当前位置:文档之家› 风力机的基本参数与理论

风力机的基本参数与理论

风力机的基本参数与理论
风力机的基本参数与理论

风力发电机风轮系统

2.1.1 风力机空气动力学的基本概念

1、风力机空气动力学的几何定义

(1)翼型的几何参数

翼型

翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。下面是翼型的几何参数图

1)前缘、后缘

翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。

2)弦线、弦长

连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。

3)最大弯度、最大弯度位置

中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。

4)最大厚度、最大厚度位置

上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。

5)前缘半径

翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。

6)后缘角

翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。

7)中弧线

翼型内切圆圆心的连线。对称翼型的中弧线与翼弦重合。

8)上翼面凸出的翼型表面。

9)下翼面平缓的翼型表面。

(2)风轮的几何参数

1)风力发电机的扫风面积

风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。

下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。

根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速6m/s设计的风力机风轮会很大,虽在6m/s时运行很好,但遇大风易超速损坏电机,为抗强风时需增加结构强度使成本大大增加。

2)风轮轴线:风轮旋转运动的轴线

3)旋转平面:与风轮轴垂直,叶片在旋转时的平面

4)风轮直径:风轮在旋转平面上的投影圆的直径

5)风轮中心高:风轮旋转中心到基础平面的垂直距离

6)风轮锥角:叶片相对于和旋转轴垂直的平面的倾斜角

7)风轮仰角:风轮的旋转轴线和水平面的夹角

8)叶片的轴线:叶片纵向轴线,绕其可以改变叶片相对于旋转平面的偏转角(安装角)

9)风轮翼型:叶片与半径r并以风轮轴为轴线的圆柱相交的截面

10)安装角或浆距角:叶片径向位置叶片翼型弦线与风轮旋转面间的夹角

2、流线概念

气体质点:体积无限小的具有质量和速度的流体微团。

流线:

——在某一瞬时沿着流场中各气体质点的速度方向连成的一条平滑曲线。

——描述了该时刻各气体质点的运动方向:切线方向。

——一般情况下,各流线彼此不会相交。

——流场中众多流线的集合称为流线簇。如图所示。

绕过障碍物的流线:

——当流体绕过障碍物时,流线形状会改变,其形状取决于所绕过的障碍物的形状。

物体在空气中运动或者空气流过物体时,物体将受到空气的作用力,称为空气动力。通常空气动力由两部分组成:一部分是由于气流绕物体流动时,在物体表面处的流动速度发生变化,引起气流压力的变化,即物体表面各处气流的速度与压力不同,从而对物体产生合成的压力;另一部分是由于气流绕物体流动时,在物体附面层内由于气流粘性作用产生的摩擦力。将整个物体表面这些力合成起来便得到一个合力,这个合力即为空气动力。风轮叶片是风力机最重要的部件之一。它的平面形状与剖面几何形状和风力机空气动力特性密切相关,特别是剖面几何形状即翼型气动特性的好坏,将直接影响风力机的风能利用系数。气流绕风轮叶片的流动比较复杂,是一个空间的三元流动。当叶片长度与其翼型弦长之比展弦比较大时,可以忽略气流的展向流动,而把气流绕叶片的流动简化为绕许多段叶片元即叶素的流动,叶素之间互相没有干涉。当每个叶素的展向长度趋向无穷小时,叶素就成了翼型,空气绕叶素的流动就成了绕翼型的流动,也就成了二元流动或平面流动。

3、升力与阻力

风就是流动的空气,一块薄平板放在流动的空气中会受到气流对它的作用力,我们把这个力分解为阻力与升力。图中F是平板受到的作用力,D为阻力,L为升力。阻力与气流方向平行,升力与气流方向垂直。

我们先分析一下平板与气流方向垂直时的情况,此时平板受到的阻力最大,升力为零。当平板静止时,阻力虽大但并未对平板做功;当平板在阻力作用下运动,气流才对平板做功;如果平板运动速度方向与气流相同,气流相对平板速度为零,则阻力为零,气流也没有对平板做功。一般说来受阻力运动的平板当速度是气流速度的20%至50%时能获得较大的功率。

当平板与气流方向平行时,平板受到的作用力为零(阻力与升力都为零)。当平板与气流方向有夹角时,在平板的向风面会受到气流的压力,在平板的下风面会形成低压区,平板两面的压差就产生了侧向作用力F,该力可分解为阻力D与升力L。

当夹角较小时,平板受到的阻力D较小;此时平板受到的作用力主要是升力L。

截面为流线型的飞机翼片阻力很小,即使与气流方向平行也会有升力,因为翼片上表面弯曲,下表面平直,翼片上方气流速度比下方快,跟据流体力学的伯努利原理(丹尼尔·伯努利在1726年首先提出时的内容就是:在水流或气流里,如果速度小,压强就大,如果速度大,压强就小。),上方气体压强比下方小,翼片就受到向上的升力作用。

