当前位置:文档之家› 数学的三个发展时期——现代数学时期

数学的三个发展时期——现代数学时期

数学的三个发展时期——现代数学时期
数学的三个发展时期——现代数学时期

数学的三个发展时期——现代数学时期

三、现代数学时期

现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。

18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。

19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。

大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。

后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。

1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。

在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。

另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,

阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。

上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。

19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。

现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。

19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。

拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。

20世纪有许多数学著作曾致力于仔细考查数学的逻辑基础和结构,这反过来导致公理学的产生,即对于公设集合及其性质的研究。许多数学概念经受了重大的变革和推广,并且像集合论、近世代数学和拓扑学这样深奥的基础学科也得到广泛发展。一般(或抽象)集合论导致的一些意义深远而困扰人们的悖论,迫切需要得到处理。逻辑本身作为在数学上以承认的前提去得出结论的工具,被认真地检查,从而产生了数理逻辑。逻辑与哲学的多种关系,导致数学哲学的各种不同学派的出现。

20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。这些情况是:现代科学技术研究的对象,日益超出人类的感官范围以外,向高温、高压、高速、高强度、远距离、自动化发展。以长度单位为例、小到1尘(毫微微米,即10^-15米),大到100万秒差距(325.8万光年)。这些测量和研究都不能依赖于感官的直接经验,越来越多地要依靠理论计算的指导。其次是科学实验的规模空前扩大,一个大型的实验,要耗费大量的人力和物力。为了减少浪费和避免盲目性,迫切需要精确的理论分机和设计。再次是现代科学技术日益趋向定量化,各个科学技术领域,都需要使用数学工具。数学几乎渗透到所有的科学部门中去,从而形成了许多边缘数学学科,例如生物数学、生物统计学、数理生物学、数理语言学等等。

上述情况使得数学发展呈现出一些比较明显的特点,可以简单地归纳为三个方面:计算机科学的形成,应用数学出现众多的新分支、纯粹数学有若干重大的突破。

1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。粗略地说,计算机科学是对计算机体系、软件和某些特殊应用进行探索和理论研究的一门科学。计算数学可以归入计算机科学之中,但它也可以算是一门应用数学。

计算机的设计与制造的大部分工作,通常是计算机工程或电子工程的事。软件是指解题的程序、程序语言、编制程序的方法等。研究软件需要使用数理逻辑、代数、数理语言学、组合理论、图论、计算方法等很多的数学工具。目前电子计算机的应用已达数千种,还有不断增加的趋势。但只有某些特殊应用才归入计算机科学之中,例如机器翻译、人工智能、机器证明、图形识别、图象处理等。

应用数学和纯粹数学(或基础理论)从来就没有严格的界限。大体上说,纯粹数学是数学的这一部分,它暂时不考虑对其它知识领域或生产实践上的直接应用,它间接地推动有关学科的发展或者在若干年后才发现其直接应用;而应用数学,可以说是纯粹数学与科学技术之间的桥梁。

20世纪40年代以后,涌现出了大量新的应用数学科目,内容的丰富、应用的广泛、名目的繁多都是史无前例的。例如对策论、规划论、排队论、最优化方法、运筹学、信息论、控制论、系统分析、可靠性理论等。这些分支所研究的范围和互相间的关系很难划清,也有的因为用了很多概率统计的工具,又可以看作概率统计的新应用或新分支,还有的可以归入

计算机科学之中等等。

20世纪40年代以后,基础理论也有了飞速的发展,出现许多突破性的工作,解决了一些带根本性质的问题。在这过程中引入了新的概念、新的方法,推动了整个数学前进。例如,希尔伯特1990年在国际教学家大会上提出的尚待解决的23个问题中,有些问题得到了解决。60年代以来,还出现了如非标准分析、模糊数学、突变理论等新兴的数学分支。此外,近几十年来经典数学也获得了巨大进展,如概率论、数理统计、解析数论、微分几何、代数几何、微分方程、因数论、泛函分析、数理逻辑等等。

