当前位置:文档之家› 内存泄露从入门到精通三部曲之排查方法篇

内存泄露从入门到精通三部曲之排查方法篇

内存泄露从入门到精通三部曲之排查方法篇
内存泄露从入门到精通三部曲之排查方法篇

内存泄露从入门到精通三部曲之排查方法篇

1最原始的内存泄露测试重复多次操作关键的可疑的路径,从内存监控工具中观察内存曲线,是否存在不断上升的趋势且不会在程序返回时明显回落。这种方式可以发现最基本,也是最明显的内存泄露问题,对用户价值最大,操作难度小,性价比极高。

2MAT内存分析工具2.1 MAT分析heap的总内存占用大小来初步判断是否存在泄露

在Devices 中,点击要监控的程序。点击Devices视图界面中最上方一排图标中的“Update Heap”点击Heap视图点击Heap视图中的“Cause GC”按钮到此为止需检测的进程就可以被监视。Heap视图中部有一个Type叫做data object,即数据对象,也就是我们的程序中大量存在的类类型的对象。在data object一行中有一列是“Total Size”,其值就是当前进程中所有Java数据对象的内存总量,一般情况下,这个值的大小决定了是否会有内存泄漏。可以这样判断:

进入某应用,不断的操作该应用,同时注意观察data object 的Total Size值,正常情况下Total Size值都会稳定在一个有限的范围内,也就是说由于程序中的的代码良好,没有造成对象不被垃圾回收的情况。

所以说虽然我们不断的操作会不断的生成很多对象,而在虚

拟机不断的进行GC的过程中,这些对象都被回收了,内存占用量会会落到一个稳定的水平;反之如果代码中存在没有释放对象引用的情况,则data object的Total Size值在每次GC后不会有明显的回落。随着操作次数的增多Total Size的值会越来越大,直到到达一个上限后导致进程被杀掉。

2.2 MAT分析hprof来定位内存泄露的原因所在。这是出现内存泄露后使用MAT进行问题定位的有效手段。A)Dump

出内存泄露当时的内存镜像hprof,分析怀疑泄露的类:

B)分析持有此类对象引用的外部对象

C)分析这些持有引用的对象的GC路径

D)逐个分析每个对象的GC路径是否正常从这个路径可以看出是一个antiRadiationUtil工具类对象持有了MainActivity

的引用导致MainActivity无法释放。此时就要进入代码分析此时antiRadiationUtil的引用持有是否合理(如果antiRadiationUtil持有了MainActivity的context导致节目退出后MainActivity无法销毁,那一般都属于内存泄露了)。2.3 MAT对比操作前后的hprof来定位内存泄露的根因所在。为查找内存泄漏,通常需要两个Dump结果作对比,打开Navigator History面板,将两个表的Histogram结果都添加到Compare Basket中去A)第一个HPROF 文件(usingFile > Open Heap Dump ).B)打开Histogram view.C)在NavigationHistory view里(如果看不到就从Window >show

view>MAT- Navigation History ), 右击histogram然后选择Add to Compare Basket .

D)打开第二个HPROF 文件然后重做步骤2和3.E)切换到Compare Basket view, 然后点击Compare the Results (视图右上角的红色'!'图标)。

F)分析对比结果

可以看出两个hprof的数据对象对比结果。通过这种方式可以快速定位到操作前后所持有的对象增量,从而进一步定位出当前操作导致内存泄露的具体原因是泄露了什么数据对象。

注意:如果是用MAT Eclipse 插件获取的Dump文件,不需要经过转换则可在MAT中打开,Adt会自动进行转换。而手机SDk Dump 出的文件要经过转换才能被MAT识别,Android SDK提供了这个工具hprof-conv (位于sdk/tools下)首先,要通过控制台进入到你的android sdk tools 目录下执行以下命令:./hprof-conv xxx-a.hprof xxx-b.hprof例如

hprof-conv input.hprof out.hprof此时才能将out.hprof放在eclipse的MAT中打开。3手机管家内存泄露每日监控方案目前手机管家的内存泄露每日监控会自动运行并输出是否存

在疑似泄露的报告邮件,不论泄露对象的大小。这其中涉及的核心技术主要是AspectJ,MLD自研工具(原理是虚引用)和UIAutomator。

3.1 AspectJ插桩监控代码手机管家目前使用一个ant脚本加入MLD的监控代码,并通过AspectJ的语法实现插桩。使用AspectJ的原因是可以灵活分离出项目源码与监控代码,通过不同的编译脚本打包出不同用途的安装测试包:如果测试包是经过Aspect插桩了MLD监控代码的话,那么运行完毕后会输出指定格式的日志文件,作为后续分析工作的数据基础。

3.2 MLD实现监控核心逻辑这是手机管家内的一个工具工程,正式打包不会打入,BVT等每日监控测试包可以打入。打入后可以通过诸如addObject接口(通过反射去检查是否含有该工具并调用)来加入需要监控的检测对象,这个工具会自动在指定时机(如退出管家)去检测该对象是否发生泄漏。

这个内存泄露检测的基本原理是:虚引用主要用来跟踪对象被垃圾回收器回收的活动。虚引用必须和引用队列(ReferenceQueue)联合使用(在虚引用函数就必须关联指定)。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,自动把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。

基于以上原理,MLD工具在调用接口addObject加入监控类

型时,会为该类型对象增加一个虚引用,注意虚引用并不会影响该对象被正常回收。因此可以在ReferenceQueue引用队列中统计未被回收的监控对象是否超过指定阀值。

