当前位置:文档之家› 概率论第一章随机事件及其概率答案2

概率论第一章随机事件及其概率答案2

概率论第一章随机事件及其概率答案2
概率论第一章随机事件及其概率答案2

概率论与数理统计练习题

系 专业 班 姓名 学号

第一章 随机事件及其概率(一)

一.选择题

1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ]

(A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件

2.下面各组事件中,互为对立事件的有 [ B ]

(A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}

(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}

(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}

(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}

3.下列事件与事件A B -不等价的是 [ C ]

(A )A AB - (B )()A B B ?- (C )A B (D )A B

4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C ]

(A )二人都没射中 (B )二人都射中

(C )二人没有都射着 (D )至少一个射中

5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ]

(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;

(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销

6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ]

(A ){|01}x x ≤< (B ){|01}x x <<

(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A ]

(A )C A Y C B ; (B )C AB ;

(C )C AB Y C B A Y BC A ; (D )A Y B Y C .

8、设随机事件,A B 满足()0P AB =,则 [ D ]

(A ),A B 互为对立事件 (B) ,A B 互不相容

(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件

二、填空题

1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。

2.“A ,B ,C 三个事件中至少发生二个”此事件可以表示为 AB BC AC ?? 。

三、简答题:

1.写出下列随机试验的样本空间。

(1)一盒内放有四个球,它们分别标上1,2,3,4号。现从盒这任取一球后,不放回盒中,再从盒中任取一球,记录两次取球的号码。

(2)将(1)的取球方式改为第一次取球后放回盒中再作第二次取球,记录两次取球的号码。

(3)一次从盒中任取2个球,记录取球的结果。

(1){(,)|,,1,2,3,4};

(2){(,)|,1,2,3,4};

(3){(,)|,,1,2,3,4}i j i j i j i j i j i j i j i j ≠==<=

2.设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件。

(1)A 、B 、C 中只有A 发生; (2)A 不发生,B 与C 发生;

(3)A 、B 、C 中恰有一个发生; (4)A 、B 、C 中恰有二个发生;

(5)A 、B 、C 中没有一个发生; (6)A 、B 、C 中所有三个都发生;

(7)A 、B 、C 中至少有一个发生; (8)A 、B 、C 中不多于两个发生。 (1);(2);

(3);

(4);(5);(6);

(7);(8);

ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC A B C ABC B C ????????u r 或A

第一章 随机事件及其概率(二)

一、选择题:

1.掷两颗均匀的骰子,事件“点数之和为3”的概率是 [ B ]

(A )136

(B )118 (C )112 (D )111 2.袋中放有3个红球,2个白球,第一次取出一球,不放回,第二次再取一球,则两次都是红球

的概率是

[ B ]

(A )925 (B )310 (C )625

(D )320 3. 已知事件A 、B 满足A B ?,则()P B A -≠ [ B ]

(A )()()P B P A - (B )()()()P B P A P AB -+

(C )()P A B (D )()()P B P AB -

4.A 、B 为两事件,若()0.8,()0.2,()0.4P A B P A P B ?===,则 [ B ]

(A )()0.32P A B = (B )()0.2P A B =

(C )()0.4P B A -= (D )()0.48P B A =

5.有6本中文书和4本外文书,任意往书架摆放,则4本外文书放在一起的概率是 [ D ]

(A )4!6!10!? (B )710 (C )410 (D )4!7!10!

? 二、选择题:

1.设A 和B 是两事件,则()()P A P AB =+()P AB

2.设A 、B 、C 两两互不相容,()0.2,()0.3,()0.4P A P B P C ===,则[()]P A B C ?-=

3.若()0.5,()0.4,()0.3P A P B P A B ==-=,则()P A B ?= 。

4.设两两独立的事件A ,B ,C 满足条件ABC φ=,1()()()2

P A P B P C ==<,且已知 9()16

P A B C ??=,则()P A =14。. 5.设1()()()4P A P B P C ===,1()0,()()8

P AB P AC P BC ===,则A 、B 、C 全不发生的概

率为 12

。 6.设A 和B 是两事件,B A ?,()0.9,()0.36P A P B ==,则()P AB = 。

三、计算题:

1.罐中有12颗围棋子,其中8颗白子,4颗黑子,若从中任取3颗,求:

(1)取到的都是白子的概率;

(2)取到的两颗白子,一颗黑子的概率;

(3)取到的3颗中至少有一颗黑子的概率;

(4)取到的3颗棋子颜色相同的概率。

38312218431238

3

12338433121214(1);55

28(2);5541(3)1;55

3(4).11

C C C C C C

C C C C C ==-=+=

2.加工某一零件共需经过4道工序,设第一、二、三和四道工序的次品率分别为2%、3%、5%和3%,假定各道工序是互不影响的,求加工出来的零件的次品率。

100%12.40221%.

=-=解:次品率(100%-2%)(100%-3%)(100%-5%)(100%-3%)

3.袋中人民币五元的2张,二元的3张和一元的5张,从中任取5张,求它们之和大于12元的概率。

解:要使它们之和大于12元,必须有两张5元,其余可任意取。则

23285102(12).9

C C P C ==之和大于元

第一章 随机事件及其概率(三)

一、选择题:

1.设A 、B 为两个事件,()()0P A P B ≠>,且A B ?,则下列必成立是 [ A ]

(A )(|)1P A B = (D )(|)1P B A = (C )(|)1P B A = (D )(|)0P A B =

2.设盒中有10个木质球,6个玻璃球,木质球有3个红球,7个蓝色;玻璃球有2个红色,4个蓝色。现在从盒中任取一球,用A 表示“取到蓝色球”,B 表示“取到玻璃球”,则P (B |A )=[ D ]。

(A )610 (B )616 (C )47 (D )411

3.设A 、B 为两事件,且(),()P A P B 均大于0,则下列公式错误的是 [ B ]

(A )()()()()P A B P A P B P AB ?=+- (B )()()()P AB P A P B =

(C )()()(|)P AB P A P B A = (D )()1()P A P A =-

4.设10件产品中有4件不合格品,从中任取2件,已知所取的2件产品中有一件是不合格品,则

另一件也是不合格品的概率为

[ B ]

(A )25 (B )15 (C )12

(D )35 5.设A 、B 为两个随机事件,且0()1,()0,(|)(|)P A P B P B A P B A <<>=,则必有 [ C ]

(A )(|)(|)P A B P A B = (B )(|)(|)P A B P A B ≠

(C )()()()P AB P A P B = (D )()()()P AB P A P B ≠

二、填空题:

1.设A 、B 为两事件,()0.8,()0.6,()0.3P A B P A P B ?===,则(|)P B A =

1/6 2.设()0.6,()0.84,(|)0.4P A P A B P B A =?==,则()P B =

3.若()0.6,()0.8,(|)0.5P A P B P B A ===,则(|)P A B = 0. 75

4.某产品的次品率为2%,且合格品中一等品率为75%。如果任取一件产品,取到的是一等品的概率为

5.已知123,,A A A 为一完备事件组,且121()0.1,()0.5,(|)0.2P A P A P B A ===2(|)0.6P B A = 3(|)0.1P B A =,则1(|)P A B = 1/18

三、计算题:

1.某种动物由出生活到10岁的概率为,活到12岁的概率为,求现年10岁的该动物活到12岁的概率是多少=

解:设A=“活到10岁” B =“活到12岁“

0560708

()().(|).()().P AB P B P B A P A P A ==== 2.某产品由甲、乙两车间生产,甲车间占60%,乙车间占40%,且甲车间的正品率为90%,乙车间的正品率为95%,求:

(1)任取一件产品是正品的概率;

(2)任取一件是次品,它是乙车间生产的概率。

解:设A 1 =“甲车间生产的产品” A 2 =” B =“正品”

(1)121122()()()()(|)()(|)P B P A B P A B P A P B A P A p B A =+=+

060904095092.....=?+?=

(2)222204005025008

()()(|)..(|).()().P A B P A P B A P A B P B P B ?==== 3.为了防止意外,在矿内同时设有两报警系统A 与B ,每种系统单独使用时,其有效的概率系统A 为,系统B 为,在A 失灵的条件下,B 有效的概率为,求:

(1)发生意外时,这两个报警系统至少一个有效的概率;()0.988P A B ?=

(2)B 失灵的条件下,A 有效的概率。(|)0.829P A B =

解:(1)11()()()P A B P A B P AB ?=-?=-

11008015100120988()(|)....P A P B A =-=-?=-=

(2)()()()()()(|)()()()()

P AB P A AB P A B B P A B P B P A B P B P B P B P B -?-?-==== 0988093082857007

....-=

= 4.某酒厂生产一、二、三等白酒,酒的质量相差甚微,且包装一样,唯有从不同的价格才能区别品级。厂部取一箱给销售部做样品,但忘了标明价格,只写了箱内10瓶一等品,8瓶二等品,6瓶三等品,销售部主任从中任取1瓶,请3位评酒专家品尝,判断所取的是否为一等品。专家甲说是一等品,专家乙与丙都说不是一等品,而销售主任根据平时资料知道甲、乙、丙3位专家判定的准确率分别为0.96,0.920.90和。问懂得概率论的主任该作出怎样的裁决

解:记{A =从箱中取出的一瓶为一等品} 1{B =甲判定取出的一瓶为一等品}

2{B =乙判定取出的一瓶为一等品} 3{B =丙判定取出的一瓶为一等品} 则本题要解决的是计算123(|)P A B B B 和123(|)P A B B B . 由贝叶斯公式得123123123123()(|)(|)()(|)()(|)

P A P B B B A P A B B B P A P B B B A P A P B B B A =+

其中,10557(),()1.24121212

P A P A ===-=此外由123,,B B B 相互独立得 123123(|)(|)(|)(|)0.96(10.92)(10.90)0.00768.P B B B A P B A P B A P B A ==?-?-=

123123(|)(|)(|)(|)(10.96)0.920.900.03312.P B B B A P B A P B A P B A ==-??=

所以,12350.0076812(|)0.1421.570.007680.033121212

P A B B B ?=≈?+? 123(|)10.14210.8579.P A B B B ≈-=

于是,销售部主任可以根据123(|)P A B B B 远远大于123(|)P A B B B 裁决:所取的一瓶不是一等品.

第一章 随机事件及其概率(四)

一、选择题:

1.设A ,B 是两个相互独立的事件,()0,()0P A P B >>,则一定有()P A B ?= [ B ]

(A )()()P A P B + (B )1()()P A P B - (C )1()()P A P B + (D )1()P AB -

2.甲、乙两人各自考上大学的概率分别为,,则两人同时考上大学的概率是 [ B ]

(A ) (B ) (C ) (D )

3.某人打靶的命中率为,现独立的射击5次,那么5次中有 2次命中的概率是 [ D ]

(A )322.08.0? (B )28.0 (C )

28.052? (D )32252.08.0?C 4.设A ,B 是两个相互独立的事件,已知11(),()23

P A P B ==,则()P A B ?= [ C ] (A )12 (B )56 (C )23 (D )34

5.若A ,B 之积为不可能事件,则称A 与B [ B ]

(A )独立 (B )互不相容 (C )对立 (D )构成完备事件组

二、填空题:

1.设A 与B 是相互独立的两事件,且()0.7,()0.4P A P B ==,则()P AB =

2.设事件A ,B 独立。且()0.4,()0.7P A P B ==,则A ,B 至少一个发生的概率为

3.设有供水龙头5个,每一个龙头被打开的可能为,则有3个同时被打开的概率为

4.某批产品中有20%的次品,进行重复抽样调查,共取5件样品,则5件中恰有2件次品的概率为 ,5件中至多有2件次品的概率 。

三、计算题:

1.设某人打靶,命中率为,现独立地重复射击6次,求至少命中两次的概率。

解:所求的概率为

6666

2101()()()K P P k P P ==

=--∑ 6510460604095904(.)(.)(.).=--?=

2.某类灯泡使用寿命在1000个小时以上的概率为,求三个灯泡在使用1000小时以后最多只坏一个的概率。

解:设A =“灯泡使用寿命在1000个小时以上”, 则02().P A =

所求的概率为 0301233()()()()P C P A P A C P A P A =+

32

023********(.)(.)..=+??=

3.甲、乙、丙3人同时向一敌机射击,设击中敌机的概率分别为,,。如果只有一人击中飞机,则飞机被击落的概率是;如果2人击中飞机,则飞机被击落的概率是;如果3人都击飞机,则飞机一定被击落,求飞机被击落的概率。