当代数学的研究成果,有了几乎爆炸性的增长。刊载数学论文的杂志,在17世纪末以前,只有17种(最初的出于1665年);18世纪有210种;19世纪有950种。20世纪的统计数字更为增长。在本世纪初,每年发表的数学论文不过1000篇;到1960年,美国《数学评论》发表的论文摘要是7824篇,到1973年为20410篇,1979年已达52812篇,文献呈指数式增长之势。数学的三大特点—高度抽象性、应用广泛性、体系严谨性,更加明显地表露出来。

今天,差不多每个国家都有自己的数学学会,而且许多国家还有致力于各种水平的数学教育的团体。它们已经成为推动数学发展的有力因素之一。目前数学还有加速发展的趋势,这是过去任何一个时期所不能比拟的。

现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。

以上简要地介绍了数学在古代、近代、现代三个大的发展时期的情况。如果把数学研究比喻为研究“飞”,那么第一个时期主要研究飞鸟的几张相片(静止、常量);第二个时期主要研究飞鸟的几部电影(运动、变量);第三个时期主要研究飞鸟、飞机、飞船等等的所具有的一般性质(抽象、集合)。

这是一个由简单到复杂、由具体到抽象、由低级向高级、由特殊到一般的发展过程。如果从几何学的范畴来看,那么欧氏几何学、解析几何学和非欧几何学就可以作为数学三大发展时期的有代表性的成果;而欧几里得、笛卡儿和罗巴契夫斯基更是可以作为各时期的代表人物。

第十四章现代数学概观二十世纪的数学第一节

第十四章:现代数学概观-二十世纪的数学 第一节五大新兴学科的建立 一、数理逻辑 1.符号逻辑 数理逻辑作为一门数学学科,来源于对数学和逻辑基础的探讨,它最早可追溯到莱布尼茨,他关于逻辑演算的观念预示着布尔代数,而英国数学家布尔(G.Boole 1815—1864)在1847年出版《逻辑的数学分析》一书,正式推出所谓布尔代数,在逻辑上相当于命题演算.其后由英国数学家杰方斯(W.S.Jevons,1835—1882)和小皮尔斯(C.S.Peirce,1839—1914)在1874年加入次序关系,德国数学 卷中加以公理化.第一个完全形式化的语言是德国数学家弗瑞格(G.Frege,1848—1925)在1879年出版的《概念文字》中引进的.他首先定义了全称量词及存在量词.并引进一般的谓词逻辑.不过相应的逻辑代数一直到1950年才由波兰数学家塔斯基(A.Tarski,1902—1983)所发展,他引进所谓“圆柱代数”.1955年美国数学家哈尔莫斯(P.Halmos,1916—)又引进多进代数,形成一般的逻辑代数理论.1889年意大利数学家皮亚诺(G.Peano,1858—1932)提出自然数的公理系统,即后来所谓皮亚诺算术公理.而戴德金在前一年也提出类似的公理系统.弗雷格在1884年出版的《算术基础》中开始提到算术无非是扩展的逻辑.戴德金也提出类似的观点.弗雷格在1893年出版的《算术的基本规律》第一卷中,用五条逻辑公理来推导算术命题.1902年6月罗素给弗雷格一封信,提出著名的罗素悖论,并指出弗雷格的矛盾.弗雷格在1903年出版的《算术的基本规律》第二卷附录中承认这是对他的巨大打击,正是这个悖论,揭开了数理逻辑新的一章. 2.罗素悖论 罗素的悖论是关于集合论的,康托尔已经意识到不加限制地谈论“集合的集合”会导致矛盾.其他人也发现集合论中存在矛盾.而罗素在1903年出版的《数学的原理》(Principles of Mathematics)中,则十分清楚地表现出集合论的矛盾,从而动摇了整个数学的基础.罗素的悖论是说:可以把集合分成两类:凡不以自身为元素的集合称为第一类集合,凡以自身做为元素的集合称为第二类的集合,每个集合或为第一类集合或为第二类集合.设M表示第一类集合全体所成的集合.如果M是第一类集 现了这个矛盾之后,导致第三次数学危机,在数学界出现了各种意见,从抛弃集合论到尽可能保持集合论在数学中的基础地位的都有.由于20世纪数学的发展主流是建立在集合论基础之上,这里只考虑数学家如何消除悖论.在20世纪初,大致有两种办法,一个办法是罗素的分支类型论,它在1908年发表,在这个基础上罗素与怀特海(A.N.Whitehead,1861—1947)写出三大卷《数学原理》(principia Mathematica,1910—1913),成为数理逻辑最早一部经典著作.还有一个办法是公理方法限制集合,由此产生公理集合论.3.集合论的公理化 康托尔本人没有对集合论进行公理化.集合论公理化是策梅罗(E.Zermelo,1871—1953)在1908年发表的.富兰克尔(A.Fraenkel,1891—1965)等人曾加以改进,形成著名的ZF系统,这是最常用的一个系统,因此大家都希望从中推出常用的选择公理(1904年策梅罗引进它来 设与ZF系统是相容的.1963年,柯亨(P.Cohen,1934—)发明“力迫法”证明这两条“公理”的否定也不能在ZF系统中证明,从而推出其独立性. 4.希尔伯特纲领 为了使数学奠定在严格公理化基础上,1922年希尔伯特提出希尔伯特纲领,首先将数学形式化,构成形式系统,然后通过有限主义方法证明其无矛盾性. 1928年希尔伯特提出四个问题作为实现其纲领的具体步骤: (1)分析的无矛盾性.1924年阿克曼(W.Ackermann,896—1962)和1927年冯·诺伊曼(J.Von Neumann,1903—1957)的工作使希尔伯特相信只要一些纯算术的初等引理即可证明分析的无矛盾性.1930年夏天,哥德尔开始研究这个问题,他不理解希尔伯特为什么要直接证明分析的无矛盾性.哥德尔认为应该把困难分解:用有限主义的算术证明算术的无矛盾性,再用算术的无矛盾性证明分析的无矛盾性.哥德尔由此出发去证明算术的无矛盾性而得出不完全性定理. (2)更高级数学的无矛盾性.特别是选择公理的无矛盾性.这个问题后来被哥德尔在1938年以相对的方式解决.