利用PhantomReferences(虚引用)和ReferenceQueue(引用队列),当PhantomReferences被加入到相关联的ReferenceQueue 时,则视该对象已经或处于垃圾回收器回收阶段了。MLD 监控原理核心目前手机管家已对大部分类完成内存泄露的监控,包括各种activity,service和view页面等,务求在技术上能带给用户最顺滑的产品体验。

接下来简单介绍下这个工具的判断核心。根据虚引用监控到的内存状态,需要通过多种策略来判断是否存在内存泄露。(1)最简单的方式就是直接在加入监控时就为该类型设定最大存在个数,举个例子,各个DAO对象理论上只能存在最多一个,因此一旦出现两个相同的DAO,那一般都是泄露了;(2)第二种情况是在页面退出程序退出时,检索gc后无法释放的对象列表,这些对象类型也会成为内存泄露的怀疑对象;(3)最后一种情况比较复杂,基本原理是根据历史操作判断对象数量的增长幅度。根据对象的增长通过最小二乘法拟合出该对象类型的增长速度,如果超过经验值则会列入疑似泄露的对象列表。

3.3 UIAutomator完成重复操作的自动化最后一步就很简单了。这么多反复的UI操作,让人工来点就太浪费人力了。

我们使用UIAutomator来进行自动化操作测试。目前手机管家的每日自动化测试已覆盖各个功能的主路径,并通过配置文件的方式来灵活驱动用例的增删改查,最大限度保证了随着版本推移用例的复用价值。

至此手机管家的内存泄露测试方案介绍完毕,也欢迎各路牛人交流沟通更多更强的内存泄露工具盒方案!

关于VB内存映射文件的使用

VB内存映射文件的使用 引言 文件操作是应用程序最为基本的功能之一,Win32 API和MFC均提供有支持文件处理的函数和类,常用的有Win32 API的CreateFile()、WriteFile()、ReadFile()和MFC提供的CFile类等。一般来说,以上这些函数可以满足大多数场合的要求,但是对于某些特殊应用领域所需要的动辄几十GB、几百GB、乃至几TB的海量存储,再以通常的文件处理方法进行处理显然是行不通的。目前,对于上述这种大文件的操作一般是以内存映射文件的方式来加以处理的,本文下面将针对这种Windows核心编程技术展开讨论。 内存映射文件 内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对该文件进行操作之前必须首先对文件进行映射,就如同将整个文件从磁盘加载到内存。由此可以看出,使用内存映射文件处理存储于磁盘上的文件时,将不必再对文件执行I/O操作,这意味着在对文件进行处理时将不必再为文件申请并分配缓存,所有的文件缓存操作均由系统直接管理,由于取消了将文件数据加载到内存、数据从内存到文件的回写以及释放内存块等步骤,使得内存映射文件在处理大数据量的文件时能起到相当重要的作用。另外,实际工程中的系统往往需要在多个进程之间共享数据,如果数据量小,处理方法是灵活多变的,如果共享数据容量巨大,那么就需要借助于内存映射文件来进行。实际上,内存映射文件正是解决本地多个进程间数据共享的最有效方法。 内存映射文件并不是简单的文件I/O操作,实际用到了Windows的核心编程技术--内存管理。所以,如果想对内存映射文件有更深刻的认识,必须对Windows操作系统的内存管理机制有清楚的认识,内存管理的相关知识非常复杂,超出了本文的讨论范畴,在此就不再赘述,感兴趣的读者可以参阅其他相关书籍。 内存映射文件使用方法 1) 首先要通过CreateFile()函数来创建或打开一个文件内核对象,这个对象标识了磁盘上将要用作内 存映射文件的文件。 2)在用CreateFile()将文件映像在物理存储器的位置通告给操作系统后,只指定了映像文件的路径, 映像的长度还没有指定。为了指定文件映射对象需要多大的物理存储空间还需要通过 CreateFileMapping()函数来创建一个文件映射内核对象以告诉系统文件的尺寸以及访问文件的方式。 3)在创建了文件映射对象后,还必须为文件数据保留一个地址空间区域,并把文件数据作为映射到该 区域的物理存储器进行提交。由MapViewOfFile()函数负责通过系统的管理而将文件映射对象的全部或部分映射到进程地址空间。此时,对内存映射文件的使用和处理同通常加载到内存中的文件数据的处理方式基本一样。 4)在完成了对内存映射文件的使用时,还要通过一系列的操作完成对其的清除和使用过资源的释放。 这部分相对比较简单,可以通过UnmapViewOfFile()完成从进程的地址空间撤消文件数据的映像、通过CloseHandle()关闭前面创建的文件映射对象和文件对象。 内存映射文件相关函数 在使用内存映射文件时,所使用的API函数主要就是前面提到过的那几个函数,下面分别对其进行介绍:

【CN110070029A】一种步态识别方法及装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910309192.7 (22)申请日 2019.04.17 (71)申请人 北京易达图灵科技有限公司 地址 100013 北京市朝阳区安定门外大街1 号1幢9层905室 (72)发明人 袁飞 华仁红 马向军 孙文凤  (74)专利代理机构 北京路浩知识产权代理有限 公司 11002 代理人 王庆龙 苗晓静 (51)Int.Cl. G06K 9/00(2006.01) G06K 9/46(2006.01) G06N 3/04(2006.01) (54)发明名称 一种步态识别方法及装置 (57)摘要 本发明实施例提供一种步态识别方法及装 置。方法包括:获取待识别视频中任一行人对应 的人体关键点特征向量序列;将人体关键点特征 向量序列输入至目标神经网络,根据目标神经网 络的输出结果,识别人体关键点特征向量序列对 应的行人身份;其中,目标神经网络是根据带有 行人身份标签的人体关键点特征向量序列进行 训练后得到的。本发明实施例提供的方法及装 置,通过获取待识别视频中任一行人对应的人体 关键点特征向量序列,并将该序列输入至目标神 经网络,根据目标神经网络的输出结果,识别该 序列对应的行人身份。通过充分利用人体关键点 特征,自学习人体的步态特征,大大提高了步态 识别的鲁棒性和准确性,并且,对硬件的要求较 低, 便于实际应用。权利要求书2页 说明书8页 附图2页CN 110070029 A 2019.07.30 C N 110070029 A