解:设A =“甲击中敌机” B =“乙击中敌机” C =“丙击中敌机”

D k =“k 人击中飞机”(k =1,2,3) H =“敌机被击中”

1()()()()P D P ABC P ABC P ABC =++

040503060503060507036..........=??+??+??= 2()()()()P D P ABC P ABC P ABC =++

040503040507060507041..........=??+??+??=

3040507014()()....P D P ABC ==??=

112233()()(|)()(|)()(|)P H P D P H D P D P H D P D P H D =++

036020410601410458......=?+?+?=

4.一质量控制检查员通过一系列相互独立的在线检查过程(每一过程有一定的持续时间)以检查新生产元件的缺陷。已知若缺陷确实存在,缺陷在任一在线检查过程被查出的概率为p 。

(1)求缺陷在第二个过程结束前被查出的概率(缺陷若在一个过程查出就不再进行下一个过程);

(2)求缺陷在第n 个过程结束之前被查出的概率;

(3)若缺陷经3个过程未被查出,该元件就通过检查,求一个有缺陷的元件通过检查的概率; 注:(1)、(2)、(3)都是在缺陷确实存在的前提下讨论的。

(4)设随机地取一元件,它有缺陷的概率为0.1,设当元件无缺陷时将自动通过检查,求在(3)的假设下一元件通过检查的概率;

(5)已知一元件已通过检查,求该元件确实是有缺陷的概率(设0.5p =)。

解:以(1,2,,)i A i n =L 记事件“缺陷在第i 个过程被检出”。按题设()(1,2,,)i P A p i n ==L 且1A 2,,n A A L 相互独立。

(1)按题意所讨论的事件为,缺陷在第一个过程就被查出或者缺陷在第一个过程未被查出但在第二个过程被查出,即112A A A ?,因而所求概率为

211212()()()()(1)2.P A P A A p P A P A p p p p p +=+=+-=-

(2)与(1)类似可知所求概率为

112123121()()()()n n P A p A A P A A A P A A A A -++++L L

21(1)(1)(1)1(1).n n p p p p p p p p -=+-+-++-=--L

(3)所求概率为3123123()()()()(1).P A A A P A P A P A p ==-

(4)以B 记事件“元件是有缺陷的”,所求概率为

(P 元件有缺陷且3次检查均未被查出?元件无缺陷)

123123123()()()(|)()()P BA A A B P BA A A P B P A A A B P B P B =?=+=+

3

(1)0.10.9.p =-?+

(5)所求概率为 33(|)()(|)()(1)0.10.0137(0.5)(1)0.10.9P P P P p p p =

-?===-?+通过有缺陷有缺陷有缺陷通过通过其中

5.设A ,B 为两个事件,(|)(|),()0,()0P A B P A B P A P B =>>,证明A 与B 独立。 证: 由于()(|)()

P AB P A B P B = 1()()()(|)()()P AB P A P AB P A B P B P B -==- 已知 (|)(|)P A B P A B =

有 ()()P AB P B 1()()()

P A P AB P B -=- 即 ()()()P AB P A P B =

所以 A 与B 独立

第一章 随机事件及其概率(五)

一、选择题:

1.对于任意两个事件A 和B [ B ]

(A )若AB φ≠,则A ,B 一定独立 (B )若AB φ≠,则A ,B 有可能独立

(C )若AB φ=,则A ,B 一定独立 (D )若AB φ=,则A ,B 一定不独立

2.设0()1,0()1,(|)(|)1P A P B P A B P A B <<<<+=,则 [

D ] (A )事件A 和B 互不相容 (B )事件A 和B 互相对立

(C )事件A 和B 互不独立 (D )事件A 和B 相互独立

3.设A ,B 为任意两个事件且A B ?,()0P B >,则下列选项必然成立的是 [ B ]

(A )()(|)P A P A B < (B )()(|)P A P A B ≤

(C )()(|)P A P A B > (D )()(|)P A P A B ≥

二、填空题:

1.已知A ,B 为两个事件满足()()P AB P AB =,且()P A p =,则()P B = 1p -

2.设两两独立的事件A ,B ,C 满足条件ABC φ=,1()()()2

P A P B P C ==<,且已知 9()16

P A B C ??=,则()P A = 1/4 3.假设一批产品中一,二,三等品各占60%,30%,10%,从中任意取出一件,结果不是三等品,

则取到的是一等品的概率是

2/3

三、计算题: 1.设两个相互独立的事件都不发生的概率为

19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,求A 发生的概率()P A 2/3

解:已知 19()()()P AB P A P B ==

又()()P AB P BA = 而 ()()()P AB P A P AB =- ()()()P BA P B P AB =-

所以,有()()P A P B = 13()P A =

故 23

()P A = 2.如果一危险情况C 发生时,一电路闭合并发出警报,我们可以借用两个或多个开关并联以改善可靠性。在C 发生时这些开关每一个都应闭合,且若至少一个开关闭合了,警报就发出。如果两个这样的开关并联连接,它们每个具有0.96的可靠性(即在情况C 发生时闭合的概率),问这时系统的可靠性(即电路闭合的概率)是多少如果需要有一个可靠性至少为0.9999的系统,则至少需要用多少只开关并联设各开关闭合与否是相互独立的。

解:以i A 表示事件“第i 只开关闭合”,1,2,,.i n =L 已知()0.96i P A =,由此可得两只这样的开关并联而电路闭合的概率为(注意各开关闭合与否是相互独立的)

21212121212()()()()()()()()20.960.960.9984.P A A P A P A P A A P A P A P A P A ?=+-=+-=?-= 设需要n 只这样的开关并联,此时系统可靠性1()n i i R P A ==U ,注意到121,n

i n i A A A A ==L U 且由12,,,n A A A L 的独立性推得12,,,n A A A L 也相互独立。故

1211()1()1()1(10.96).n n n i i n i i R P A P A P A A A ====-=-=--L U U

要使0.9999,R ≥即要使10.040.9999n -≥,故有lg 0.0001 2.86.lg 0.04

n ≥= 因n 为整数,故 3.n ≥即至少要用3只开关并联。

3.将A B C 、、三个字母之一输入信道,输出为原字母的概率为α,而输出为其他一字母的概率为12

α-。今将字母串,,AAAA BBBB CCCC 之一输入信道,输入,,AAAA BBBB CCCC 的概率分别为123123,,(1)p p p p p p ++=,已知输出为ABCA ,问输入的是AAAA 的概率是多少(设信道

传输各个字母的工作是相互独立的)

解:以111,,A B C 分别表示事件“输入AAAA ”、“输入BBBB ”、“输入CCCC ”,以D 表示事件“输出ABCA ”。因111,,A B C 事件两两互不相容,且有

111111123()()()()1P A B C P A P B P C p p p ??=++=++=,

因此全概率公式和贝叶斯公式可以使用。由贝叶斯公式有

1111111213

()(|)(|).()(|)(|)(|)P A D P D A p P A D P D P D A p P D B p P D C p ==++ 在输入为AAAA (即事件1A )输出ABCA (即事件D )时,有两个字母为原字母,另两字母为其他字母,所以2211(|)().2P D A αα-=同理3111(|)(|)().2

P D B P D C αα-==代入上式并注意到 1231p p p ++=得到1112(|).(31)1p P A D p ααα=

-+- 4.一条自动生产线连续生产n 件产品不出故障的概率为(0,1,2,)!n

e n n λλ-=L ,假设产品的优质

率为(01)p p <<。如果各件产品是否为优质品相互独立。求:

(1)计算生产线在两次故障间共生产k 件(k = 0,1,2,…)优质品的概率;

(2)若已知在某两次故障间该生产线生产了k 件优质品,求它共生产m 件产品的概率。 解:设A n =“连续生产n 件产品不出故障” B =“两次故障间生产k 件优质品”

(1)1()(|)()()!n k k n k n n

n n k n k e P B P B A P A C p p n λλ-+∞+∞-====-?∑∑ (012,,,k =L ).

