当前位置:文档之家› 第三章金属在冲击载荷作用下的力学性能

第三章金属在冲击载荷作用下的力学性能

第三章金属在冲击载荷作用下的力学性能
第三章金属在冲击载荷作用下的力学性能

第三章金属在冲击载荷作用下的力学性能Chapter Three Mechanical Property of Metals under Impact

Loads

3.1 概述(Brief Introduction)

㈠定义(Definition)

冲击―—就是以很大速度将负荷(冲击负荷)作用到构件上去的一种加载方式。

如内燃机的活塞运动;汽车在凸凹不平道路上行驶;飞机的起飞与降落;金属压力加工(如锻造、冲压、冲裁等)。在不同的冲击条件下,材料的力学行为不一样,为了评定材料抗冲击的能力,需要进行相应的研究。

冲击载荷与静载荷的关键区别在于:两者的加载速度不同,造成形变速率不同,如:

●静拉伸应变率10-5~10-2S-1

●冲击应变率102~104S-1

●高速冲击应变率> 104 S-1

形变速率分为绝对形变速率和相对形变速率(即应变率)。

应变率(?ε)―单位时间内的应变量。单位S-1。

实践表明:

●当?ε在10-4~10-2S-1内,金属的力学性能没有明显

变化;

●当?ε>10-2S-1力学性能将有明显变化;

一般随着?ε增加,材料的强度增加,塑性降低,即变脆。

3.2在冲击载荷作用下金属变形和断裂的特性

Characteristic of deformation and fracture of metals under impact

loads

㈠特点(Characteristic)

静载荷时,从已知力(F)到应力(σ)以及强度计算都比较方便。

冲击载荷时,计算力(F)则很困难,因为冲击下有如下关系式。

m(V1-V2)=F△t (3-1)

式中m:物体质量;V1,V2:分别为初始速度和最终速度;△t:作用时间。

由于材料的刚度不同,造成相互作用的△t不同,加上△t一般比较短,因而不易测准,且在△t内,F是可变量,所有这些均造成F 的计算困难。所以研究冲击过程,一般采用能量守恒来处理。

㈡应变率对两种变形方式的影响(Effect of strain rate on the two deformation mode)。

1、弹性变形。

弹性变形是以声速在介质中传播的。如在钢中4982 m/s。而普通摆锤冲击时的绝对变形速度仅为5~5.5m/s ,高速冲击也<10 m/s, 可见在常规加载方式下,应变速率对弹性变形基本上没有影响。

2、塑性变形。

由于塑性变形的速度较慢,一般是位错运动的速度,所以应变速率提高会造成σs明显升高,σb少量升高。

正断裂(即脆化材料)δ、ψ明显下降

切断裂(即韧性材料)δ、ψ基本上没有变化。

3.3 冲击弯曲及冲击韧性(Impact bending and ductility)

㈠定义(Definition)

冲击韧性―指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。用A k表示

从图3-1可知,A k =GH1-GH2

㈡试样(Specimen)

⒈塑性材料:

国标规定的冲击实验的试样有如下两种(即U缺口试样A k u和V` 缺口试样A k v),尺寸均为10 ×10 ×55mm。具体形状见图3-2和图3-3。

2.脆性材料:常用无缺口的10 ×10 ×55mm试样。

图3-3 夏氏V 型冲击试样

问题:为什么脆性材料的冲击试样常为无缺口,而塑性材料则为有缺口试样?

㈢ 应用(Applications )

冲击吸收功A k 的大小并不能真正反映材料的韧脆程度,这是由于:

1、A k 并非完全用于材料的变形及断裂,其中试样掷出,机身振动,空气阻力以及轴承与测量机构间的摩擦等都要消耗一部分功,而在实际处理时往往忽略这些值,因此造成不同的实验设备测出的A k 相差

10~30%。

2、根据断裂理论,裂纹扩展过程所消耗的功(断裂功)越大,则为韧性断裂;反之则为脆性断裂。但A k相同的材料,断裂功并不一定相同,所以,A k不能真实反映韧脆断裂程度,不过A k作为一般参考还是可以的,并且由于A k对材料内部的组织变化十分敏感,加上该方法简便易行,因此,冲击实验常常用来:

1)反映材料的冶金质量和热加工产品质量

2)根据A k与温度关系曲线,可以测定材料韧脆转变温度。

3)对于σs相同的材料,根据A k值可以评定材料对缺口的敏感性。(四)冲击韧性(Impact ductility)

对于夏氏u缺口冲击实验,冲击韧性(a k)定义为:

a k=A k /F0 (3-2)

式中F0为试样缺口处的横截面积。

3.4 低温脆性(Brittleness of low temperature)

(一).定义(Definition)

低温脆性——指材料随着温度的下降到某范围或某一温度点(t k)时,其强度提高,而韧性显著下降,且断裂从韧性断裂变成脆性断裂的现象。相应的t k称为韧脆转变温度和冷脆转变温度。

bcc合金或某些hcp合金冷脆转变现象明显,而fcc合金则不明显。

冷脆转变现象对在低温下服役的构件时相当重要的。如以前在东

北作战使用的坦克更兵器就存在冷脆转变现象;还有诸如在南北极等寒冷地区也应考虑到所使用零件的冷脆转变现象。

(二)机理(Mechanism)

金属材料有两个强度指标σs(屈服强度)和σc(断裂强度)。由公式σ c =(2Eγs / πa)1/2可知,热激活大小(即温度的高低)对σc影响不大,而对σs影响极其明显,一般有温度T下降,导致σs升高。

图3-4σ c 和σs随温度变化示意图。

图3-4 σ c 和σs随温度变化示意图

由图3-4可见,

◆当T>t k,σ c >σs,材料受载后先屈服,后断裂,此为韧

性断裂;

◆当T

注:由于材料化学成分的统计性及组织的统计性,t k实际是一个范围而不是一个点。

(三)t k的测量方法(Method of Measuring t k)

由于t k确定的复杂,目前国内外尚无统一的标准,常用的方法如下:

①能量法(示意图见图3-5)

根据该图可知有下列三种能量方法可以测定t k

图3-5 各种韧脆转变温度的判据

a.低阶能开始上升的温度t k(Nil Ductility Temperature NDT),即当温度低于某一值时,A k基本不变,因而有

一平台式的低阶能,此时断口为100%结晶区。

b.高阶能(T高于某一温度时,A k也基本不变,表现高阶能),t k(Fracture Transition Plastic )FTP ,此时断口为100%

纤维状。

C.平均温度t k=(t k低+t k高)/ 2 ,FTE (Fracture Transition Elastic)

②断口形貌法。

试样在不同温度下进行冲击试验,然后根据冲击断口的形貌,取结晶区面积占整个断口面积50 %时的温度为t k,记为:50 %FATT (Fracture Appcarance Transition Temperature)

(四)冲击断口的形貌(Topography of impact fracture surface) 典型的冲击断口的形貌示意图示于图3-6。由图可见,如同拉伸断裂断口的形貌一样,冲击试样断口也由纤维区,放射区(结晶区)与剪切唇等几部分组成。

3.5 影响冲击韧性和t k的因素(Factors of effecting impact ductility and t k)

(一) 冶金因素(内部因素)(Metallurgical factors)

1.晶体结构(Crystal structure)

一般而言,bcc金属及其合金以及某些hcp金属及其合金存在低温脆性,而fcc金属及其合金一般不存在低温脆性。为什么?

2.化学成分(chemical Composition)

一般有:

间隙元素含量升高,t k升高,σ升高,δ下降,但a k一般下降。

具体见★图3-7。

置换元素含量升高,t k升高,σ升高,δ下降,但a k一般也下降(Ni和一定量Mn元素除外),具体见图3-10。

这是由于a k值是强度和塑性两者的函数,并且塑性对a k影响更大。

3.晶粒大小(Grain size)

一般有:

晶粒尺寸下降,强度σ升高,塑性δ也升高,因此a k升高。

对铁素体,铁素体+珠光体以及低合金钢组织,其t k可按下式计算:

βt k=l n B -l n C -l n d-1/2(3-3)

式中,β、C、B为常数,d 为铁素体的晶粒直径

具体关系曲线见图3-9。

4.金相组织(Microstructure)

当强度较低时,a k、t k 以回火索氏体最佳,贝氏体次之,片状珠光体组织最差。

当强度中高时,贝氏体组织优于淬回火组织。

5.第二相(Second phase)