权 利 要 求 书1/2页CN 110070029 A 1.一种步态识别方法,其特征在于,包括: 获取待识别视频中任一行人对应的人体关键点特征向量序列; 将所述人体关键点特征向量序列输入至目标神经网络,根据所述目标神经网络的输出结果,识别所述人体关键点特征向量序列对应的行人身份; 其中,所述目标神经网络是根据带有行人身份标签的人体关键点特征向量序列进行训练后得到的。 2.根据权利要求1所述的方法,其特征在于,所述获取待识别视频中任一行人对应的人体关键点特征向量序列,包括: 获取待识别视频,所述待识别视频中包括若干个行人; 对所述待识别视频进行采样,得到多帧图像并组成采样图像序列; 将所述采样图像序列输入至人体关键点检测模型,得到所述待识别视频中任一行人对应的人体关键点特征向量序列。 3.根据权利要求1所述的方法,其特征在于,所述将所述人体关键点特征向量序列输入至目标神经网络,之前还包括: 获取多个样本视频和每一样本视频中每一行人对应的行人身份标签,并获取每一样本视频中每一行人对应的人体关键点特征向量序列; 将每一行人对应的人体关键点特征向量序列和行人身份标签的组合作为一个训练样本,得到多个训练样本并组成训练集; 通过所述训练集对原始神经网络进行训练,得到所述目标神经网络。 4.根据权利要求3所述的方法,其特征在于,所述通过所述训练集对原始神经网络进行训练,得到所述目标神经网络,包括: 将所述训练集中的任一训练样本输入至所述原始神经网络,根据所述原始神经网络的输出结果和所述训练样本中的行人身份标签计算所述原始神经网络的损失值; 若所述损失值小于第一预设阈值,则将所述原始神经网络作为所述目标神经网络。 5.根据权利要求3所述的方法,其特征在于,所述通过所述训练集对原始神经网络进行训练,得到所述目标神经网络,包括: 将所述训练集中的任一训练样本输入至所述原始神经网络,根据所述原始神经网络的输出结果和所述训练样本中的行人身份标签计算所述原始神经网络的损失值; 若所述损失值小于第一预设阈值,则将所述原始神经网络作为候选神经网络; 多次调整所述神经网络的结构,每调整一次则重复执行训练过程以得到对应的候选神经网络,并从得到的多个候选神经网络中选择一个作为所述目标神经网络。 6.根据权利要求5所述的方法,其特征在于,所述从得到的多个候选神经网络中选择一个作为所述目标神经网络,包括: 从所述多个候选神经网络中,选择损失值小于第二预设阈值的若干个候选神经网络; 基于验证集对所述若干个候选神经网络中的每一候选神经网络进行验证,得到每一候选神经网络的准确率,并将准确率最高的候选神经网络作为所述目标神经网络。 7.根据权利要求1-6任一所述的方法,其特征在于,所述目标神经网络为长短期记忆网络。 8.一种步态识别装置,其特征在于,包括: 2

02-内存管理

1.怎么保证多人开发进行内存泄露的检查. 1>使用Analyze进行代码的静态分析 2>为避免不必要的麻烦, 多人开发时尽量使用ARC 2.非自动内存管理情况下怎么做单例模式. 创建单例设计模式的基本步骤· >声明一个单件对象的静态实例,并初始化为nil。 >创建一个类的类工厂方法,当且仅当这个类的实例为nil时生成一个该类的实例>实现NScopying协议, 覆盖allocWithZone:方法,确保用户在直接分配和初始化对象时,不会产生另一个对象。 >覆盖release、autorelease、retain、retainCount方法, 以此确保单例的状态。>在多线程的环境中,注意使用@synchronized关键字或GCD,确保静态实例被正确的创建和初始化。 3.对于类方法(静态方法)默认是autorelease的。所有类方法都会这样吗? 1> 系统自带的绝大数类方法返回的对象,都是经过autorelease的 4.block在ARC中和MRC中的用法有什么区别,需要注意什么 1.对于没有引用外部变量的Block,无论在ARC还是非ARC下,类型都是__NSGlobalBlock__,这种类型的block可以理解成一种全局的block,不需要考虑作用域问题。同时,对他进行Copy或者Retain操作也是无效的 2.应注意避免循环引用 5.什么情况下会发生内存泄漏和内存溢出? 当程序在申请内存后,无法释放已申请的内存空间(例如一个对象或者变量使用完成后没有释放,这个对象一直占用着内存),一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。内存泄露会最终会导致内存溢出! 当程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个int,但给它存了long才能存下的数,那就是内存溢出。 6.[NSArray arrayWithobject:] 这个方法添加对象后,需要对这个数组做释放操作吗? 不需要这个对象被放到自动释放池中 7.Json数据的解析,和解析数据的时候有内存泄露吗?有的话如何解 1>JSON解析的方案 ●SBJson ●JSONkit ●NSJSONSerialization 2>内存泄漏么?