当翼片与气流方向有夹角(该角称攻角或迎角)时,随攻角增加升力会增大,阻力也会增大,平衡这一利弊,一般说来攻角为8至15度较好。超过15度后翼片上方气流会发生分离,产生涡流,升力会迅速下降,阻力会急剧上升,这一现象称为失速。

风力发电用风力机有阻力型与升力型两种,水平轴风力机基本都是升力型,垂直轴风力机有多种阻力型结构,也有是升力型结构。

3、压力中心

正常工作的翼片受到下方的气流压力与上方气流的吸力,这些力可用一个合力来表示,该力与弦线(翼片前缘与后缘的连线)的交点即为翼片的压力中心。

对称翼型在不失速状态下运行时,压力中心在离叶片前缘1/4叶片弦长位置;运行在不失速状态下的非对称翼型,在较大攻角时压力中心在离叶片前缘1/4叶片弦长位置,在小攻角时压力中心会沿叶片弦长向后移。

4、雷诺数

雷诺数是衡量作用于流体上的惯性力与粘性力相对大小的一个无量纲参数,雷诺数用Re 表示, Re= v l ρ/μ

式中ρ——流体密度;v——流场中的特征速度;l——特征长度;μ——流体的粘度,流体的粘度主要随温度变化,空气的粘度随气温升高加大;而液体则相反,温度升高粘度减小。

定义ν为流体的运动粘度,ν=μ/ρ于是 Re=μl /ν

在研究翼型的气动特性时,v取翼型的运动速度,l取翼型的弦长,得到的就是该翼型的雷诺数。

雷诺数对翼型气动特性影响较大,一般翼型的失速迎角随雷诺数的增大而增大、最大升力系数也随失速攻角的增大而增大。

5、失速

当翼片运行较小迎角时,翼片处在正常升力状态,翼片上方与下方的气流都是平顺的附着翼型表面流过,见下图中的A图,此时有较大的升力且阻力很小。如果将翼片迎角变大,当超过某个临界角度时,翼片上表面气流会发生分离,不再附着翼型表面流过,翼型上方会产生涡流,导致阻力急剧上升而升力下降,这种情况称为失速。见下图中的B图。

发生转变的临界角度称之为临界迎角或失速迎角,对于不同的翼型失速迎角也不同,普通翼型多在10度至15度,一般薄翼型失速迎角稍小,厚翼型失速迎角要大一些;对于同一个翼型影响失速迎角的是翼片运行时的雷诺数与翼片的光洁度。

6、相对风速

风力机叶片运动时所感受到的风速是外来风速与叶片运动速度的合成速度,称为相对风速。下图是一个风力机的叶片截面,当叶片运动时,叶片感受到的相对风速为w→,它是叶片的线速度(矢量)u→与风进叶轮前的速度(矢量)v→的合成矢量

w→=u→+v→

相对风速与叶片弦线之间的夹角就是叶片的攻角α

2.1.2 风力机基本理论

1、贝兹极限

风能就是空气运动的动能,风在通过风轮时推动风轮旋转,把它的动能转变为风轮旋转的能量,但经过风轮做功后的风速不会为零,仅仅是减小,故风只能把一部分能量转交给风轮。那么风能把多大的能量转交给风轮呢,从理论上讲最大值为59.3%,这也是风力发电机组的风能利用系数的最大值,称为贝兹极限。目前高性能的风力发电机组风能利用系数约为40%。

4.1.3 风力机性能参数

1、风能利用系数Cp

风功率是速度为v的空气经过平面S后速度减为0所产生的功率,这是理想的情况,事实上空气经过平面S后并没有消失还得流走,速度不可能为0,所以说风只可能把一部分能量传给平面S。

在风力机中风通过风轮扫掠面积时把一部分动能传给风力机,把风轮接受的风的动能与通过风轮扫掠面积的全部风的动能的比值称为风能利用系数,根据贝茨理论,风力机的最大风能利用系数是59%,风能利用系数是衡量风力机性能的主要指标。

而实际的风力机是达不到这个理想数据的,各种形式的风轮接受风力的风能利用系数是不同的,阻力型风力机的风能利用系数较低,升力型风力机的风能利用系数较高。风力发电机组除了风轮的风能利用系数外,还有机械传动系统效率、发电机效率等,这些效率的乘积就是风力发电机的全效率。在下表中列出了各种形式的风力发电机的全效率:

2、叶尖速比

风轮叶片尖端线速度与风速之比称为叶尖速比。

下图是一个风力机的叶轮,u是旋转的风力机风轮外径切线速度,v是风进叶轮前的速度,叶尖速比λ=u/v

阻力型风力机叶尖速比一般为0.3至0.6,升力型风力机叶尖速比一般为3至8。

在升力型风力机中,叶尖速比直接反映了相对风速与叶片运动方向的夹角,即直接关系到叶片的攻角,是分析风力机性能的重要参数。

3、实度比

风力机叶片的总面积与风通过风轮的面积(风轮扫掠面积)之比称为实度比(容积比),是风力机的一个参考数据。

左图为水平轴风力机叶轮,S为每个叶片对风的投影面积,B为叶片个数,R为风轮半径,σ为实度比,

σ=BS/πR2

右图为升力型垂直轴风力机叶轮,C为叶片弦长,B为叶片个数,R为风轮半径,L为叶片长度,σ为实度比。垂直轴风力机叶轮的扫掠面积为直径与叶片长度的乘积,σ=BCL/2RL= BC/2R

多叶片的风力机有高实度比,适合低风速、低转速大力矩的风力机,其效率较低。风力发电机多采用少叶片与窄叶片的低实度比风力机,可以较高效率高转速运行。

4、切入风速风力机对额定负载开始有功率输出时的最小风速。

5、额定风速设计与制造部门给出的使机组达到规定输出功率的最低风速。

6、切出风速由于调节器作用,使风力机对额定负载停止功率输出时的风速。

7、停车风速控制系统使风力机风轮停止转动的最小风速。

8、安全风速风力机在人工或自动保护时不致破坏的最大允许风速。

9、额定转速空气在标准状态下,对应于机组额定风速时的风轮转速。

10、额定功率空气在标准状态下,对应于机组额定风速时的输出功率值。

11、平均风速相应于有限时段,通常指二分钟或十分钟的平均情况。

12、年平均风速按照年平均的定义确定的平均风速。通常以年平均风速来衡量所在地区的风能大小。

13、风能密度不考虑风力机械的利用系数,单位面积获得的风功率称为风能密度,并以此表征某地风能潜力的大小

W=0.5ρv3(W/m2) (1)

推动风力机械运转的风能功率是面积、速度、气流动压的乘积。

=Fv(0.5ρv2)=0.5ρv3F (W) (2)

P

m

式中:ρ—空气质量密度(kg/m3);

v—风速(m/s);

F—风力机械叶轮扫掠的面积(m2)

由于实际上风力机械不可能将桨叶旋转的风能全部转变为轴的机械能,因而风轮的实际功率应为

P=0.5ρv3FC P(W) (3)

式中:C P—风能利用系数,即风轮所接受风的动能与通过风轮扫掠面积F全部风的动能比值。

以水平轴风力机械为例,理论上最大风能利用系数为0.593左右,但再考虑到风速变化和桨叶空气动力损失等因素,风能利用系数能达到0.4就相当高了。

风能密度有直接计算和概率计算两种方法。近年来各国的风能计算中,大多采用概率计算中的韦泊尔(Weibull)分布来拟合风速频率分布方法计算风能密度。

14、有效风速和有效风能密度

风力机械要根据当地的风况确定一个风速来设计的,该风速称为“设计风速”或“额定风速”,它与“额定功率”相对应。由于风的随机性的不稳定,风力机械不可能始终在额定风速下运行。因此风力机械就有一个工作风速范围,即从切入风速到切出速度,称为工作风速,即有效风速。依此计算的风能密度称为有效风能密度。

根据国标GB8974-88风力机名词术语的定义:

起动风速风力机风轮由静止开始转动并能连续运转的最小风速;

切入风速风力机对额定负载开始有功率输出时的最小风速;

切出风速由于调节器的作用使风力机对额定负载停止功率输出的风速;

工作风速风力机对额定负载有功率输出的风速范围,一般为3~20m/s。

从定义上可以看出,低于起动风速,风力机不能运行,而高于切出风速,风力机如继续在高风速下运行,将会严重损坏风力机,甚至造成人身事故,这尤其要引起人们的重视。

15、风能与风功率

一团质量为m的空气以速度v运动,它所具有的动能

设一个垂直于风向的平面,面积为S,

单位时间通过该平面的空气质量m为

ρ是空气密度标准状态下ρ=1.2928kg/m3,考虑到气温等因素本处计算取ρ=1.2kg/m3,代入(1)式得到风功率P:

可见同样面积下风功率的增加是按风速增加的三次方倍增加。

空气在1秒时间里通过单位面积的动能也称为“风能密度”,在此风能密度

风力发电基础知识

风力发电基础知识 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。 风力发电的原理,是利用风力带动风车叶片旋转,再透过 增速机将旋转的速度提升,来促使发电机发电。依据目前的风 车技术,大约是每秒三公尺的微风速度(微风的程度),便可 以开始发电。风力发电正在世界上形成一股热潮,为风力发电 没有燃料问题,也不会产生辐射或空气污染。 转子空气动力学 为了解风在风电机的转子叶片上的移动方式,我们将红色带子 绑缚在模型电机的转子叶片末端。黄色带子距离轴的长度是叶 片长度的四分之一。我们任由带子在空气中自由浮动。本页的 两个图片,其中一个是风电机的侧视图,另一个使风电机的正视图。 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 为什么转子叶片呈螺旋状? 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 风电机结构