第二相存在一般都使σ升高,δ下降,a k一般下降,t k升高。6.缺陷(夹杂物,偏析气泡,过烧及白点等)(Defects)

缺陷的存在一般都使a k一般下降,t k升高。

(二)、外部因素(External factors)

1、温度(Temperature)

从室温~900℃,对组织均匀的结构钢进行冲击实验时,发现在些温度范围内,a k值急剧下降,分别为冷脆区,蓝脆区及重结晶脆性区(见图3-10)

冷脆区:韧脆转变造成;

蓝脆区(由于该温度下,钢的氧化层为蓝色。其机理主要是C、N等间隙原子在位错处偏聚造成,因此有变形速率越大,即位错运动速度越快,为保证间隙原子运动速度与位错相同,则温度应越高):静载荷下:230~370℃、冲击载荷下则为:525~550℃;

重结晶脆性区:在A1~A3温度范围内出现的脆性。它与钢处于两相混合状态有关。一般有,当两相组织各占一半时,韧性下降最大。

★图3-10 钢的常见脆性温度范围

2、加载速率(Loading rate)

加载速率升高,t k升高,a k一般下降(见★图3-11)。可见,加载速度提高,即变形速率增加,韧脆转变温度提高。

3、试样尺寸及形状(即应力状态)(Size and shape of specimen)

试样尺寸及形状的改变,实际上改变了材料内部的应力状态(即软、硬状态),从而改变了t k ,a k。一般地有:

●缺口尖锐度升高,t k升高,a k一般下降;

●试样尺寸变大,应力状态变硬,t k升高,a k 下降。

作业(P.75)1:3:6:8:

冲击荷载下的结构内力分析

冲击荷载下的结构内力分析 摘要:通过建立模型,对结构承受冲击荷载作用的内力加以分析,分析结构在冲击荷载作用下易失效的部位,得到一些对工程实际有价值的结论。 关键词:冲击荷载;失效部位; 承载力; 稳定性 Abstract: through the model building, the structure under impact loading the analysis of the internal force, analyzes the structure under impact loading of the failure of easy parts, get some of the engineering practice valuable results. Keywords: impact load; Failure parts; Bearing capacity; stability 1.引言 近年来,由于恐怖袭击或爆炸引起的建筑物受冲击荷载作用的事件越来越多,对社会产生了恶劣的影响,而冲击作用对建筑物结构的破坏作用巨大,往往会产生较大的经济损失及人员伤亡事故,逐渐引起了工程界的研究与社会各界的关注。 当建筑物承受冲击力作用后,在结构内部内力分布情况往往较为复杂,通常情况下,由于建筑物在短时内受到了较大作用的力,结构内积聚大量的能量,从而首先表现在引起结构局部构件的破坏,使得整体结构的内力重分布,内力分布的变化引起各构件的承载力不足或构件失稳,进而使各构件逐步遭到破坏,最终引起建筑物的整体破坏。 冲击荷载作为偶然荷载,具有其不确定性,当冲击荷载作用时,其对结构产生破坏较难加以预测,美国的Albllhassan Astaneh指出阻止偶然荷载破坏需设置外围防护结构及提高自身的强度[1]。熊世树认为防御连续性倒塌的方法是提供备用的传力路径[2]。朱炳寅在对莫斯科中国贸易中心设计时提出局部抗力增强的设计[3]。但结构在冲击荷载作用下失效构件位置往往难以确定,本文通过计算,对构件易失效部位加以分析。 2.计算方法 2.1计算模型 由于冲击荷载的特殊性,很难进行现场试验,在其理论研究中,往往通过电算法进行模拟,本文以白卡纸为材料,材料性能参数见表1。通过计算并制作模型,在加载台上进行加载。模型主题结构为三层框架结构,首层高度200mm,第二层高度400mm,第三层高度550mm,每层平面为200 mm×200 mm,顶部施加15kg静载,第二层水平方向施加冲击荷载,冲击荷载通过加载装置施加,其大小为5kg荷载块下落100mm产生的荷载,加载示意图如图1。

材料力学性能试题(卷)集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√)