weblogic内存溢出解决方法

彻底解决Weblogic报出https://www.doczj.com/doc/ec3984607.html,ng.OutOfMemoryError: PermGen space问题: 打开域下面的bin目录(D:\Oracle\Middleware\user_projects\domains\base_domain\bin)。 编辑setDomainEnv.cmd文件,将以下蓝色的地方设置内存大小改成自己需要的。 set WLS_HOME=%WL_HOME%\server if "%JA V A_VENDOR%"=="Sun" ( set WLS_MEM_ARGS_64BIT=-Xms256m -Xmx512m set WLS_MEM_ARGS_32BIT=-Xms256m -Xmx512m ) else ( set WLS_MEM_ARGS_64BIT=-Xms512m -Xmx512m set WLS_MEM_ARGS_32BIT=-Xms512m -Xmx512m ) set MEM_ARGS_64BIT=%WLS_MEM_ARGS_64BIT% set MEM_ARGS_32BIT=%WLS_MEM_ARGS_32BIT% if "%JA V A_USE_64BIT%"=="true" ( set MEM_ARGS=%MEM_ARGS_64BIT% ) else ( set MEM_ARGS=%MEM_ARGS_32BIT% ) set MEM_PERM_SIZE_64BIT=-XX:PermSize=128m set MEM_PERM_SIZE_32BIT=-XX:PermSize=48m if "%JA V A_USE_64BIT%"=="true" ( set MEM_PERM_SIZE=%MEM_PERM_SIZE_64BIT% ) else ( set MEM_PERM_SIZE=%MEM_PERM_SIZE_32BIT% ) set MEM_MAX_PERM_SIZE_64BIT=-XX:MaxPermSize=256m set MEM_MAX_PERM_SIZE_32BIT=-XX:MaxPermSize=128m

主板芯片和内存映射

astrotycoon 大道至简,贵在恒久力行

Diagram for modern motherboard. The northbridge and southbridge make up the chipset.

(补充: 北桥芯片用于与CPU、内存和AGP视频接口,这些接口具有很高的传输速率。北桥芯片还起着存储器控制作用,因此Intel把该芯片标号为MCH(Memory Controller Hub)芯片。南桥芯片用来管理低、中速的组件,例如,PCI总线、IDE硬盘接口、USB端口等,因此南桥芯片的名称为ICH(I/O Controller Hub)) As you look at this, the crucial thing to keep in mind is that the CPU doesn’t really know anything about what it’s connected to. It talks to the outside world through its pins bu t it doesn’t care what that outside world is. It might be a motherboard in a computer but it could be a toaster, network router, brain implant, or CPU test bench. There are thre e main ways by which the CPU and the outside communicate: memory address space, I/O address space, and interrupts. We only worry about motherboards and memory for now. 正如你所看到的,其实CPU是完全不知道自己与哪些外部器件相连接的。 CPU仅仅通过自己的引脚与外界沟通,而它并不关心自己是与什么设备在沟通。或许是另一台计算机的主板,或许是烤面包机,网络路由器,脑植入医疗设备,又或许是CPU测试仪。 CPU主要通过三种方式与外界通信:内存地址空间,IO地址空间,和中断。我们目前只关注主板和内存。 In a motherboard the CPU’s gateway to the world is the front-side bus connecting it to the northbridge. Whenever the CPU needs to read or write memory it does so via this b us. It uses some pins to transmit the physical memory address it wants to write or read, while other pins send the value to be written or receive the value being read. An Intel Core 2 QX6600 has 33 pins to transmit the physical memory address (so there are 233 choices of memory locations) and 64 pins to send or receive data (so data is transmitte d in a 64-bit data path, or 8-byte chunks). This allows the CPU to physically address 64 gigabytes of memory (233 locations * 8 bytes) although most chipsets only handle up to 8 gigs of RAM. CPU通过前端总线与北桥芯片连接,作为与外界通信的桥梁。无论何时,CPU都可以通过前端总线来读写内存。 CPU通过一些引脚来传送想要读写物理内存的地址,同时通过另一些引脚来发送将要写入内存的数据或者接收从内存读取到的数据。 Intel Core 2 QX6600 用33个引脚来传送物理内存地址(因此共有233 个内存地址),并且用64个引脚来发送或接收数据(所以数据在64位通道中传输,也就是8字节的数据块)。因此C PU可以访问64G的物理内存(233*8字节),尽管多数芯片组只能处理8G大小的物理内存。 Now comes the rub. We’re used to thinking of memory only in terms of RAM, the stuff programs read from and write to all the time. And indeed most of the memory requests from the processor are routed to RAM modules by the northbridge. But not all of them. Physical memory addresses are also used for communication with assorted devices on t he motherboard (this communication is called memory-mapped I/O). These devices include video cards, most PCI cards (say, a scanner or SCSI card), and also the flash mem ory that stores the BIOS. 那么现在的问题是,通常一提起内存我们仅仅联想到RAM,以为程序一直读写的就只是RAM。的确,绝大多数来自CPU的内存访问请求都被北桥芯片映射到了RAM。但是,注意,不是全部。物理内存同样可以用来与主板上的各种设备通信(这种通信方式被称为I/O内存映射)。这些设备包括显卡,大多数PCI卡(比如,扫描仪,或者是SCSI卡),也包括存储BIOS的flash存储器。 When the northbridge receives a physical memory request it decides where to route it: should it go to RAM? Video card maybe? This routing is decided via the memory addres s map. For each region of physical memory addresses, the memory map knows the device that owns that region. The bulk of the addresses are mapped to RAM, but when the y aren’t the memory map tells the chipset which device should service requests for those addresses. This mapping of memory addresses away from RAM modules causes the c lassic hole in PC memory between 640KB and 1MB. A bigger hole arises when memory addresses are reserved for video cards and PCI devices. This is why 32-bit OSes have pr oblems using 4 gigs of RAM. In Linux the file /proc/iomem neatly lists these address range mappings. The diagram below shows a typical memory map for the first 4 gigs of p hysical memory addresses in an Intel PC:

内存映射文件

内存映射文件: 内存映射文件有三种,第一种是可执行文件的映射,第二种是数据文件的映射,第三种是借助页面交换文件的内存映射.应用程序本身可以使用后两种内存映射. 1.可执行文件映射: Windows在执行一个Win32应用程序时使用的是内存映射文件技术.系统先在进程地址空间的0x00400000以上保留一个足够大的虚拟地址空间(0x00400000以下是由系统管理的),然后把应用程序所在的磁盘空间作为虚拟内存提交到这个保留的地址空间中去(我的理解也就是说,虚拟内存是由物理内存和磁盘上的页面文件组成的,现在应用程序所在的磁盘空间就成了虚拟地址的页面文件).做好这些准备后,系统开始执行这个应用程序,由于这个应用程序的代码不在内存中(在页面文件中),所以在执行第一条指令的时候会产生一个页面错误(页面错误也就是说,系统所访问的数据不在内存中),系统分配一块内存把它映射到0x00400000处,把实际的代码或数据读入其中(系统分配一块内存区域,把它要访问的在页面文件中的数据读入到这块内存中,需在注意是系统读入代码或数据是一页一页读入的),然后可以继续执行了.当以后要访问的数据不在内存中时,就可以通过前面的机制访问数据.对于Win32DLL的映射也是同样,不过DLL文件应该是被Win32进程共享的(我想应该被映射到x80000000以后,因为0x80000000-0xBFFFFFFF是被共享的空间). 当系统在另一个进程中执行这个应用程序时,系统知道这个程序已经有了一个实例,程序的代码和数据已被读到内存中,所以系统只需把这块内存在映射到新进程的地址空间即可,这样不就实现了在多个进程间共享数据了吗!然而这种共享数据只是针对只读数据,如果进程改写了其中的代码和数据,操作系统就会把修改的数据所在的页面复制一份到改写的进程中(我的理解也就是说共享的数据没有改变,进程改写的数据只是共享数据的一份拷贝,其它进程在需要共享数据时还是共享没有改写的数据),这样就可以避免多个进程之间的相互干扰. 2.数据文件的内存映射: 数据文件的内存映射原理与可执行文件内存映射原理一样.先把数据文件的一部分映射到虚拟地址空间的0x80000000 - 0xBFFFFFFF,但没有提交实际内存(也就是说作为页面文件),当有指令要存取这段内存时同样会产生页面错误异常.操作系统捕获到这个异常后,分配一页内存,映射内存到发生异常的位置,然后把要访问的数据读入到这块内存,继续执行刚才产生异常的指令(这里我理解的意思是把刚才产生异常的指令在执行一次,这次由于数据已经映射到内存中,指令就可以顺利执行过去),由上面的分析可知,应用程序访问虚拟地址空间时由操作系统管理数据在读入等内容,应用程序本身不需要调用文件的I/O函数(这点我觉得很重要,也就是为什么使用内存映射文件技术对内存的访问就象是对磁盘上的文件访问一样). 3.基于页面交换文件的内存映射: 内存映射的第三种情况是基于页面交换文件的.一个Win32进程利用内存映射文件可以在进程共享的地址空间保留一块区域(0x8000000 - 0xBFFFFFFF),这块区域与系统的页面交换文件相联系.我们可以用这块区域来存储临时数据,但更常见的做法是利用这块区域与其他进程通信(因为0x80000000以上是系统空间,进程切换只是私有地址空间,系统空间是所有进程共同使用的),这样多进程间就可以实现通信了.事实上Win32多进程间通信都是使用的内存映射文件技术,如PostMessage(),SentMessage()函数,在内部都使用内存映射文件技术. 使用内存映射文件的方法: 1.利用内存映射文件进行文件I/O操作: CreateFile()-->CreateFileMapping()-->MapViewOfFile()......

IIS内存溢出报错解决方案(一)

项目进行SSB改造以后,当客户端从服务器抓起大笔数据的时候,服务器报一个二进制流的错误,这个错误其实是一个内存溢出的错误。 提纲 故障现象 故障分析与解决 Code Review 工具与方法 故障现象 用户反映在进行数据导出时经常出现下面的错误:输入流是无效的二进制格式。开始内容(以字节为单位)是: 53-79-73-74-65-6D-2E-4F-75-74-4F-66-4D-65-6D-6F-72... 坏┏鱿指么砦蠛?/SPAN>,其他后面导出的用户都会出现该错误,导致无法进行操作。 故障分析 System.OutOfMemoryException 发生 53-79-73-74-65-6D-2E-4F-75-74-4F-66-4D-65-6D-6F-72... System.OutOfMemor ... System.OutOfMemoryException 发生的两种情况 应用程序消耗了过多的内存 内存碎片过多 内存Dump分析

