=-=???? - )(,即傅里叶级数收敛于本身处处连续 解 π π πππ π πππ

TASK2:(x f 在[-π ,π]上的奇函数,需展开成傅里叶级数,公式: ,...)3,2,1(sin )(2 ,...) 2,1,0(00 == ==?n nxdx x f b n a n n π π 例2: )(sin sin ..)1(sin 2) () (.)1.(sin 2])cos()[cos(2 sin sin 2 0)()(sin )(1 2 212210 0πππ π ππ π πππ π <<-=--∴--= +--= = ==∴<<-=∑? ? ∞ =++x ax a n nx n a x f a n n ax dx x a n x a n nxdx ax b a a x f x ax x f n n n n n 按展开定理有为奇函数解:展开成傅里叶级数将

高职高等数学教学基本要求(工科)

高职高等数学教学基本要求 1.课程定位: 本课程是我院工科各专业学生的一门必修的公共基础理论课。它是为工科各专业的人才培养目标服务的,它将为今后学习专业基础课以及相关的专业课程打下必要的数学基础,为这些课程提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。在本课程的教学中必须遵循“以应用为目的,以必需,够用为度”的原则,注重理论联系实际,强调对学生基本运算能力和分析问题、解决问题能力的培养,以提高学生的数学修养和素质。以“必需、够用”为原则,服务于不同专业的实际需要;以突出数学文化的育人功能为主线,服务于素质教育;以培养学生具有应用数学方法解决实际问题并进行创新的能力为重点,服务于能力培养。 2.学分、学时: 建议:8学分,128学时。 3.教学目标: 总体目标 通过本课程的学习,学生能了解微积分学的基本概念,掌握微积分的基本理论,学会微积分的基本运算技能,能具有抽象思维能力、逻辑推理能力、运算能力、空间想象能力和自学能力等。另外,通过学习常微分方程、向量代数与空间解析几何、无穷级数、线性代数等知识,为后续专业课程的学习作好准备。本课程在培养学生的数学应用意识、分析和解决实际问题的能力以及创新精神等方面发挥着重要作用,为其今后的可持续发展奠定基础。 (1)知识目标 了解微积分的基本概念,掌握微积分的基本理论和基本运算。了解常微分方程、无穷级数、线性代数的基本概念及基本理论。 (2)技能目标 掌握比较熟练的运算能力,培养学生的抽象思维能力、逻辑推理能力、运

算能力、空间想象能力以及综合运用所学知识分析问题和解决问题的能力,全面提升职业核心能力。 (3)素质养成目标 通过本课程学习,培养学生的数学应用意识、创新精神及团结协作精神,提高数学文化素养和自主学习能力,奠定学生可持续发展的基础。通过对学生在数学的抽象性、逻辑性与严密性等方面进行一定的训练和熏陶,使学生能利用数学思维和逻辑分析问题、解决问题。 4.主要内容: 学习项目1:函数、极限与连续(14学时) (1)函数:函数的概念、函数的几种特性、反函数、基本初等函数、复合函数、初等函数、建立函数关系。 (2)极限的概念:数列的极限、函数的极限。 (3)极限的运算法则:极限的四则运算法则及其应用计算。 (4)两个重要极限:极限存在的准则、两个重要极限及其应用计算。 (5)无穷小量与无穷大量:无穷小量、无穷大量。 (6)无穷小量的比较:无穷小量的比较、等价无穷小量替换定理及其应用计算。 (7)函数的连续性:连续函数的概念、初等函数的连续性、函数的间断点及分类、连续函数在闭区间上的性质。 学习项目2:导数与微分(12学时) (1)导数的概念:导数的定义、导数的求法、导数的几何意义与物理意义、可导与连续的关系。 (2)函数的求导法则:反函数求导法则、导数的四则运算法则、复合函数的求导法则、基本初等函数的求导公式及其应用计算。 (3)隐函数及由参数方程确定的函数的导数:隐函数的导数、由参数方程确定的函数的导数、对数求导法。 (4)高阶导数:函数的n阶导数。 (5)函数的微分:微分的定义、微分的几何意义、微分的基本公式及四则运