16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×) 33.在磨损过程中,磨屑的形成也是一个变形和断裂的过程。(√)

p019_某机构基座承受冲击载荷的刚强度分析

某机构基座承受冲击载荷的刚强度分析 陈文英 中国北方车辆研究所

某机构基座承受冲击载荷的刚强度分析 陈文英 (中国北方车辆研究所) 摘要:本文利用MSC.Nastran结构静力计算功能对某机构基座进行了整体刚度与强度分析,得到各个部位的变形和应力,并通过MSC.Patran的后处理功能观察了其应力和变形情况,清楚准确地找出设计的薄弱环节,提出了有效、可行的改进措施,为该机构的论证和优化设计提供了有力支持。 关键词:基座有限元刚度强度 1概述 根据设计要求,该基座应具备承受冲击的能力。因此,在研制中,对机构的外廓尺寸和全重有严格的限制,要求设计在满足功能、结构要求的前提下,尽可能优化结构,减少重量。由于机构在使用中承受较大的载荷和冲击,所以分析计算基座在这种工况条件下的应力和变形情况具有重要意义。 该基座使用铝合金材料,底部有气囊缓冲减振,希望能承受20g的冲击加速度,以便保证基座及其零部件在实际使用时安全可靠,不发生损坏。 本文利用MSC.Software 公司的有限元分析程序MSC.Nastran,对机构在承受冲击载荷时基座的刚度与强度进行了分析计算,得到各个部位的变形和应力,并通过MSC.Patran的后处理功能观察其应力和变形情况,清楚准确地找出设计的薄弱环节,提出了有效、可行的改进措施, (例如筋板的加厚加宽、尖角或直角过度部位加圆角、注意焊接部位焊缝质量等。)为该机构的论证和优化设计提供了有力支持。 2 有限元模型的建立 根据基座的结构几何特征和承载方式,以Pro-E软件建造的基座三维实体模型为基础,建立了详细的基座有限元模型,如图1所示。 2.1 网格划分 我们知道,CAD软件建立的模型,尤其是复杂大型结构,往往不能顺利正确地转换到有限元分析软件(CAE)中去,要经过多次的修改和消除CAD建模过程中存在与隐含的造型逻辑错误。否则,无法划分有限单元网格,或划出来的网格不正确,无法计算。 有限元分析首要和关键的一步是进行单元的剖分,有限元的分析模型必须要求结构模型的点、线、面、体严格正确无误,本模型就花费了分析人员较多时间和精力才转换成功。然后,就是对转换过来的正确模型进行单元剖分,考虑到计算机硬件、分析软件和计算时间的限制,单元的大小、多少非常关键,需要分析人员认真细致地考虑网格单元参数。本基座采

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E ·S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=KHB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种

支架的动态冲击载荷分析

支架的动态冲击载荷分析 2011-03-05 19:47:25| 分类:CAE | 标签:|字号大中小订阅 本文采用https://www.doczj.com/doc/ec3013894.html,b的Motion模块建立刚柔多体装配模型。装配模型中支架采用柔性体,要对其进行在冲击载荷下的刚度、强度分析,本文只做一个定性而非定量的分析,对设计人员的设计起指导帮助的作用。 如图1所示,为初步设计的架子和回转台、液压缸等部件在https://www.doczj.com/doc/ec3013894.html,b 的Motion模块中建立的刚柔多体装配模型。装配模型中架子采用柔性体,要对其进行在冲击载荷下的刚度、强度分析,除架子之外的其他部件都采用刚体模型。 图1 刚柔多体装配模型 冲击试验载荷条件:冲击脉冲波形为半正弦波,冲击峰值加速度为20g,脉冲持续时间11ms,除样品有特殊要求外,试验应沿试验样品的二个互相垂直轴的四个轴向的每个方向施加三次(共12次)冲击。每组筒子质量为300kg,四组筒子和架子质量一起产生的冲击力均匀分布在其四个固定座上。 在此冲击载荷下,如图1所示架子后端两个支撑通过铰链与回转台连接,在行驶状态时前端两处与回转台固支,因为冲击试验模拟的是行驶状态时的冲击,故在边界条件中也将此两处与回转台固支,另外架子还通过铰链与两个发射时起鼎升支撑作用的液压缸连接。冲击力加载条件如图1所示,在motion模块中以用户自定义弹簧力的方式加在每个固定座上,其加载曲线如图2 所示。