有446M的free内存, 但最大的free内存块只有26M 不足64M 。内存碎片问题。 -------------------- Type SUMMARY -------------------------- TotSize ( KB) Pct(Tots) Usage 1b450000 ( 446784) : 21.30% : c940000 ( 206080) : 09.83% : MEM_IMAGE a3c000 ( 10480) : 00.50% : MEM_MAPPED 57824000 ( 1433744) : 68.37% : MEM_PRIVATE -------------------- State SUMMARY -------------------------- TotSize ( KB) Pct(Tots) Usage 2a82f000 ( 696508) : 33.21% : MEM_COMMIT 1b450000 ( 446784) : 21.30% : MEM_FREE 3a371000 ( 953796) : 45.48% : MEM_RESERVE Largest free region: Base 58bb0000 - Size 019f0000 (26560 KB) 内存中最大的一个dataset占用了18M内存,查看内容就是出现异常的导功能的内容sizeof(18e6a408) = 18,437,260 ( 0x119548c) bytes (System.Data.DataSet) … sizeof(18e6a8e0) = 18,437,260 ( 0x119548c) bytes (System.Data.DataTable) 系统中一共加载了6000多种Class,其中有3000多种是 0x0ff286b4 1 32 1 0x0ff2858c 1 32 1 0x0ff28464 1 32 1 0x0ff2833c 1 32 1 0x0ff28214 1 32 1 0x0ff280ec 1 32 1 0x0ff27fc4 1 32 1 0x0ff27e9c 1 32 1 0x0ff27d74 1 32 1 0x0ff27c4c 1 32 1 IIS日志分析 平均每天点击数:502,708 一共有 5,525 个IP访问过系统,平均每天有2,658 个访问 最大点击发生在 2007-11-19 达到 2,481,749次

JAVA内存溢出解决方案

JAVA内存溢出 解决方案 1. 内存溢出类型 1.1. https://www.doczj.com/doc/ec3984607.html,ng.OutOfMemoryError: PermGen space JVM管理两种类型的内存,堆和非堆。堆是给开发人员用的上面说的就是,是在JVM启动时创建;非堆是留给JVM自己用的,用来存放类的信息的。它和堆不同,运行期内GC不会释放空间。如果web app用了大量的第三方jar或者应用有太多的class文件而恰好MaxPermSize设置较小,超出了也会导致这块内存的占用过多造成溢出,或者tomcat热部署时侯不会清理前面加载的环境,只会将context更改为新部署的,非堆存的内容就会越来越多。 PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Loader时就会被放到PermGen space中,它和存放类实例(Instance)的Heap区域不同,GC(Garbage Collection)不会在主程序运行期对PermGen space进行清理,所以如果你的应用中有很CLASS的话,就很可能出现PermGen space错误,这种错误常见在web服务器对JSP进行pre compile的时候。如果你的WEB APP下都用了大量的第三方jar, 其大小超过了jvm默认的大小(4M)那么就会产生此错误信息了。 一个最佳的配置例子:(经过本人验证,自从用此配置之后,再未出现过tomcat死掉的情况) set JAVA_OPTS=-Xms800m -Xmx800m -XX:PermSize=128M -XX:MaxNewSize=256m -XX:MaxPermSize=256m 1.2. https://www.doczj.com/doc/ec3984607.html,ng.OutOfMemoryError: Java heap space 第一种情况是个补充,主要存在问题就是出现在这个情况中。其默认空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4。如果内存剩余不到40%,JVM就会增大堆到Xmx设置的值,内存剩余超过70%,JVM就会减小堆到Xms设置的值。所以服务器的Xmx和Xms设置一般应该设置相同避免每次GC后都要调整虚拟机堆的大小。假设物理内存无限大,那么JVM内存的最大值跟操作系统有关,一般32位机是1.5g到3g之间,而64位的就不会有限制了。

登入用友T3软件提示错误;“内存溢出”

登入用友T3软件提示错误;“内存溢出” 登入用友T3软件提示错误;“内存溢出” 系统缺少ufrtprn.ocx组件造成的。首先把c:\windows\system32\ufcomsql\ufrtprn.ocx 这个文件复制到其他地方,再用正常的文件(下面的附件)替换一下,然后重新注册,注册如下:如果操作系统是XP或2003,则:开始–运行 –regsvr32c:\windows\system32\ufcomsql\ufrtprn.ocx;如果操作系统是WINDOWS2000,则:开始–运行–regsvr32c:\winnt\system32\ufcomsql\ufrtprn.ocx。如果还是不行,那么就建议重新安装软件了。 服务异常了,可能是多种原因造成的,你可以在C:\Windows\System32\UF2000.log,打开UF2000.log查看错误详情再处理,如果你不太熟悉软件或者数据库的话,建议把用友安装目录下的ADMIN全部拷贝出来,然后重新安装软件,然后进行数据库附加即可 试一下: 1:执行系统管理,做初始化操作 2:若方法1未执行初始化,可能是这前做过初始化,开始-运行-regedit确定、找到注册表项:[HKEY_LOCAL_MACHINE\SOFTWARE\UFSoft\UF2000\2.0\Setup],右击删除Setup、再登录系统管理做初始化操作 方法3:若初始化操作建立系统数据库操作失败,可手工建立此系统数据库,还原用友通安装目录\Admin\ Ufsystem.bak文件,还原时数据库名称定义为UFSystem 重启”F8”,回车,进入安全模式,“高级启动选项”,找到“最后一次正确配置”

JAVA内存泄露专题

内存泄露与内存溢出 1定义 1、内存泄漏:一般可以理解为系统资源(各方面的资源,堆、栈、线程等)在错误使用的情况下,导致使用完毕的资源无法回收(或没有回收),从而造成那部分内存不可用的情况。 2、内存溢出:指内存不够使用而抛出异常,内存泄露是其形成的原因之一。 2危害 会导致新的资源分配请求无法完成,引起系统错误,最后导致系统崩溃。 3内存泄漏分类 4 内存泄露/溢出发生的区域

5内存溢出异常 6内存溢出常见原因 7发生内存泄露的情形Java内存泄露根本原因是什么呢?