20世纪数学发展概述

韩山师范学院 成人教育学生毕业论文 (2012届) 韩山师范学院教务处制

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果.据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信. 毕业论文作者签名:签名日期:年月日

摘要 在人类文明进程中,数学作为科学的推动力或直接的参与者,起到了不可或缺的作用.20世纪,数学蓬勃发展,并向其他科学技术领域更加广泛和深入地渗透. 20世纪的数学与经典数学相比发生了翻天覆地的变化.因此, 研究20世纪数学的发展具重要的意义.本文将主要通过两个方面来展现20世纪数学发展的概貌:介绍20世纪数学发展趋势的主要特征,陈述20世纪数学的大事记. 关键词:20世纪;数学;发展趋势;大事记

Abstrac Mathematics as the driving force of science or as a direct participant plays an indispensable role in the progress of human civilization. In 20th century, mathematics developed quickly and infiltrated other science and technology field more deeply and widely. Therefore, it is significant to study the development of mathematics in the 20th century. The paper will show the general picture of the development of mathematics in the 20th century in two aspects: introducing the main characteristics of the development of mathematics in the 20th century, and giving memorabilia of mathematics in the 20th century. Key words : 20th century; mathematics; development tendency; memorabilia

(发展战略)数学的发展历史

七年级九班 李蕙茹

研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用的资料,进行整理,这是一种比较常见的方法。

(一)数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。

现代数学发展的历史进程

现代数学发展的历史进程 现代数学时期 现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。 18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。 19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。 大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。 后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。 1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念

和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。 在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。 另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20,30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。 上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。 19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。 现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。 19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立

数学的发展历史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用

的资料,进行整理,这是一种比较常见的方法。 四、探究结果: (一)数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