(2)(1)

!,()(|)(1)()!0,

.m k k m k m n m k k n k m n n k e C p p m m k P A B P A B e C p p P B n m k λλλλ----≥?-?≥?==?-??

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

概率论与数理统计第四版第二章习题答案

概率论与数理统计 第二章习题 1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。 解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010; 2.(1)一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。 解 (1)在袋中同时取3个球,最大的号码是3,4,5。每次取3个球,其总取法: 3554 1021 C ?= =?,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。因而其概率为 2 2335511 {3}10 C P X C C ==== 若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533 {4}10 C P X C C ==== 若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法 其概率为 25335566 {5}10 C P X C C ==== 一般地 3 5 21 )(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为

(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X的取值为1,2,3,4,5,6, 最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11 {1} 36 P X==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3), 9 {2} 36 P X==; 最小点数为3的共有7种, 7 {3} 36 P X==; 最小点数为4的共有5种, 5 {4} 36 P X==; 最小点数为5的共有3种, 3 {5} 36 P X==; 最小点数为6的共有1种, 1 {6} 36 P X== 于是其分布律为 3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数, (1)求X的分布律; (2)画出分布律的图形。 解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。在不放回的情形下, 从15只产品中每次任取一只取3次,其总的取法为:3 15151413 P=??,其概率为 若取到的次品数为0,即3次取到的都是正品,其取法为3 13131211 P=?? 其概率为 13121122 {0} 15141335 p X ?? === ??

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

概率论第二章练习答案

《概率论》第二章练习答案 一、填空题: ”2x c S 1 1.设随机变量X的密度函数为f(x)= 则用丫表示对X的3次独立重复的 0 其匕 '- 观察中事件(X< -)出现的次数,则P (丫= 2)= ___________________ 。 2 2.设连续型随机变量的概率密度函数为: ax+b 0

4. 设为随机变量,E =3, E 2=11,则 E (4 10) = 4E TO =22 5. 已知X的密度为(x)二ax?"b Y 01 0 . x :: 1 1 1 (x ) =P(X?),则 3 3 6. 7. 1 1 (X〈一)= P ( X〉一)一 1 (ax b)dxjQx b) 联立解得: dx 若f(x)为连续型随机变量X的分布密度,则J[f(x)dx= ________ 1 ——'J 设连续型随机变量汕分布函数F(x)=x2/:, 丨1, x :: 0 0 岂 x ::: 1,则 P ( E =0.8 ) = _0_; P(0.2 :::: 6) = 0.99 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度:(x)二 x _100 x2,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不0(其他) 需要更换的概率为_____ 厂100 8/27 _________ x> 100

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

第二章_概率论解析答案习题解答

第二章 随机变量及其分布 I 教学基本要求 1、了解随机变量的概念以及它与事件的联系; 2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质; 3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用; 4、会求简单随机变量函数的分布. II 习题解答 A 组 1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为 1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω= 以X 表示两个产品中的合格品数. (1) 写出X 与样本点之间的对应关系; (2) 若此产品的合格品率为p ,求(1)p X =? 解:(1) 10ω→、21ω→、31ω→、42ω→; (2) 1 2(1)(1)2(1)p X C p p p p ==-=-. 2、下列函数是否是某个随机变量的分布函数? (1) 021()2021 x F x x x <-??? =-≤

求常数A 及(13)p X <≤? 解:由()1F +∞=和lim (1)x x A e A -→+∞ -=得 1A =; (13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-. 4、设随机变量X 的分布函数为 2 00()0111 x F x Ax x x ≤??=<≤??>? 求常数A 及(0.50.8)p X <≤? 解:由(10)(1)F F +=得 1A =; (0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=. 5、设随机变量X 的分布列为 ()a p X k N == (1,2,,)k N =L 求常数a ? 解:由 1 1i i p +∞ ==∑得 1 1N k a N ==∑ 1a ?=. 6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、 5,且 0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、321090 5100 (3)C C p X C ==、 4110905100(4)C C p X C ==、50 1090 5100 (5)C C p X C == 于是X 的分布列为