答:长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是java中内存泄露的发生场景。 具体主要有如下几大类: 7.1 静态集合类引起内存泄露 像HashMap、Vector等的使用最容易出现内存泄露,这些静态变量的生命周期和应用程序一致,他们所引用的所有的对象Object也不能被释放,因为他们也将一直被Vector等引用着。 例: 解析: 在这个例子中,循环申请Object 对象,并将所申请的对象放入一个Vector 中,如果仅仅释放引用本身(o=null),那么Vector 仍然引用该对象,所以这个对象对GC 来说是不可回收的。因此,如果对象加入到Vector 后,还必须从Vector 中删除,最简单的方法就是将Vector对象设置为null。 7.2创建过大对象

以上代码运行时瞬间报错。 7.3监听器 在java 编程中,我们都需要和监听器打交道,通常一个应用当中会用到很多监听器,我们会调用一个控件的诸如addXXXListener()等方法来增加监听器,但往往在释放对象的时候却没有记住去删除这些监听器,从而增加了内存泄漏的机会。 7.4 各种连接 比如数据库连接(dataSourse.getConnection()),网络连接(socket)和io连接,除非其显式的调用了其close()方法将其连接关闭,否则是不会自动被GC 回收的。对于Resultset 和Statement 对象可以不进行显式回收,但Connection 一定要显式回收,因为Connection 在任何时候都无法自动回收,而Connection一旦回收,Resultset 和Statement 对象就会立即为NULL。但是如果使用连接池,情况就不一样了,除了要显式地关闭连接,还必须显式地关闭Resultset Statement 对象(关闭其中一个,另外一个也会关闭),否则就会造成大量的Statement 对象无法释放,从而引起内存泄漏。这种情况下一般都会在try里面去的连接,在finally里面释放连接。 7.5 内部类和外部模块等的引用 内部类的引用是比较容易遗忘的一种,而且一旦没释放可能导致一系列的后继类对象没有释放。此外程序员还要小心外部模块不经意的引用,例如程序员A 负责A 模块,调用了B 模块的一个方法如: public void registerMsg(Object b); 这种调用就要非常小心了,传入了一个对象,很可能模块B就保持了对该对象的引用,这时候就需要注意模块B 是否提供相应的操作去除引用。 7.6 单例模式 不正确使用单例模式是引起内存泄露的一个常见问题,单例对象在被初始化后将在JVM的整个生命周期中存在(以静态变量的方式),如果单例对象持有外部对象的引用,那么这个外部对象将不能被jvm正常回收,导致内存泄露

内存映射和普通文件访问的区别

在讲述文件映射的概念时, 不可避免的要牵涉到虚存(SVR 4的VM). 实际上, 文件映射是虚存的中心概念, 文件映射一方面给用户提供了一组措施, 好似用户将文件映射到自己地址空间的某个部分, 使用简单的内存访问指令读写文件;另一方面, 它也可以用于内核的基本组织模式, 在这种模式种, 内核将整个地址空间视为诸如文件之类的一组不同对象的映射. 中的传统文件访问方式是, 首先用open系统调用打开文件, 然后使用read, write以及lseek等调用进行顺序或者随即的I/O. 这种方式是非常低效的, 每一次I/O操作都需要一次系统调用. 另外, 如果若干个进程访问同一个文件, 每个进程都要在自己的地址空间维护一个副本, 浪费了内存空间. 而如果能够通过一定的机制将页面映射到进程的地址空间中, 也就是说首先通过简单的产生某些内存管理数据结构完成映射的创建. 当进程访问页面时产生一个缺页中断, 内核将页面读入内存并且更新页表指向该页面. 而且这种方式非常方便于同一副本的共享. VM是面向对象的方法设计的, 这里的对象是指内存对象: 内存对象是一个软件抽象的概念, 它描述内存区与后备存储之间的映射. 系统可以使用多种类型的后备存储, 比如交换空间, 本地或者远程文件以及帧缓存等等. VM系统对它们统一处理, 采用同一操作集操作, 比如读取页面或者回写页面等. 每种不同的后备存储都可以用不同的方法实现这些操作. 这样, 系统定义了一套统一的接口, 每种后备存储给出自己的实现方法. 这样, 进程的地址空间就被视为一组映射到不同数据对象上的的映射组成. 所有的有效地址就是那些映射到数据对象上的地址. 这些对象为映射它的页面提供了持久性的后备存储. 映射使得用户可以直接寻址这些对象. 值得提出的是, VM体系结构独立于Unix系统, 所有的Unix系统语义, 如正文, 数据及堆栈区都可以建构在基本VM系统之上. 同时, VM体系结构也是独立于存储管理的, 存储管理是由操作系统实施的, 如: 究竟采取什么样的对换和请求调页算法, 究竟是采取分段还是分页机制进行存储管理, 究竟是如何将虚拟地址转换成为物理地址等等(Linux中是一种叫Three Level Page Table的机制), 这些都与内存对象的概念无关. 下面介绍Linux中 VM的实现. 一个进程应该包括一个mm_struct(memory manage struct), 该结构是进程虚拟地址空间的抽象描述, 里面包括了进程虚拟空间的一些管理信息: start_code, end_code, start_data, end_data, start_brk, end_brk等等信息. 另外, 也有一个指向进程虚存区表(vm_area_struct: virtual memory area)的指针, 该链是按照虚拟地址的增长顺序排列的. 在Linux进程的地址空间被分作许多区(vma), 每个区(vma)都对应虚拟地址空间上一段连续的区域, vma是可以被共享和保护的独立实体, 这里的vma就是前面提到的内存对象. 下面是vm_area_struct的结构, 其中, 前半部分是公共的, 与类型无关的一些数据成员, 如: 指向mm_struct的指针, 地址范围等等, 后半部分则是与类型相关的成员, 其中最重要的是一个指向vm_operation_struct向量表的指针 vm_ops, vm_pos向量表是一组虚函数, 定义了与vma类型无关的接口. 每一个特定的子类, 即每种vma类型都必须在向量表中实现这些操作. 这里包括了: open, close, unmap, protect, sync, nopage, wppage, swapout这些操作. 1.struct vm_area_struct { 2./*公共的, 与vma类型无关的 */ 3.struct mm_struct * vm_mm;

