当前位置:文档之家› (王)选修2-3离散型随机变量及其分布列知识点

(王)选修2-3离散型随机变量及其分布列知识点

(王)选修2-3离散型随机变量及其分布列知识点
(王)选修2-3离散型随机变量及其分布列知识点

离散型随机变量及其分布

知识点一:离散型随机变量的相关概念;

随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示

离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量

连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量

离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出

离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表

为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质;

任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:

(1) 01,2,i p i ≥=???,;12(2) 1P P ++

=

特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的

概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+

知识点二:两点分布:

若随机变量X 的分布列: 则称

X 的分布列为两点分布列.

特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)

为成功率.

(2)两点分布又称为0-1分布或伯努利分布

(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是

否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究.

知识点三:超几何分布:

一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

(),0,1,,min{,},,,.k n k M N M

n

N

C C P X k k m m M n n N M N C --===???=≤≤其中称超几何分布列.

为超几何分布列,

知识点四:离散型随机变量的二项分布;

在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是

k

n k k n n q p C k P -==)(ξ,(0,1,2,3,k =…, p q -=1)

ξ

由于k k n k

n

C p q -恰好是二项式展开式: 00111

()n n n k k n k

n n n n n n p q C p q C p q C p q C p q --+=++

++

+中的各项的值,所以称这样的随

机变量ξ服从二项分布,记作(,)B n p ξ

其中n ,p 为参数,并记(,,)k k n k

n C p q b k n p -=

知识点五:离散型随机变量的几何分布:

在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,(), (1)k p A q q p ==-,那么

112311231()()()()()

()()k k k k k P k P A A A A A P A P A P A P A

P A q p ξ---====(0,1,2,k =…,

p q -=1)

于是得到随机变量ξ的概率分布如下:

称这样的随机变量ξ服从几何分布,

记作1(,),0,1,2,,1.k g k p

q p k q p -===-其中 知识点六:求离散型随机变量分布列的步骤;

(1)要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;

(2)分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;

(3)列表对应,给出分布列,并用分布列的性质验证.

几种常见的分布列的求法:

(1)取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.

(2)射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.

(3)对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 知识点六:期望

数学期望:

则称=ξE +11p x 22p x n n 数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值

的平均水平。

平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …

n p =,则有=1p =2p …1n

n p ==

,=ξE +1(x +2x …1)n n x +?,所以ξ的数学期望又称为

平均数、均值。

期望的一个性质:若b a +=ξη,则b aE b a E +=+ξξ)(

知识点七:方差;

方差:对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取

这些值的概率分别是1p ,2p ,…,n p ,…,那么,

ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…称为随机变量ξ

的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ 方差的性质:①ξξD a b a D 2)(=+;②22)(ξξξE E D -= . 方差的意义:

(1)随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;

(2)随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;

(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 二项分布的期望与方差:若(),B n p ξ,则E np ξ= ,()1D np p ξ=-

几何分布的期望和方差:

若(),g k p 1k q p -=,其中0,1,2k =,…, p q -=1.则1E p ξ=

,21p D p

ξ-=.

知识点八:正态分布;

(1)频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.

(2)总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n 的样本,就是进行了n 次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.

(3)总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

①()f x ≥0 (x R ∈);②由曲线()y f x =与x 轴围成面积为1. (5)解决总体分布估计问题的一般程序如下:

①先确定分组的组数(最大数据与最小数据之差除以组距得组数); ②分别计算各组的频数及频率(频率=

总数

频数

); ③画出频率分布直方图,并作出相应的估计

.

(6)条形图是用其高度表示取各值的频率;直方图是用图形面积的大小表示在各区间内取值的频率;累积频率分布图是一条折线,利用任意两端值的累积频率之差表示样本数据在这两点值之间的频率. (7)正态分布密度函数:简称正态曲线

22

()2,(),(,),((0))x x x μσμσ?μσσ--

=

∈-∞+∞>函数式中的实数、是参数,

,()(),b x a

X P a X b x d X μσ?<≤=?随机变量满足:则称的分布为正态分布

其中π是圆周率;e 是自然对数的底;x 是随机变量的取值;μ为正态分布的均值;

σ是正态分布的标准差.正态分布一般记为),(2σμN 。即若()2,N ξ

μσ,

则E ξμ=,2D ξσ=

(8)正态分布),(2σμN 是由均值μ和标准差σ唯一决定的分布

通过固定其中一个值,讨论均值与标准差对于正态曲线的影响 ,

它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(),a b 内取值的概率等于该区间上总体密度曲线

与x 轴、直线x a =、x b =所围

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布律

5.离散型随机变量及其分布律 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第二章第§2离散型随机变量及其分布律 【教材分析】:概率论考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统计规律性,由此,就把随机试验的每一个可能的结果与一个实数联系起来。随机变量正是为了适应这种需要而引进的,随机变量的引入有助于我们应用微积分等数学工具,把研究深入,一维离散型随机变量是随机变量中最简单最基本的一种。 【学情分析】: 1、知识经验分析 学生已经学习了概率的意义及概率的公理化定义,学习了事件的关系及运算,掌握了概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能: 了解离散型随机变量的分布律,会求某些简单的离散型随机变量的分布律列;掌握伯努利试验及两点分布, 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。 3、情感态度与价值观 通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学“零距离”,从而激发学生学习数学的热情。 【教学重点、难点】: 重点:掌握离散型随机变量的概念及其分布律、性质,理解伯努利试验,两点分布。 难点:伯努利试验,两点分布。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】:

一、问题引入(离散型随机变量的概念) 例1:观察掷一个骰子出现的点数。 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6。 例2若随机变量 X 记为 “连续射击, 直至命中时的射击次数”, 则 X 的可能值是: 1,2,3,. 例3 设某射手每次射击打中目标的概率是0.8,现该射手射了30次,则随 机变量 X 记为“击中目标的次数”, 则 X 的所有可能取值为: 0,1,2,3,,30. 定义 有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、离散型随机变量的分布律 定义 设离散型随机变量X 的所有可能取值为),2,1( =k x k , X 取各个可能值得概率,即事件称}{k x X =的概率,为 ,2,1,}{===k p x X P k k 由概率的定义,k p 满足如下两个条件: 1))21(0 ,,=≥k p k ; 2) ∑∞ ==1 1k k p (分布列的性质) 称(2.1)式为离散型随机变量为X 的概率分布或分布律, 也称概率函数。 常用表格形式来表示X 的概率分布: n i n p p p p x x x X 2121 【设计意图】:给出分布律的概念和性质,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。 例1:()()1,2,,C k P X k k N X N ?=== 若为随机变量的分布律,是确 定常数C 。 解:由分布律特征性质 1 知 C ≥ 0 , 由其特征性质 2 知 1 ()1N k P X k == =∑ 1 N k C k N =?=∑ )(12C N N ++=+ ()12 C N += 21C N ∴= + 【设计意图】:通过这个例子,让学生掌握离散型随机变量的分布律的性质。

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列 知识点 1.随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: 此表称为离散型随机变量P ( X =x i )=p i ,i =1,2,…,n 表示X 的分布列. (2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11 =∑=n i i p 3.常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m , 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.

题型一离散型随机变量的理解 【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度X C .某超市一天中来购物的顾客数X D .小马登录QQ 找小胡聊天,设X =? ???? 1,小胡在线 0,小胡不在线 【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ; (2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数. 【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6 D .ξ≤5 【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25 【过关练习】 1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度. 2.某人射击的命中率为p (0

随机变量及分布列习题

随机变量及分布列 1.已知随机变量() 20,X N σ~,若(2)P X a <=,则(2)P X >的值为( ) A. 12a - B. 2 a C. 1a - D. 12a + 2.已知随机变量 ,若 ,则的值为( ) A. 0.4 B. 0.2 C. 0.1 D. 0.6 3.已知 ,,则的值为( ) A. 10 B. 7 C. 3 D. 6 4.集装箱有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球 号码之积是4的倍数,则获奖.若有4人参与摸奖,恰好有3人获奖的概率是( ) A. B. C. D. 5.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2 的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为__________. 6.设随机变量服从正态分布, ,则__________. 7.某人通过普通话二级测试的概率是,他连线测试3次,那么其中恰有1次通过的概率是( ) A. B. C. D. 8.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个 数均为奇数”,则( ) A. B. C. D. 9.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机 抽取一个容量为8的样本进行分析. (Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少; (Ⅱ)随机抽取8位同学,数学成绩由低到高依次为:6065707580859095,,,,,,,; 物理成绩由低到高依次为:7277808488909395,,,,,,,,若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望.

随机变量及其分布-离散型随机变量及其分布

离散型随机变量及其分布列 知识点 1随机变量的有关概念 (1) 随机变量:随着试验结果变化而变化的变量,常用字母 X , Y , E, n …表示. (2) 离散型随机变量:所有取值可以一- 变量. 2. 离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量 X 可能取的不同值为 X 1, X 2,…,X i ,…,x n , X 取每一个值X i (i = 1,2,…,n) 的概率P(X = X i )= P i ,以表格的形式表示如下: 此表称为离散型随机变量 P(X = X i )= p i , = 1,2,…, n 表示X 的分布列. (2)分布列的性质: n ① p i >0 i = 1,2,3,…,n ;① P i 1 i 1 3. 常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称 X 服从两点分布,并称 p = P(X = 1)为成功概率. (2)超几何分布 其中 m = min{ M , n},且 n 汆, M 哥,n , M , N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 题型一离散型随机变量的理解 【例 1】 下列随机变量中,不是离散型随机变量的是 ( ) A .某个路口一天中经过的车辆数 X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 X C .某超市一天中来购物的顾客数 X 在含有M 件次品的N 件产品中,任取 n 件,其中恰有X 件次品,则 P(X = k)= c M c N —M c N ,k = 0,1,2, m ,

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

随机变量及其分布列.几类典型的随机分布

随机变量及其分布列.几类典型的随机分布 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示: X X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. 两点分布又称01-以这种分布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤, 这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参

数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布 若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立 重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q -==,其中0,1,2,,k n =.于是得到X 的分布列 由式 00111 0()C C C C n n n k k n k n n n n n n q p p q p q p q p q --+=++++ 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差: 若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq =(1)q p =-. ⑷正态分布 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为 X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从 正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为 22 ()2()x f x μσ--= ,x ∈R ,其中μ,σ是参数,且0σ>, μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710(1)C p p - ()B 33 310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概 率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是 15 4,刮三级以上风的概率为152,既 刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A. 225 8 B.2 1 C.8 3 D.4 3 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ). A.15 B.25 C.35 D.45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(?C B.83)85()83(29911?C C.29911)83()85(?C D. 29911)85()83(?C

随机变量及其分布考点汇总

随机变量及其分布考点汇总

————————————————————————————————作者:————————————————————————————————日期:

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(1Λ=i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. ξ 1x 2x … i x … P 1p 2p … i p … 有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p . 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表: 喜爱打篮球 不喜爱打篮球 合计 男生 5 女生 10 合计 50 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. 下面的临界值表供参考: 2 ()p K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:2 2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

数学百大经典例题——离散型随机变量分布列(新课标)

耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论. 解:由题,因为 ()p n B ,~ξ且ξ取不同值时事件互斥,所以,

相关主题
文本预览
相关文档 最新文档