现代数学的特点和现状-丁伟岳

我主要回答同学们的一些问题。这些问题中大部分都是关系现代数学大局的问题,很深刻,也很难回答。这种问题是没有标准答案的,每个人会有不同的答案。我今天讲的是我的个人意见,同学们可以参考,但不一定正确。 1.现代数学的特点和现状 有的同学问:听说现代数学分支非常细,不同分支的人彼此不了解,这样还能出现总揽全局的数学大师吗?此外,数学的复杂是否使它远离“简单性”这个朴素的自然法则? 这是一个很大的问题,提这个问题的同学希望从总体上了解现代数学,这是非常好,非常值得鼓励的。但是要把这个问题说清楚并不容易。确实,现代数学分支繁多。按美国数学会的分类,数学科目可以分成60多个大类,每个大类下面又有几十个子类,总计有3500个以上的子类。肯定没有人能把所有这些分支都了如指掌,甚至于一个分支的专家也很难把分支里的所有数学了解得一清二楚。 但是,真正影响大局的数学却没有那么多。这就像世界上有200多个国家,但是影响全球格局的却只有少数大国。这种影响大局的数学可以叫做“主流数学”。即便在主流数学中也不是所有的问题都是平等的,还有主次之分。因此,如果能抓住主流数学中的主流问题,大体上就可以说是“总揽全局”了。至于说“大师”,他不仅能总揽全局,而且能通过他的工作影响全局。这样的人肯定很少,但也不能说一个没有,这要由历史来做定论。那么,为什么现在出不了牛顿,欧拉,高斯,黎曼这样的大师了呢?这有两个原因。首先,时势造英雄;不是每个时代都会出旷世英雄的。其次,即便是这样的英雄,他的历史地位也要经过历史的考验,并不是在当时就能确立的。 那么哪些是主流数学呢?回顾历史,现代基础数学从17世纪开始发源,经过18-19世纪的大发展和20世纪的完善,现代数学的基础部分,包括代数和数论,几何与拓扑,分析学的所有主要分支,我们叫这些为经典分支,都进入了成熟期。所谓成熟是指,理论已经十分完善,而内在的发展动力则减弱了。因此,基础数学的单独分支的自身发展已不再是主流。取而代之的是综合与交叉,集多个分支的方法来解决以前无法解决的重要问题。费尔马猜想和庞加莱猜想相继被证明就是最好的例证。在我看来,现代数学的另一个特点是应用数学的兴起,随着现代科学技术的迅速发展各个方面对数学的需求日益增长,推动了应用数学的崛起,它正成长为数学中一个不可忽视的主流。 从重要问题的来源看,基础数学内部一些最主要的问题是来自数论,拓扑以及几何,例如克莱研究所的7大问题中4个是关于纯数学的,两个来自数论(黎曼猜想,BSD猜想),一个拓扑(庞加莱猜想),一个代数几何(Hodge猜想)。[另外3个多少与应用有关:Navior-Stokes方程(流体力学),P-NP问题(计算复杂性),Yang-Mills理论(理论物理)。] 近年来,理论物理对基础数学的影响越来越大,这是值得注意的。 数学的复杂性不在于它的分支繁多,而在于它的深度和难度越来越大。世界既有简单的一面,又有复杂的一面。科学家的任务是把复杂的东西分析和解剖,化繁为简,找出对

【教育资料】数学的三个发展时期现代数学时期 学习专用

数学的三个发展时期——现代数学时期 现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。 18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。 19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。 大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新

几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。 后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。 1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。 在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。 另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代