apache服务器出现内存溢出的解决方法

apache服务器出现内存溢出的解决方法 2011-10-08 14:26 Tomcat内存溢出的原因 在生产环境中tomcat内存设置不好很容易出现内存溢出。造成内存溢出是不一样的,当然处理方式也不一样。 这里根据平时遇到的情况和相关资料进行一个总结。常见的一般会有下面三种情况: 1.OutOfMemoryError: Java heap space 2.OutOfMemoryError: PermGen space 3.OutOfMemoryError: unable to create new native thread. Tomcat内存溢出解决方案 对于前两种情况,在应用本身没有内存泄露的情况下可以用设置tomcat jvm参数来解决。(-Xms -Xmx -XX:PermSize -XX:MaxPermSize) 最后一种可能需要调整操作系统和tomcat jvm参数同时调整才能达到目的。 第一种:是堆溢出。 原因分析: JVM堆的设置是指java程序运行过程中JVM可以调配使用的内存空间的设置.JVM在启动的时候会自动设置Heap size的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4。可以利用JVM提供的-Xmn -Xms -Xmx等选项可进行设置。Heap size 的大小是Young Generation 和Tenured Generaion 之和。 在JVM中如果98%的时间是用于GC且可用的Heap size 不足2%的时候将抛出此异常信息。 Heap Size 最大不要超过可用物理内存的80%,一般的要将-Xms和-Xmx选项设置为相同,而-Xmn为1/4的-Xmx值。 没有内存泄露的情况下,调整-Xms -Xmx参数可以解决。 -Xms:初始堆大小 -Xmx:最大堆大小 但堆的大小受下面三方面影响:

内存映射文件

内存映射文件 内存映射文件是由一个文件到一块内存的映射。Win32提供了允许应用程序把文件映射到一个进程的函数(CreateFileMapping)。这样,文件内的数据就可以用内存读/写指令来访问,而不是用ReadFile和WriteFile这样的I/O系统函数,从而提高了文件存取速度。 这种函数最适用于需要读取文件并且对文件内包含的信息做语法分析的应用程序,如对输入文件进行语法分析的彩色语法编辑器,编译器等。把文件映射后进行读和分析,能让应用程序使用内存操作来操纵文件,而不必在文件里来回地读、写、移动文件指针。 有些操作,如放弃“读”一个字符,在以前是相当复杂的,用户需要处理缓冲区的刷新问题。在引入了映射文件之后,就简单的多了。应用程序要做的只是使指针减少一个值。 映射文件的另一个重要应用就是用来支持永久命名的共享内存。要在两个应用程序之间共享内存,可以在一个应用程序中创建一个文件并映射之,然后另一个应用程序可以通过打开和映射此文件把它作为共享的内存来使用。 VC++中使用内存映射文件处理大文件(1) 关键词:VC++ 内存映射 阅读提示:本文给出了一种方便实用的解决大文件的读取、存储等处理的方法,并结合相关程序代码对具体的实现过程进行了介绍。 引言 文件操作是应用程序最为基本的功能之一,Win32 API和MFC均提供有支持文件处理的函数和类,常用的有Win32 API的CreateFile()、WriteFile()、ReadFile()和MFC 提供的CFile类等。一般来说,以上这些函数可以满足大多数场合的要求,但是对于某些特殊应用领域所需要的动辄几十GB、几百GB、乃至几TB的海量存储,再以通常的文件处理方法进行处理显然是行不通的。目前,对于上述这种大文件的操作一般是以内存映射文件的方式来加以处理的,本文下面将针对这种Windows核心编程技术展开讨论。 内存映射文件 内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对该文件进行操作之前必须首先对文件进行映射,就如同将整个文件从磁盘加载到内存。由此可以看出,使用内存映射文件处理存储于磁盘上的文件时,将不必再对文件执行I/O操作,这意味着在对文件进行处理时将不必再为文件申请并分配缓存,所有的文件缓存操作均由系统直接管理,由于取消了将文件数据加载到内存、数据从内存到文件的回写以及释放内存块等步骤,使得内存映射文件在处理大数据量的文件时能起到相当重要的作用。另外,实际工程中的系统往往需要在多个进程之间共享数据,如果数据量小,处理方法是灵活多变的,如果共享数据容量巨大,那么就需要借助于内存映射文件来进行。实际上,内存映射文件正是解决本地多个进程间数据共享的最有效方法。 内存映射文件并不是简单的文件I/O操作,实际用到了Windows的核心编程技术--内存管理。所以,如果想对内存映射文件有更深刻的认识,必须对Windows操作系统的内存管理机制有清楚的认识,内存管理的相关知识非常复杂,超出了本文的讨论范畴,

相关主题
文本预览
相关文档 最新文档