图2 冲击载荷加载曲线 如图3所示,为某瞬时架子在冲击载荷下的变形云图,因为变形云图随着加载时间的变化而不停的变化着的,所以在这只抓取了某一瞬时状态的变形云图,但整个冲击过程中架子的变形区域分布是一致的,只是大小不一样而已。云图中红色区域表示变形较大的区域,从图中可以看出,架子变形较大的区域有三个地方:1、前端两侧,由于这两侧都直接受力,且无直接支撑,所以在冲击载荷下会引起较大的变形。2 、中心两个分支较多处,由于整个架子在X-Y平面内可以看作相当于一个薄板,在冲击载荷下薄板的屈曲变形趋势会引起架子的中心两个分支较多处变形较大。3、后段两侧伸出的支架处,由于架子后段两个支架处与回转台是通过旋转副连接的,而伸出的支架又比较长,只要在旋转副连接处架子有一个较小的转角就会引起伸出的支架远端较大的变形。 图3 冲击载荷下某一瞬时架子变形云图

第3章 材料在冲击载荷下的力学性能

材料性能学 1一14周

第三章金属在冲击载荷下的 力学性能

许多机器零件在服役时往往受到冲击载荷的作用,如火箭的发射、飞机的起飞和降落、汽车通过道路上的凹坑以及金属压力加工(铸造)等,为了评定材料传递冲击载荷的能力,揭示材料在冲击载荷下的力学行为,就需要进行相应的力学性能试验。 冲击载荷和静载荷的区别在于加载速率的不同 加载速率:载荷施加于试样或机件时的速率,用单位时间内应力增加 的数值表示。 形变速率:单位时间的变形量。加载速率提高,形变速率也增加。相对形迹速率也称为应变速率,即单位时间内应变的变化量。 冲击载荷2-104s-1 de10 d

静载荷 10-5-10-2s-1

一、冲击载荷下金属变形和断裂的特点 冲击载荷下,由于载荷的能量性质使整个承载系统承受冲击 能,所以机件、与机件相连物体的刚度都直接影响冲击过程 的时间,从而影响加速度和惯性力的大小。 由于冲击过程持续时间短,测不准确,难于按惯性力计算机件内的应力,所以机件在冲击载荷下所受的应力,通常假定冲击能全部转换为机件内的弹性能,再按能量守恒法计算。 冲击弹性变形(弹性变形以声速传播,在金属介质中为 4982m/s)能紧跟上冲击外力(5m/s)的变化,应变速率对 金属材料的弹性行为及弹性模量没有影响。 应变速率对塑性变形、断裂却有显著的影响。金属材料在冲 击载荷下难以发生塑性变形。

1.1 应变速率对塑性变形的影响 金属材料在冲击载荷作用下塑性变形难以充分进行,主要有以下两方面的原因: 1. 由于冲击载荷下应力水平比较高,使许多位错源同时起作用,结果抑制了单晶体中易滑移阶段的产生与发展。 2. 冲击载荷增加了位错密度和滑移系数目,出现孪晶,减小了位错运动自由行程平均长度,增加了点缺陷的浓度。

材料力学性能考试题及答案

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和 。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。

材料力学动载荷

动载荷 一、选择题 11.1、由于冲击载荷作用过程十分短暂,所以构件内会产生较大的加速度。 A正确 B错误 11.2研究冲击时的应力和应变已经不属于动载荷问题。 A正确 B错误 11.3、交变应力作用下的塑性材料破坏并不表现为脆性断裂。 A正确 B错误 二、简答题 11.4、动载荷作用下构件内产生的应力称为____。 11.5、当具有一定速度的物体(冲击物)作用到静止的构件(被冲击物)上时,冲击物的速度发生急剧的变化,由于冲击物的惯性,使被冲击物受到很大的作用力,这种现象称为 _______。 11.6 三、计算题 11.7、图示宽为b,高为h的矩形截面梁ABC,材料弹性模量为E,在BC中部受重力P的物体自由落体冲击,求最大工作应力。 11.8 11.9