现代数学的发展趋势.doc

第四章现代数学的发展趋势 一、现代数学的发展趋势内容概括 与古典数学相比,现代数学的发展从思想方法的角度看具有一些新的特征,本章内容通过数学的统一性、数学在自然科学和社会科学中的广泛应用、数学机械化的产生与发展及其意义、计算机促进计算数学的发展、计算机促进数学中新学科的发展这些方面来认识和理解现代数学的发展趋势。 下面从以下几个方面来分析: ● 数学的统一性 ● 数学应用的广泛性 ● 计算机与数学发展 1.数学的统一性 所谓统一性,就是部分与部分、部分与整体之间的协调一致。客观世界具有统一性,数学作为描述客观世界的语言必然也具有统一性。 数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现。它表现为数学的各个分支相互渗透和相互结合的趋势。 ● 数学的统一性发展的三个阶段 (1)数学从经验积累到严格的演绎体系建立,其特征逐步明显,在中世纪时,从研究对象和方法来看,初等数学有了一定的统一性。特别是17世纪解析几何的诞生,使数学中的代数与几何统一起来,说明统一性是数学的特征。生了变革,结果是数学分支愈来愈多,数学表现的更加多样化。因此,需要重新认识数学的统一性。为此,数学家们作了很多努力,到20世纪30年代,法国的布尔巴基(Bourbaki)学派提出,利用数学内在联系和公理化方法从数学各个分支中提炼出各种数学结构。他们认为数学的发展无非是各种结构的建立和发展,“数学好比一座大城市。城市中心有些巨大的建筑物,就好比是一个个已经建成的数学理论体系。城市的郊区正在不断地并且多少有点杂乱无章地向外伸展,他们就好像是一些尚未发育成型的正在成长着的数学新分支。与此同时,市中心又在时时重建,每次都是根据构思更加清晰的计划和更加合理的布局,在拆毁掉旧的迷宫似的断街小巷的同时,将修筑起新的更直、更宽、更加方便的林荫大道通向四方,……。” (2)布尔巴基学派在集合论的基础上建立了三个基本结构(即代数结构、序结构和拓扑结构),然后根据不同的条件,由这三个基本结构交叉产生新的结构,如分析结构、布尔代数结构等等。他们认为整个数学或大部分数学都可以按照结构的不同而加以分类,用数学结构能统一整个数学,各个数学分支只是数学结构由简单到复杂,由一般向特殊发展的产物。数学的不同分支是由这些不同的结构组成的,而这些结构之间的错综复杂的联系又把所有的分支连成一个有机整体。因此可以说,布尔巴基学派用数学结构显示了数学的统一性。 (3)20世纪下半叶,数学已经发展成一个庞大的理论体系,数学分工愈来愈细,分支愈来愈多,分支之间的联系愈来愈不明显,但是,数学学科的统一化趋势也在不断加强,主要体现在数学的不同分支领域的数学思想和数学方法相互融合,导致了一系列重大发现以及数学内部新的综合交叉学科的不断兴起:例如微分拓扑学的建立、发展;整体微分几何研究的突破;代数几何领域的进展;多复变函数理论以及其他数学分支的突破和发展都有密切的联系。

数学发展的三个时期

在人类的知识宝库中有三大类科学,即自然科学、社会科学、认识和思维的科学。自然科学又分为数学、物理学、化学、天文学、地理学、生物学、工程学、农学、医学等学科。数学是自然科学的一种,是其它科学的基础和工具。在世界上的几百卷百科全书中,它通常都是处于第一卷的地位。 从本质上看,数学是研究现实世界的数量关系与空间形式的科学。或简单讲,数学是研究数与形的科学。对这里的数与形应作广义的理解,它们随着数学的发展,而不断取得新的容,不断扩大着涵。 数学来源于人类的生产实践活动,即来源于原始人捕获猎物和分配猎物、丈量土地和测量容积、计算时间和制造器皿等实践,并随着人类社会生产力的发展而发展。对于非数学专业的人们来讲,可以从三个大的发展时期来大致了解数学的发展。 一、初等数学时期 初等数学时期是指从原始人时代到17世纪中叶,这期间数学研究的主要对象是常数、常量和不变的图形。 在这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。这一时期的成果可以用“初等数学”(即常量数学)来概括,它大致相当于现在中小学数学课的主要容。 世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。这些国家都是在农业的基础上发展起来的,从事耕作的人们日出而作、日落而息,因此他们就必须掌握四季气候变迁的规律。