机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。 偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装 置由电子控制器操作,电子控制器可以通过风向标来感觉风向。 图中显示了风电机偏航。通常,在风改变其方向时,风电机一 次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制 偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该 控制器可以自动停止风电机的转动,并通过电话调制解调器来 呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上

风力发电机工作原理图解析

风力发电,是能源业又一突破,其中风力发电机功不可没。通过风力发电机工作原理图,我们可以清晰了解各种奥妙。其实,风力发电机工作原理图并不是那么难懂。下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧! 风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。 风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32。7-36。9米/秒。 风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元。

风力发电机的设计及风力发电系统的研究毕业设计论文

毕 业 论 文 题 目: 风力发电机的设计及风力发电系统的研究

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 风力发电机的设计及风力发电系统的研究 一、基本任务及要求: 1)基本数据:额定功率 600=N P KW 连接方式 Y 额定电压 V U N 690= 额定转速 min /1512r n N = 相数 m=3 功率因数 88.00=?s c 效率 96.0=η 绝缘等级 F 极对数 P=2 2、本毕业设计课题主要完成以下设计内容: (1) 风力发电机的电磁设计方案; (2) 风力发电系统的研究; (3) 电机主要零部件图的绘制; (4) 说明书。 进度安排及完成时间: 2月20日——3月10日:查阅资料、撰写文献综述、撰写开题报告 3月13日——4月25日:毕业实习、撰写实习报告 3月27日——5月30日:毕业设计 4月中旬:毕业设计中期抽查 6月1日——6月14日:撰写毕业设计说明书(论文) 6月15日——6月17日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP 6月17日——6月20日:毕业设计答辩

目录 摘要 ..............................................................................................I ABSTRACT ......................................................................................II 第1章绪论 .. (1) 1.1 开发利用风能的动因 (1) 1.1.1 经济驱动力 (1) 1.1.2 环境驱动力 (2) 1.1.3 社会驱动力 (2) 1.1.4 技术驱动力 (2) 1.2 风力发电的现状 (2) 1.2.1 世界风力发电现状 (2) 1.2.2 中国风力发电现状[13] (3) 1.3风力发电展望 (3) 第2章风力发电系统的研究 (5) 2.1 风力发电系统 (5) 2.1.1 恒速恒频发电系统 (5) 2.1.2 变速恒频发电机系统 (6) 2.2 变速恒频风力发电系统的总体设计 (10) 2.2.1 变速恒频风力发电系统的特点 (10) 2.2.2 变速恒频风力发电系统的结构 (10) 2.2.3 变速恒频风力发电系统运行控制的总体方案 (20) 第3章风力发电机的设计 (27) 3.1 概述[11] (27) 3.2 风力发电机 (28) 3.2.1 风力发电机的结构 (28) 3.2.2 风力发电机的原理 (29) 3.3 三相异步发电机的电磁设计 (29) 3.3.1 三相异步发电机电磁设计的特点 (30) 3.3.2 三相异步发电机和三相异步电动机的差异[2] (30) 3.3.3 三相异步发电机的电磁设计方案 (31) 3.3.4 三相异步发电机电磁计算程序 (32)

风力机设计原理

第二章风力机设计理论 2.1 翼型基本知识 翼型几何参数: 如图所示在风轮半径:处取一宽度为dr的叶素,翼型的气动性能直接与翼型外形有关。通常,翼型外形由下列几何参数确定: (l)翼的前缘: 翼的前头A为一圆头; (2)翼的后缘: 翼的尾部B为尖型; (3)翼弦:翼的前缘左与后缘B的连线称翼的弦,左B的长是翼的弦长 (4)翼的上表面: 翼弦上面的弧面; (5)翼的下表面: 翼弦下面的弧面; (6)翼的最大厚度h: 翼上表面与下表面相对应的最大距离; (7)叶片安装角e: 风轮旋转平面与翼弦所成的角; (8)迎角(攻角)a: 翼弦与相对风速所成的角度; (9)入流角功: 旋转平面与相对风速所成的角。

2.2叶片设计的空气动力学理论 2.2.1贝茨理论 世界上第一个关于风力发电机叶轮叶片接受风能的完整理论是1919年由德国的贝茨(Bee)建立的。贝茨理论的建立,是假定叶轮是“理想”的:全部接受风能(没有轮毂),叶片无限多;对空气流没有阻力;空气流是连续的、不可压缩的;叶片扫掠面上的气流是均匀的;气流速度的方向不论在叶片前或叶片后都是垂直叶片扫掠面的(或称平行叶轮轴线的),这时的叶轮称“理想叶轮”。其计算简图如图。