11.10、组合梁如图所示,AB段与CD段的截面都是边长为a的正方形,且材料弹性模量都为E,重物P从高H处自由落到AB的中点D(H很大),求冲击造成的梁中最大动应力。解: 【答案】 一、选择题 11.1 A 11.2 B 11.3 B 二、简答题 11.4动应力 11.5冲击 11.6 三、计算题 11、7

题31图单位载荷法求D处的静位移D y。 2 max 3 3 3 3 3 2 1 3 2 2 2 2 1 2 1 3 2 5 8 1 1 5 96 1 1 2 1 1 ) ( 48 5 )2 16 1 6 1 3 1 4 1 ( 2 6 1 16 3 1 4 2 1 bh Pl K W Pl K W M K Pl EHbh Pl EIH y H K EI l P l P EI EI M M y l M M Pl l M Pl d Z d Z A d d D d C C D C C C = = = + + = + + = + + = ↓ ? = ? ? ? + ? = ? + = = = = = σ ω ω ω ω ω ο ο ο ο ο= = ; 11.8 11.9 11.10

爆炸冲击载荷作用下板壳结构数值仿真分析

第37卷第4期STRUCTURE & ENVIRONMENT ENGINEERING V ol.37, No.4 爆炸冲击载荷作用下板壳结构数值仿真分析 王飞1陈卫东2 (1北京强度环境研究所,北京 100076;2哈尔滨工程大学航天与建筑工程学院,哈尔滨 150001) 摘要:主要针对爆炸冲击载荷作用下板壳结构的试验破坏问题,利用LS-DYNA有限元分析软件,采 用非线性动力学分析计算方法,考虑材料非线性和结构非线性等因素,模拟分析了板壳结构在接触爆 炸冲击载荷作用下的动态响应。计算分析结果与试验结果相吻合,利用有限元分析方法能很方便解释 试验过程和现象,为试验分析提供有效依据。 关键词:接触爆炸;板壳结构;动态响应;数值模拟 中图分类号:U611.4 文献标识码:A 文章编号:1006-3919(2010)04-0036-04 The numerical simulation analysis of the shell structure subjected to contact explosion Wang Fei1 Chen Weidong2 (1 Beijing Institure of Structure and Enviroment Engineering, Beijing 100076, China 2 College of Astronautics and Civil Engineering, Harbin Engineering University, Harbin 150001, China) Abstract: Aiming at the experimental damage problem of shell structure subjected to explosion impact load, the dynamic response of shell structure subjected to contact explosion impact load is simulated with the use of the finite element analysis software LS-DYNA , and using the nonlinearity dynamic analysis method, considering the material nonlinearity and structural nonlinearity. The analysis results and experimental results coincide with, the finite element method is very easy to explain the experimental process and experimental phenomenon, provide the effective basis for experimental analysis. Key words: contact explosion; shell structure; dynamic response; numerical simulation 1 引言 接触爆炸冲击载荷作用下板壳结构的变形和破损是非常复杂的非线性动态响应过程,既存在结构和材料变形时的非线性问题,又涉及到材料的流固耦合问题。接触爆炸冲击载荷往往产 收稿日期:2009-12-15;修回日期:2010-05-19 作者简介:王飞(1983—),男,助理工程师,研究方向:冲击、分离、结构耦合动力学;(100076)北京 9200信箱72分箱.

材料力学性能期末考试[1]