游牧民族的迁徙,也要辨清方向:白天以太阳为指南,晚上以星月为向导。因此,在世界各民族文化发展的过程中,天文学总是发展较早的科学,而天文学又推动了数学的发展。 随着生产实践的需要,大约在公元前3000年左右,在四大文明古国—巴比伦、埃及、中国、印度出现了萌芽数学。 现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些泥版是在胶泥还软的时候刻上字,然后晒干制成的(早期是一种断面呈三角形的“笔”在泥版上按不同方向刻出楔形刻痕,叫楔形文字)。 已经发现的泥版上面载有数字表(约200件)和一批数学问题(约100件),大致可以分为三组。第一组大约创制于公元前2100年,第二组大约从公元前1792年到公元前1600年,第三组大约从公元前600年到公元300年。 这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。公元前300年左右,已得到60进位的达17位的大数;一些应用问题的解法,表明已具有解一次、二次(个别甚至有三次、四次)数字方程的经验公式;会计算简单直边形的面积和简单立体的体积,并且可能知道勾股定理的一般形式。巴比伦人对于天文、历法很有研究,因而算术和代数比较发达。巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。这时还没有产生数学的理论。 对埃及古代数学的了解,主要是根据两卷纸草书。纸草是尼罗河下游的一种植物,把它的茎制成薄片压平后,用“墨水”写上文字(最早的是象形文字)。同时把许多纸草纸粘在一起连成长幅,卷在杆干上,形成卷轴。已经发现的一卷约写于公元前1850年,包含25个问题(叫“莫斯科纸草文书”,现存莫斯科);另一卷约写于公元前1650年,包含85个问题(叫“莱因德纸草文书”,是英国人莱因德于1858年发现的)。

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

数学发展史_论文

数学史与数学文化课 期末小论文 数学家与数学发展史 班级:中华旅企13-3班姓名:罗礼雄 学号:201305006820 数学家与数学发展史

数学是研究现实世界中数量关系和形式的学问,简单的说就是研究数和形的科学。众所周知数学与人类社会的发展和人们的生活息息相关,随着社会的进步,科学的发展,数学也在不停地前进;而数学的发展又离不开数学家们的探索和研究,数学家在数学发展史中占据这不可磨灭的作用。 数学从产生到茁壮成长再到成熟经历了数千年的时间,时至今日,自然科学的众多分支在各个行业和领域大放异彩,但是数学可以说仍然是科学界的女皇。那么到底是一股什么样的神秘力量在不断地推动数学的发展?数学是怎样对人类社会产生深远的影响?答案是显而易见的,数学家一直是不断地推动数学的发展力量之一。 由于生产和劳动上的需求,在古代便产生了以简单的为基础的古代数学,他们用手指或实物计数,由于生产力的需求和发展,他们逐渐过度到用数字计数。 经过一个上了一个学期的有关数学发展史课程和10多年来不断学习数学的学习经历,我个人认为数学的发展有三大动力。 恩格斯很早时就指出:“科学的发生和发展,一开始就是由生产决定的”,这里的生产是指人们使用工具来创造各种生产资料和生活资料。数学作为研究客观物质世界的数量关系和空间形式的一门科学,它的发生和发展也是由生产决定的。 尽管数与形的最初观念可以追溯到原始社会,但是由于当时生产水平的低下,虽然经历了上万年的漫长时间,也只积累了一些零碎的、萌芽的数学知识。到了古希腊奴隶社会最发达时期,社会生产有了较