V1——距离风力机一定距离的上游风速; V ——通过风轮时的实际风速; V2——离风轮远处的下游风速。 风力贝茨理论计算模型: 风作用在风轮上的力可由Euler 理论(欧拉定理) )(12V V SV F -=ρ 风轮所接受的功率为: )(122V V SV FV P -==ρ 经过风轮叶片的风的动能转化: )(2 12221V V SV T -=?ρ 由2和3式得到 221V V V += 因此风作用在风轮叶片上的力F 和风轮输出的功率P 分别为 )(2 1 2221V V S F -=ρ

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

小型风力发电机动力结构设计毕业设计论文

第一章概述 1.1课题研究的目的和意义 数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。 当前,全球都面临着能源枯竭、环境恶化、气温升高等问题,日益增长的能源需求、能源安全问题受到世界各国广泛关注。风能是一种可再生能源,它资源丰富,是一种永久性的本地资源,可为人类提供长期稳定的能源供应;她安全、清洁,没有燃料风险,更不会在使用中破坏环境。为此,世界各国都在加快风力发电技术的研究,以缓解越来越重的能源与环境压力,中国也不例外。 中国是世界上最大的煤炭生产国和消费国,能源利用以煤炭为主。在当前以石化能源为主体的能源结构中,煤炭占73.8%,石油占18.6%,天然气占2%,其余为水电等其它资源。在电力的能源消费中,也是以煤炭为主,燃煤发电量占总发电量的80%。但是,能为人类所用的石化资源是有限的,据第二届环太平洋煤炭会议资料介绍,按目前的技术水平和采掘速度计算,全球煤炭资源还可开采200年。此外,石油探明储量预测仅能开采34年,天然气约能开采60年。随着人口的增长和经济的发展,能源供需矛盾加剧,如果不趁早调整以石化能源为主体的能源结构,势必形成对数亿年来地球积累的生物石化遗产更大规模的挖掘、消耗,由此将导致有限的石化能源趋于枯竭,人类生态环境质量下降的恶性循环,不利于经济、能源、环境的协调发展。电力部己制定“大力发展水电,继续发展火电,适当发展核电,积极发展新能源发电”的基本原则,把风力发电作为优化我国电力工业结构跨世纪的战略发展目标①。 表1-1 1996-2005年世界风电市场增长 从表1-1可以看出,世界上的风电能源增长的非常迅速,10年平均增长率达到了29.77。截止2005年底,全世界并网运行的风力发电机总装机容量达到59237 MW ,是1996年装机容量的9.76倍②。

《风能理论与技术》

《风能理论与技术》 上课教案 课程编号: 课程中文名称:风能理论与技术 课程英文名称: Theory and Technology of Wind Energy 开课学期:7 学分/学时:1.5/24 先修课程:大学物理、流体力学、工程热力学 开课对象:本科生 责任人名单:杜刚、陈江 一、课程简介: 《风能理论与技术》是能源与动力工程学院的专业基础课,以三年级本科生为授课对象,目的是为能源与动力工程学院的学生系统地讲授风能技术的基础理论和工程技术知识,为我国风能产业的发展培养科研和工程技术人才而设置。 风能利用是一个系统工程,风能技术是一门新兴的多学科、交叉型边缘科学,它涉及到流体力学、固体力学、机械工程、电气工程、材料科学、环境科学等多种学科和专业。课程以水平轴风力机为研究解剖对象,以风力机设计中涉及的空气动力学和结构动力学为理论基础,核心内容包括风力机空气动力学、风力机特性、风力机载荷、风力机气动设计、风力机结构及材料、风力机试验等内容,课程还包括风资源及其评估、风电场规划、风电场电气系统等外围知识的介绍,通过本课程学习,引导学生将所学的相关理论知识和方法应用到风力机实际设计中去,使学生能够系统地掌握风力机的基础理论和工程技术知识,提高工程应用的能力。 课程教学以课堂讲解为主,围绕理论和应用两条主线进行:在理论方面,针对本院学生在流体力学和固体力学方面理论基础扎实的优势,通过课堂推导和细致讲解,使其掌握风力机设计和分析中最基本的理论和最核心的方法;在应用方面,通过大量具体案例的讲解和课堂练习训练学生将理论方法应用于实际的能力和技巧,同时提供各种图片和视频,使学生对风能相关的知识和实际工程应用加深直观的了解,拓宽他们的视野;通过这两个方面的学习,是学生初步具备开展风能工程实际工作的能力,并为其在行业内发展打下坚实的理论基础。在教学方法上,以课堂授课为主,结合课间讨论、试验参观以及课后作业等教学形式,使学生牢固掌握风能技术的基础理论和工程技术知识,为以后工作进行风能领域的相关科学研究