第一章 1,静载荷下材料的力学性能包括材料的拉伸、压缩、扭转、弯曲及硬度等性能。2,在弹性变形阶段,大多数金属的应力与应变之间符合胡克定律的正比例关系,其比例系数称为弹性模量。 3,弹性比功为应力-应变曲线下弹性范围内所吸收的变形功。 4,金属材料经过预先加载产生少量塑性变形(残余应变小余1%~4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包辛格效应。 包辛格效应消除方法:(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶 温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。 5,屈服标准: (1),比利极限:应力-应变曲线上符合线性关系的最高应力。 (2),弹性极限:试样加载后再卸载,以不出现残留的永久变形为准则,材料能够完全弹性恢复的最高应力。 (3),屈服强度:以规定发生一定的残余变形为标准。 6,影响材料强度的内在因素有:结合键、组织、结构、原子本性。 影响材料强度的外在因素有:温度、应变速度、应力状态。 7,影响金属材料的屈服强度的四种强化机制: ①固溶强化;②形变强化;③沉淀强化和弥散强化;④晶界和亚晶强化。8,加工硬化的作用: (1) 加工硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全。 (2) 加工硬化和塑性变形适当配合可使金属均匀塑性变形,保证冷变形工艺顺利实施。(如果没有加工硬化能力,任何冷加工成型的工艺都是无法进行。)(3) 可降低塑性,改善低碳钢的切削加工性能。 9,应力状态软性系数α: α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。 10,冲击弯曲试验的作用:主要测定脆性或低塑性材料的抗弯强度。 第二章 1,由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将会发生变化,产生所谓的“缺口效应”。 2,冲击韧性的定义是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。 3,细化晶粒提高韧性的原因: (1) 晶界是裂纹扩展的阻力; (2) 晶界前塞积的位错数减少,有利于降低应力集中; (3) 晶界总面积增加,使晶界上杂质浓度减小,避免了产生沿晶脆性断裂。 4,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。 5,韧脆转变温度:

金属材料的力学性能及其测试方法

目录 摘要 (1) 1引言 (1) 2金属材料的力学性能简介 (2) 2.1 强度 (2) 2.2 塑性 (2) 2.3 硬度 (2) 2.4 冲击韧性 (3) 2.5 疲劳强度 (3) 3金属材料力学性能测试方法 (3) 3.1拉伸试验 (3) 3.2压缩试验 (6) 3.3扭转试验 (8) 3.4硬度试验 (11) 3.5冲击韧度试验 (16) 3.6疲劳试验 (19) 4常用的仪器设备简介 (20) 4.1万能试验机 (20) 4.2扭转试验机 (23) 4.3摆锤式冲击试验机 (28) 5金属材料力学性能测试方法的发展趋势 (30) 参考文献 (30)

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, common experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend 1引言 材料作为有用的物质,就在于它本身所具有的某种性能,所有零部件在运行过程中以及产品在使用过程中,都在某种程度上承受着力或能量、温度以及接触介质等的作用,选用材料的主要依据是它的使用性能、工艺性能和经济性,其中使用性能是首先需要满足的,特别是针对性的材料力学性能往往是材料设计和使用所追求的主要目标。材料性能测试与组织表征的目的就是要了解和获知材料的成分、组织结构、性能以及它们之间的关系。而人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。因此,材料力学性能的测试是所有测试项目中最重要和最主要的内容之一。 在人类发展的历史长河过程中,人们已经建立了许多反映材料表面的和内在的各种关于力学、物理等相关材料性能的测试和分析技术,近现代科学的发展已使材料性能测试分析从经验发展并建立在现代物理理论和试验的基础之上,并且

材料力学性能试题A

07 秋 材料力学性能 一、填空:(每空1分,总分25分) 1. 材料硬度的测定方法有 、 和 。 2. 在材料力学行为的研究中,经常采用三种典型的试样进行研究,即 、 和 。 3. 平均应力越高,疲劳寿命 。 4. 材料在扭转作用下,在圆杆横截面上无正应力而只有 ,中心处切应力为 ,表面处 。 5. 脆性断裂的两种方式为 和 。 6. 脆性材料切口根部裂纹形成准则遵循 断裂准则;塑性材料切口根部裂纹形成准则遵循 断裂准则; 7. 外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉应力与断裂面 ,而在滑开型中两者的取向关系则为 。 8.蠕变断裂全过程大致由 、 和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为 、 和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的 区域。 11.诱发材料脆断的三大因素分别是 、 和 。 二、选择:(每题1分,总分15分) ( )1. 下列哪项不是陶瓷材料的优点 a )耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ( )2. 对于脆性材料,其抗压强度一般比抗拉强度 a) 高 b) 低 c) 相等 d) 不确定 ( )3.用10mm 直径淬火钢球,加压3000kg ,保持30s ,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ( )4. 对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ( )5. 下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ( )6. 下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr 钢 c) 35CrMo 钢 d) 灰铸铁 ( )7. 下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。 a) 撕开型 b) 张开型 c) 滑开型 d) 复合型