大发展,几何学才取得了决定性的进步。 文艺复兴时期,机械的广泛使用,航海事业的迅速发展,以及我国四大发明的传播,促成了西欧生产的巨大变化,推动了自然科学的迅速发展。在这时期,在意大利的封建社会中,代数学取得了快速的发展。17世纪欧洲生产的发展,促进了力学和技术的发展,从而向数学提出了从一般的形态上研究运动的问题。出于研究运动,变量的观念产生了,并且成了数学研究的主要对象,同时也产生了函数的概念。数学向着研究变量和函数方面发展,随后就产生了解析几何、微积分等数学分支。 微积分的基本理论在实践中的成功应用,证明它反映了生产和科学技术的某些客观规律,数学终于在较短的时间里取得了辉煌的成就。在古代虽然已有了朴素的极限思想,但是那时候的生产水平低下,科学技术不发达,研究都停留在静力学和固定不动的范围内,不可能产生微积分。 1705年,英国物理学家纽可门制成了第一个能供实用的蒸汽机;1768年,瓦特制成了近代蒸汽机。由此引起的工业革命,大大提高了人类社会生产力,从而促进了十八、十九世纪数学的大繁荣。 20世纪40年代,生产力得到进一步发展,科学技术突飞猛进。1945年,第一颗原子弹爆炸、第一台电子计算机问世;1957年,第一颗人造地球卫星发射成功。超高温、超高压、微观、宏观及大科学出现,于是现代数学发展神速、硕果累累。 综上所述,数学的发展不能脱离社会生产的发展。在绝大多数情

中国古代数学发展及其影响

摘要:中国古代数学具有悠久的传统。本文论述了中国古代数学的算法化、机械化特征及其对世界数学发展主流的历史贡献,并指出了解中国古代数学发展特征对于现实创新活动的借鉴意义。 1 中国古代数学的发展 在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为术),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。 1.1 线性方程组与方程术 中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的方程术,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组: 3x+2y+z=39 2x+3y+z=34 x+2y+3z=26 《九章》没有表示未知数的符号,而是用算筹将xyz的系数和常数项排列成一个(长)方阵: 1 2 3 2 3 2 3 1 1 26 34 39 方程术的关键算法叫遍乘直除,在本例中演算程序如下:用右行(x)的系数(3)遍乘中行和左行各数,然后从所得结果按行分别直除右行,即连续减去右行对应各数,就将中行与左行的系数化为0。反复执行这种遍乘直除算法,就可以解出方程。很清楚,《九章算术》方程术的遍乘直除算法,实质上就是我们今天所使用的解线性方程组的消元法,以往西方文献中

数学发展史

数学发展简史 数学发展史大致可以分为四个阶段: 一、数学起源时期 二、初等数学时期 三、近代数学时期 四、现代数学时期 一、数学起源时期(远古——公元前5世纪) 这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。 数学起源于四个“河谷文明”地域: 非洲的尼罗河; 这个区域主要是埃及王国:采用10进制,只有加法。埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。 西亚的底格里斯河与幼发拉底河; 这个区域主要是巴比伦:采用10进制,并发明了60进制。巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。 中南亚的印度河与恒河; 东亚的黄河与长江 在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。人类现在主要采用十进制,与“人的手指共有十个”有关。而记数也是伴随着计数的发展而发展的。四个“河谷文明”地域的记数归纳如下: 刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。 古埃及的象形数字出现在约公元前3400年; 巴比伦的楔形数字出现在约公元前2400年; 中国的甲骨文数字出现在约公元前1600年。 古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。

二、初等数学时期(前6世纪——公元16世纪) 这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。该时期的基本成果,构成现在中学数学的主要内容。 这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。下面我们分别介绍: 1.古希腊(前6世纪——公元6世纪) 毕达哥拉斯——“万物皆数” 欧几里得——几何《原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》 托勒密——三角学 丢番图——不定方程 2.东方(公元2世纪——15世纪) 1)中国西汉(前2世纪) ——《周髀算经》、《九章算术》 魏晋南北朝(公元3世纪——5世纪) ——刘徽、祖冲之:出入相补原理,割圆术,算术。 宋元时期(公元10世纪——14世纪) 宋元四大家——李冶(1192~1279)、 秦九韶(约1202~约1261)、 杨辉(13世纪下半叶)、 朱世杰(13世纪末~14世纪初):天元术、正负开方术——高次方程数值 求解;大衍总数术:一次同余式组求解2)印度 现代记数法(公元8世纪)——印度数码,有0,负数; 十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法) 数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元499年)开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12世纪)算术、代数、组合学3)阿拉伯国家(公元8世纪——15世纪) 花拉子米——《代数学》(阿拉伯文《还原与对消计算概要》)曾长期作为欧洲的、 数学课本,“代数”一词,即起源于此;阿拉伯语原意是“还原”, 即“移项”;此后,代数学的内容,主要是解方程。 阿拉伯学者在吸收、融汇、保存古希腊、印度和中国数学成果的基础上,又有 他们自己的创造,使阿拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好的 学术准备。 3.欧洲文艺复兴时期(公元16世纪——17世纪初) 1)方程与符号:(按国别介绍) 意大利-塔塔利亚、卡尔丹、费拉里:三次方程的求根公式 法国-韦达:引入符号系统,代数成为独立的学科 2)透视与射影几何 画家-布努雷契、柯尔比、迪勒、达.芬奇