风力发电机原理

《可再生能源与可持续发展》作业题目:风力发电机原理 班级:08机制4班 姓名:毛羽西 学号:0822405 教师:李永国 2011年11 月

目录 1 风力发电机概述 (2) 2 水平轴涡轮发电机 (2) 2.1 水平轴涡轮机结构 (3) 2.2 水平轴涡轮机叶片 (4) 2.3 发电机 (5) 2.4 制动系统 (6) 3 风力发电前景展望 (7) 结论 (7) 参考文献: (7)

风力发电机原理 1 风力发电机概述 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电机的基本工作原理比较简单,风轮在风力的作用下旋转,将风的动能转变为风轮轴的机械能,风轮轴带动发电机旋转发电。其中风能转化装置称为风力机。风力机的核心部分为叶轮的设计,随着空气动力学的飞速发展,叶轮设计已经取得了巨大的进步。[1] 2 水平轴涡轮发电机 正如其名字的含义,水平轴风力涡轮机的转轴是水平安装的,与地面平行。水平轴风力涡轮机需要使用偏航调整装置时刻根据风向进行调整。偏航系统通常包括电机和变速箱,用于缓慢左右移动整个转子。涡轮机的电子控制器读取风向标设备(机械或电子风向标)的位置,并调整转子位置以尽量捕获最大的风能。水平轴风力涡轮机使用塔架将涡轮机组件上升到最适合风速的高度(这样叶片便不会碰到地面),并且占用非常少的地面空间,因为几乎所有组件都在高达80米的空中。

小型家用风力发电机毕业设计

小型家用风力发电机毕 业设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

摘要风能作为一种清洁的可再生能源越来越受到人们的重视,风力发电也逐渐成为了时下的朝阳产业。本论文详细阐明了小型独立风力发电系统的设计方案,对风力发电机组的结构和电能的变换及继电控制电路做了深入的研究。 本文提出的解决方案为,风力发电机组带动单相交流发电机,然后通过AC—DC—AC 变换为用户需要的标准交流电,并且考虑到风力的不稳定性,在系统中并入蓄电池组,通过控制电路的监控实现系统的控制,保证系统在风能充足时可蓄能,在风能不充足时亦可为负载供电。系统的运行状况采用继电控制电路监控和切换。 本论文的重点在于继点控制电路的设计,并对各种不同风力情况下系统的运行状况进行了全面而严谨的分析,最后电气控制部分进行了系统仿真。 关键词:风力发电机组;整流——逆变;继电控制 目录

引言 随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的

第一章绪论 风能是一种清洁的、储量极为丰富的可再生能源,它和存在于自然界的矿物质燃料能源,如煤、石油、天然气等不同,它不会随着其本身的转化和利用而减少,因此可以说是一种取之不尽、用之不竭的能源。而矿物质燃料储量有限,正在日趋减少,况且其带来的严重的污染问题和温室效应正越来越困扰着人们。因此风力发电正越来越引起人们的关注。 风力发电概述 1.1.1风力发电现状与展望 全球风能资源极为丰富,技术上可以利用的资源总量估计约53×106亿kWh /年。作为可再生的清洁能源,受到世界各国的高度重视。近20年来风电技术有了巨大的进步,发展速度惊人。而风能售价也已能为电力用户所承受:一些美国的电力公司提供给客户的风电优惠售价已达到2~美分/kWh,此售价使得美国家庭有25%的电力可以通过购买风电获得。 2004年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电已经成为解决世界能源问题的不可或缺的重要力量。按照风电目前的发展趋势,预计2008~2012年期间装机容量增长率为20%,以后到2015年期间为15%,2017~2020年期间为10%。其推算的结果2010年风电装机亿KW,风电电量×104亿kWh,2020年风电装机亿KW,风电电量×104亿kWh,占当时世界总电消费量×104亿kWh的%。 世界风电发展有如下特点:

风力发电机的基础知识

风力发电机的基础知识 一、风的认知 从某一个角度讲,风是太阳能的一种表现形式。 1.风的成因: ①地球的自转 ②温差: 地球表面的不同状态对太阳的吸热系数以及放热系数不同从而造成空气之间温度的差异,而导致风的形成。(如水面比地面的吸热慢,放热也慢)。 2.风的运动轨迹 风在遇到障碍物后,都会形成湍流。 二、风力发电机 风力发电机是一种将风能转换为电能的一种发电装置,实现风能转换成机械能,再由发电机把机械能转换成电能的过程。 1.风力发电机的技术原理 三相三相不控桥整流蓄电池 (1)发电机为三相(即三根线),输出三相应该是相互导通的,两根引出线的电阻是相同的,任意两根线一打是会出现火花。 (2)12V蓄电池充满电之后,电压会上升,一般蓄电认为电池充满在13.8V~14.5V之间。用风力充电,蓄电池电压都会高,1.1V~1.3V为额定电压,多种蓄电池工作状态选择是不一样的。10.2V切入逆变器。 发电机频率的监控,控制器增加监控点,电压信号选择保护。 2.风力发电机实际上是一个由风机叶片、发电机及尾舵组成的机组。 (1)最理想的叶片 叶片扫风面积越大,接受风能则越大。叶片侧面叶型的不同设计,可提高转速,减小阻力。 叶片理论极限值CP(max)=0.593 P∝SρO3 *cp (目前,大风机叶片实际做出来最理想的CP值为0.48,小风机为0.48~0.36,而HY系列的叶片CP值可做到0.42。) (2)高效能的发电机 发电机效率: 大型发电机0.95 小型发电机0.6~0.5 整机转化效率:整机转化效率= 气动效率(CP值) * 发电机效率 三、风力发电机的特点 风是一种随机能源,我们要利用风能发电,便要捕捉风能。而风能可以无限大,在这种特性下,如果不作限速,即使再优良的风机也会被损 坏。现在风机一般利用于发电的,都是在3M/S~60M/S输出空间。 一般采用以下几种限速装置: (1)变浆距(离心变浆距) 这是目前较先进的叶片控制方式,当大风来时,调型叶片,形成阻力,使风能大部分消耗在叶尖,限制能量输出。 (2)折尾 (3)机头上昂(或上侧昂):风大时向上推动,避让风。 以上三种叶片控制方式均有可靠性较差、较容易磨损风机相关部件的缺点。

风力发电机的工作原理

风力发电机的工作原理 风力发电机原理 是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。 使用风力发电机,就是源源不断地把风能变成我们家庭使用的标准市电,其节约的程度是明显的,一个家庭一年的用电只需20元电瓶液的代价。而现在的风力发电机比几年前的性能有很大改进,以前只是在少数边远地区使用,风力发电机接一个15W的灯泡直接用电,一明一暗并会经常损坏灯泡。而现在由于技术进步,采用先进的充电器、逆变器,风力发电成为有一定科技含量的小系统,并能在一定条件下代替正常的市电。山区可以借此系统做一个常年不花钱的路灯;高速公路可用它做夜晚的路标灯;山区的孩子可以在日光灯下晚自习;城市小高层楼顶也可用风力电机,这不但节约而且是真正绿色电源。家庭用风力发电机,不但可以防止停电,而且还能增加生活情趣。在旅游景区、边防、学校、部队乃至落后的山区,风力发电机正在成为人们的采购热点。无线电爱好者可用自己的技术在风力发电方面为山区人民服务,使人们看电视及照明用电与城市同步,也能使自己劳动致富。

小型风力发电机毕业设计论文

小型风力发电机毕业设计 摘要 基于开发风能资源在改善能源结构中的重要意义,本论文对风力发电机的特性作了简要的介绍,且对风力发电机的各种参数和风力机类型作了必要的说明。在此基础上,对风力发电机的原理和结构作了细致的分析。首先,对风力发电机的总体机械结构进行了设计,并且设计了限速控制系统。本课题设计的是一种新型的立式垂直轴小型风力发电机,由风机叶轮、立柱、横梁、变速机构、离合装置和发电机组成。这种发电机有体积小、噪音小、使用寿命长、价格低的特点,适合在有风能资源地区的楼房顶部,供应家庭用电,例如照明:灯泡,节能灯;家用电器:电视机、收音机、电风扇、洗衣机、电冰箱。 关键词:风力发电限速控制系统小型风力发电机

Abstract Exploiting wind energy resources is of great significance in improving energy structure. In the discourse,the characters of wind generator are introduced briefly,while parameters and types of wind generators are also narrated. Base on these,the theory and constitution of the wind generator are meticulously analyzed. Firstly,Has carried on the design to wind-driven generator's overall mechanism, And has designed the regulating control system. What I design is one kind of new vertical axis small wind-driven generator, by the air blower impeller, the column, the crossbeam, the gearshift mechanism, the engaging and disengaging gear and the generator is composed. This kind of generator has the volume to be small, the noise is small, the service life is long, the price low characteristic, suits in has the wind energy resources area building crown, the supply family uses electricity, For example illumination: The light bulb, conserves energy the lamp; Domestic electric appliances: Television, radio, electric fan, washer, electric refrigerator. Key words:Wind power generation, Regulating control system, Small wind-driven generator