概率论习题试题集

11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。 12. 某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭 蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。 13. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随 意将这些油漆发给顾客。问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少? 14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求: (1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。 15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。 16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次; (3)三个数字中8至少出现一次;(4)三个数字之和等于6。 (利用事件的关系求随机事件的概率) 17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少? 18. 甲、乙两人先后从52张牌中各抽取13张, (1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率; (2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。 19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。试求下列事件的概率: (1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率论与数理统计第二章答案

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

概率论1.1概率论随机事件及其运算

《概率论》课后练习(一) 第一章§1-1随机事件与概率 班级 姓名 座号 成绩 一.填空题(每空1.6分,共计8分) 1.一份试卷上有6道题。某学生在解答时由于粗心随机地犯了4处不同的错误。现观察该学生做完试卷他答对的题数,则样本空间=Ω____________________。 2.十件产品中三件次品,每次从中取1件(不放回抽样)直到将三件次品都取出,记录抽取到的正品数;则样本空间=Ω_______________ 。 3. 一口袋中有许多红色、白色、蓝色的乒乓球,在其中任取出4 只,观察它们具有颜色的种数。则样本空间=Ω______________________。 4..设某人向靶子射击3次,用 i A 表示“第i 次射击击中靶子” )3,2,1(=i ,试用语言描述下列事件:(1)— ——321A A A (2) 21A A 二. 单项选择题(每小题2,共计8分) 1. 射击3次,事件i A 表示第i 次命中目标)3,2,1(=i ,则表示至少命中一次的是 ( ) )(A 321A A A )(B 321A A A -Ω )(D A A A A A A A A A 21321321 )(D 321A A A 2. 以A 表示事件“甲种产品畅销或乙种产品滞销”,则其对立事件A 表示( )。 )(A “甲种产品滞销,乙种产品畅销” )(B “甲、乙两种产品均畅销” )(C “甲种产品滞销” )(D “甲种产品滞销或乙种产品畅销” 3. 对于任意事件A 和B ,则与B B A =+不等价的是( )。 )(A B A ? )(B A B ? )(C φ=B A )(D φ=B A 4. 对于事件A ,C B ,,则下列等式不成立的是( )。 )(A B B A A -+=)( )(B ))(()(C A B A AB A ++=+ )(C 如果AB A =,则B A ? )(D )(C B A C B A +-=-- 三.下列说法是否正确?(必须说明理由 )(每小题2分,共计4分) (1)若Ω=+B A ,则B A ,互为对立事件。 (2) 若φ=ABC ,则C B A ,,两两互斥。

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论第三版第2章答案详解

两人各投中两次的概率为: P(A ^ A 2B 1B 2^0.0784O 所以: 作业题解: 2.1掷一颗匀称的骰子两次,以X 表示前后两次出现的点数之和 ,求X 的概率分布,并验 证其满足(222) 式. 解: Q Q Q Q 根据 v P(X = k) =1,得 k =0 故 a 二 e 「1 2.3 甲、乙两人投篮时,命中率分别为0.7和0.4 ,今甲、乙各投篮两次,求下列事件的 概率: (1)两人投中的次数相同;(2) 甲比乙投中的次数多. 解:分别用A ,B j (i =1,2)表示甲乙第一、二次投中,则 P(A) = P(A 2)=0.7,P(A) = P(A 2)=0.3,P(B 1)= P(B 2)=0.4,P(B 1)= P(D) =0.6, 两人两次都未投中的概率为: P(A A 2 B^! B 2) = 0.3 0.3 0.6 0.6二0.0324, 两人各投中一次的概率为: 并且,P(X P(X P(X P(X = 12) = 1 36 =10) 煤 =8) 嗥; =k)=( =2) =P(X =4) =P(X =6) =P(X 2.2 2 P(X =3) =P(X =11)= ; 36 4 P(X =5) =P(X =9)= p (X =7)」。 36 k =2,3,4,5,6,7,8,9,10,11,12) P{X =k}二ae°,k =1,2…,试确定常数 解: k ae ae = 1 ,即 1=1。 k -0 1 - e

P(AA2BB2)P(AA2B2B1)P(A2AB1B2)P(AA2B2B1)= 4 0.7 0.3 0.4 0.6 = 0.2016两人各投中两次的概率为:P(A^ A2B1B2^0.0784O所以:

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

相关主题
文本预览
相关文档 最新文档