现代数学思想发展

重庆三峡学院现代数学进展课程论文 现代数学思想发展 院系数学与统计学院 专业数学与应用数学(师范) 姓名李春花 年级 2012级 学号 201206034123 指导教师刘学飞 2015年5月

现代数学思想发展 李春花 (重庆三峡学院数学与统计学院12级数本1班) 摘要:现代数学与计算机相结合而产生的威力无穷的“数学技术”,渗透到了与人类生存息息相关的各个领域. 数学的固有特点(抽象性、精确可靠性、广泛应用性等)相互间是彼此联系. 数学的涵义从数学的研究对象、数学的内容两方面谈. 关键词:“现代”的理解;现代数学的特点;“数学”的涵义;现代数学思想的意义 引言 数学在19世纪已经发展成独立的学科.到了19世纪下半叶,随着不断从实际中获取营养以及自身的蓬勃发展,数学本身积累了大量丰富的资料(成果、方法和理论等),在繁荣的同时,也留下了众多没有解决的难题.在这种变革与积累的基础上,20世纪以来的数学呈现出指数式的飞速发展.随着经典数学的繁荣和统一、许多新的应用数学方法的产生,特别是计算机的出现及其与数学的结合,使得数学在研究领域、研究方式和应用范围等方面都得到了空前的拓展.其中所谓的数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果.是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的. 1 对现代数学思想中"现代"的理解 纵观数学的历史发展,可以清楚地划分为初等数学,高等数学,现代数学三个阶段.从古代到17世纪初为初等数学阶段;从17世纪初到19世纪末为高等数学阶段,从19世纪末开始,数学进入了现代数学阶段.按着数学的研究对象即"数"与"形"来说,在三个阶段中层次是不一样的.在初等数学阶段,"数"是常量,"形"是孤立、简单的几何形体.初等数学分别研究常量间的代数运算和几何形体内部以及相互间的对应关系,形成了代数和几何两大领域.高等数学阶段以笛卡尔建立解析几何为起点,17世纪80年代微分学的建立是这一阶段的最显赫的成就和标志.在高等数学阶段,数是变量,形是曲线和曲面,高等数学研究它们之间各种函数和变换关系.这就是数与形紧密联系起来,但大体上还是各成系统的.由于以微积分为源头的分析数学的兴起和发展,数学形成为代数、几何和分析三大领域. 现代数学阶段以康托尔建立集合论为起点.正如数学家陈省身所说:"康托尔建立集合论独具新意,高瞻远瞩,为数学立了就厘时微."20世纪以后,用公里化体系和结构观点来统观数学,成为现代数学阶段的明显标志.现代数学阶段研究的对象“数”为集合,"形"为各种空间和流形,它们都能用集合和映射的概念统一起来,数与形的界限已难以划分了. 现在数学得到了空前的应用,具有了“技术”的品质.今日的数学,已不甘于站在后台,而是大步地从科学技术的幕后直接走到了前台.现代数学不单只是通过别的科学间接地起作用了,它已经直接进入科技的前沿,直接参与创造生产价值——数学已经走到前线了.现代

相关主题
文本预览
相关文档 最新文档