风力发电基础知识汇总

风力发电 把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电的原理, 利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵) 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同) 由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。 铁塔是支承风轮、尾舵和发电机的构架。它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。 发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。 小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 一般说来,三级风就有利用的价值。但从经济合理的角度出发,风速大于每秒4米才适宜于发电。据测定,一台55千瓦的风力发电机组,当风速为每秒9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒6米时,只有16千瓦;而风速每秒5米时,仅为9.5千瓦。可见风力愈大,经济效益也愈大。 在我国,现在已有不少成功的中、小型风力发电装置在运转。 我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。中国风能储量很大、分布面广,仅陆地上的风能储量就有约 2.53亿千瓦。2009年,中国(不含台湾地区)新增风电机组10129台,容量13803.2MW,同比增长124%;累计安装风电机组21581台,容量25805.3MW。按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。以每千瓦装机容量设备投资7000元计算,根据《风能世界》杂志发布,未来风电设备市场将高达1400亿元至2100亿元。风电发展到目前阶段,其性价比正在形成与煤电、水电的竞争优势。风电的优势在于:能力每增加一倍,成本就下降15% 风力发电的输出

风力机设计

风力机课程设计 一种简单叶片的设计过程 Hank

一、设计任务 1)基于叶素和动量理论设计设计水平轴风力机叶片; 2)绘制风力机叶片弦长随叶片展向长度的变化曲线; 3)绘制风力机叶片扭角随叶片展向长度的变化曲线; 4)绘制设计风力机的性能曲线; 5)绘制设计叶片的图纸,以及各位置的叶片翼型结构图纸; 6)编写设计说明书,并附上必要的计算公式 二、常用符号 Pd 设计功率 U∞设计风速 W 合成流度 ω风轮旋转角速度 ρ空气密度 c 弦长 λ叶尖速比 D 风轮直径 R 风轮半径 σ叶片弦长实度 r φ 叶素倾角 β 叶素安装角 α叶素攻角 Cl 升力系数 Cd 阻力系数 M 总力矩 P 总功率 Cp 风能利用系数 a 轴向诱导因子 b 切向诱导因子

三、 基础理论 切向速度: (1-1) 轴向速度: (1-2) 叶素合成流速: (1-3) 入流角:(1) sin U a W φ∞-= (1-4a) (1) cos 2r b a ωφ+= (1-4b) 攻角:φα=-β (1-5) 垂直分力系数:sin cos y l d C C C φφ=- (1-6) 水平分力系数:cos sin x l d C C C φφ=+ (1-7) 迭代方程:2 2214sin 4sin r r x y a C C a φφσσ=(-)- (1-8) 14sin cos r y b C b φφσ= + (1-9) 叶片弦长实度: 22r N c N c R R σ= = ππμ (1-10) 叶素单位圆环扇面:24()(1)M U r b a r r ωδ∞δ=πρ- (1-11) 风能利用系数表达式: 321 2p P C U R ρ∞= π (1-12) 翼型与尖速比的关系:2r l C σλ= (1-13) 0(1b) y V r ω=+0(1)x V U a ∞= - W ==

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

风力发电机控制系统毕业设计(论文)word格式

风力发电机控制系统 风机控制系统:监控系统、主控系统、变桨控制系统、变频系统。 1、蓬勃发展的风电技术 风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gem sa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。 国内的风力发电控制技术起步较晚,目前的控制系统均是由欧洲专用控制方案提供商提供的专用系统,价格高昂且交货周期较长。开发自主知识产权的控制系统必须要提上日程,一方面,由于缺乏差异化而使得未来竞争中的透明度过高,而造成陷入激烈的价格竞争,另一方面,寻找合适的平台开发自主的风电控制系统将使得制造商在未来激烈竞争中获得先手。 然而,风电控制系统必须满足风电行业特殊的需求和苛刻的指标要求,这一切都对风力发电的控制系统平台提出了要求,而B&R的控制系统,在软硬件上均提供了适应于风力发电行业需求的设计,在本文我们将介绍因何这些控制器能够满足风力发电的苛刻要求。 2、风力发电对控制系统的需求 2.1高级语言编程能力 由于功率控制涉及到风速变化、最佳叶尖速比的获取、机组输出功率、相位和功率因素,发电机组的转速等诸多因素的影响,因此,它包含了复杂的控制算法设计需求,而这些,对于控制器的高级语言编程能力有较高的要求,而B&R PCC产品提供了高级语言编程能力,不仅仅是这些,还包括了以下一些关键技术: 2.1.1复杂控制算法设计能力 传统的机器控制多为顺序逻辑控制,而随着传感器技术、数字技术和通信技术的发展,复杂控制将越来越多的应用于机器,而机器控制本身即是融合了逻辑、运动、传感器、高速计数、安全、液压等一系列复杂控制的应用,PCC的设计者们很早就注意到这个发展方向 而设计了PCC产品来满足这一未来的需求。 为了满足这种需求,PCC设计为基于Automation Runtime的实时操作系统(OS)上, 支持高级语言编程,对于风力发电而言,变桨、主控逻辑、功率控制单元等的算法非常复杂,这需要一个强大的控制器来实现对其高效的程序设计,并且,代码安全必须事先考虑,以维护在研发领域的投资安全。

相关主题
文本预览
相关文档 最新文档