傅里叶级数展开

傅里叶级数展开傅里叶级数其实是一种三角级数。三角级数的一般形式是 ∑∞=++10)sin cos (2a n n n nx b nx a 其中0a ,n a ,n b (n=1,2,···)都是实数。 现在能否把一个任意周期为2π的函数表示为一系列正弦函数之和呢?这样表示有什么条件吗?且听慢慢分辨。 现在的焦点就是把一个周期为2π的函数f (x )表示为: ∑∞=++=10)sin cos (2a )(f n n n nx b nx a x [1] 这样的形式。 现在有两个问题: 1.在什么条件下把f (x )展开成[1]的形式: 2.0a ,n a ,n b 如何确定。 由三角函数系的正交性可知,三角函数系中任意两个相同的函数之积在[-π,π]上积分不为零;任意两个不相同的函数之积在[-π,π]上积分为零。 接下来可以这样推导0a ,n a ,n b 的值 第一步:对[1]两边同时在[-π,π]上积分有: ∑∫∫∫∫∞=++=1---0-dx] sin b dx cos [dx 2a dx )(f n n n nx nx a x πππππ πππ=π0a , 故0a =∫πππ-dx x f 1)(第二步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有:∑∫∫∫∫∞=++=1---0-]d cos sin b d cosn cos [d cosn 2a d cosn )(f n n n x nx nx x x nx a x x x x x πππππππ π得, ),()(∫==πππ-n 2,1n cosnxdx x f 1a ?第三步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有: ∑∫∫∫∫∞=++=1---0-]d sin sin b d sinn cos [d sinn 2a d sinn )(f n n n x nx nx x x nx a x x x x x πππππ πππ得, ),()(∫==πππ-n 2,1n sinnxdx x f 1b ?那么什么条件下才能有以上展开呢?

高职高等数学教案傅里叶级数部分

§7-3 傅里叶级数 一、傅里叶级数的定义 定义:形如01 (cos sin )2 n n n a a nx b nx ¥ =+ +? 的级数为三角级数, 其中0,,(1,2,3,)n n a a b n = 都是常数。 三角函数族的正交性: 把1,cos ,sin ,cos 2,sin 2,cos ,sin ,x x x x nx nx 称为三角函数族。 若,m n 是非负整数,则容易验证: 0,sin sin ,0π πm n mx nxdx πm n -ì1?? =í?= ??ò sin cos 0π π mx nxdx -=ò 0,cos cos ,0π πm n mx nxdx πm n -ì1?? =í?= ??ò 以上性质称为三角函数族的正交性。 确定傅里叶级数及其系数: 假设()f x 是以2π为周期的周期函数,且可展开为三角级数: 01 ()(cos sin )2 k k k a f x a kx b kx ¥ ==+ +? 将上式两边同乘cos nx ,然后在区间[,]ππ-上逐项积分,得: 1 ()cos cos (cos cos sin cos )2 π πππk k ππ π π k a f x nxdx nxdx a kx nxdx b kx nxdx ¥ ----==+ +? 蝌蝌 由前面正交性可得,等式右端除k n =项外,其余各项都等于零,于是有: ()cos cos cos ππn n π π f x nxdx a nx nxdx a π--==蝌 因此1()cos (0,1,2,)π n π a f x nxdx n π-==ò 同理,两边乘sin nx ,再逐项积分,得: 1()sin (1,2,)π n πb f x nxdx n π -= =ò 定义:上述表达式中的,n n a b 称为()f x 的傅里叶系数,与之对应的三角级数

高职高专高等数学教案

第 1 次课 学时 2 授课题目(章,节) 第一章 函数与极限 §1 函数 授课类型(请打√) 理论课√□ 研讨课□ 习题课□ 复习课□ 其他□ 教学目的: 1、理解函数的概念,掌握函数定义域、值域的求解方法; 2、掌握函数的表示方法,会求解函数的奇偶性,周期性,单调性。 教学方法、手段: 讲授法,师生互动,板书,课件展示 教学重点、难点: 重点、定义域的求解;函数的几种特性; 难点、定义域的求解;奇偶性的判断。 教学内容及过程设计 补充内容和时间分配 一、新教程序言 为什么要重视数学学习 (1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量; (2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用; (3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术; (4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。 二、讲授新课 利用现实生活中的一个实例(匀速运动),引起学生的兴趣,进一步使学生想了解什么是函数,好奇心吸引学生们认真听课。顺利引出函数。 1、函数的定义(课件展示) 说明:函数是变量间的一种对应关系(单值对应),函数的表达式如下: D x x f y ∈=,)( (1)定义域:自变量的取值集合(D )。 (2)值域:函数值的集合,即)(000 x f y y x x ===。 2、函数的二要素(板书) 构成函数的两个重要因素:定义域和对应法则。 如果两个函数定义域相同,对应法则也相同,那么这两个函数是相同的。(熟记) 注意:为了使定义域在数学上有意义,要求, (1)分母不能为0。如1 ()f x x = 时 (2)偶次根号下非负。如()f x x = 时 (5分钟) (10分钟) (10分钟) (10分钟)

相关主题
文本预览
相关文档 最新文档