材料力学公式汇总情况

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

材料级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ① 应力状态变硬(由单向拉应力变为三向拉应力); ② 应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T ℃低于某一温度T K 时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm ,标距长为50mm 的标准拉伸试样,在拉力P=10kN 时,测 得其标距伸长为50.80mm 。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN 时,开始发生明显的塑性变形;在拉力达到67.76kN 后试样断裂,测得断后的拉伸试样的标距为57.6mm ,最小处截面直径为8.32mm ;求该材料的屈服极限σs 、断裂极限σb 、延伸率和断面收缩率。(8分) 解: d 0 =10.0mm, L 0 = 50mm, P 1=10kN 时L 1 = 50.80mm ;P 2=32kN 因P 1、P 2均远小于材料的屈服拉力55.42kN ,试样处于弹性变形阶段,据虎克 得 分 评分人

冲击载荷下油箱力学特性的有限元分析

1 编号 南京航空航天大学 毕业论文 题目冲击载荷下油箱力学特性的有限元分析 二零一一年六月 学生姓名韩龙 学号010710508 学院航空宇航学院专业飞行器设计与工程班级0107105 指导教师郑世杰教授

南京航空航天大学 本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:冲击载荷下油箱力学特性的有限元分析)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:韩龙2011 年6月1 日 (学号):010710508

冲击载荷下油箱力学特性的有限元分析 摘要 自从人造高速飞行器飞机的出现,鸟类在空中的飞行与人类的活动产生了重叠。由于飞机飞行速度快,与飞鸟发生碰撞后常造成极大的破坏,严重时会造成飞机的坠毁。随着科技的发展,火箭、航天飞机以及高速铁路技术的发展,鸟撞事件的发生范围,发生频率逐渐增多。因此,对于鸟撞而引发的危害以及预防成为亟待研究的课题之一。应用有限元工程分析软件,模拟飞鸟撞击油箱的过程,计算出撞击油箱发生的破坏情况,包括油箱的变形,应力、应变分布等情况。熟练掌握有限元工程软件的建模,网格划分,模拟计算等各项操作。本人选取abaqus软件对油箱受到高速冲击载荷状态下的受力进行了有限元分析。应用abaqus计算出撞击油箱发生的破坏情况,包括油箱的变形,应力、应变分布等情况,希望能为实际的生产作出指导性建议,提高飞机飞行的安全条件,保证飞机油箱的强度结构。 关键词:冲击载荷,碰撞,飞机油箱,abaqus

管道受坠物冲击载荷作用的数值模拟基本方法

管道受坠物冲击载荷作用的数值模拟基本方法 【摘要】管道受冲击载荷作用是复杂的非线性接触问题,本文介绍了可以进行非线性分析的有限元软件、离散元软件的概况和基本原理,以及运用它们对冲击载荷作用引起的管道动力响应过程进行数值模拟的基本方法。 【关键词】管道冲击非线性数值模拟 随着我国油气管道建设的进一步深入,石油天然气管道穿越复杂地质条件的工程实践越来越多,这些管道多沿山体坡脚埋设,可能要经过滑坡、泥石流等自然灾害高发地段,由于自然灾害所产生的高速坠落的石块容易冲击管道导致管道失效。同时,在日益发展的海洋石油开采中,海底石油管道也容易在其安装与油气输送过程中,与锚泊作业以及货物运输等人类活动造成坠的落物体发生碰撞,造成管道损伤。因此,对管道受坠物冲击作用引起管线变形的规律和破坏机理进行深入研究具有重要意义。本文将以有限元方法为基础,介绍管道受坠物冲击载荷作用的数值模拟基本方法。 管道受坠物冲击载荷作用是管道-土体组成的体系在冲击荷载下的整体动力响应。无论是从静力学还是动力学的角度来分析结构的受力状态,管道与土体的相互作用都是不可忽略的,只有把管道与地基作为相互作用又相互制约的整体分析,才能得到比较符合实际的计算结果。随着数值非线性分析成为解决岩土工程问题的重要手段,有限元、离散元等方法在管土相互作用分析中也发挥着越来越大的作用,基于这些理论的数值模拟软件也得到了极大的发展。 1 非线性数值模拟软件 1.1 ANSYS/ABAQUS ANSYS是一种大型通用有限元分析软件,融结构、流体、电场、磁场、声场分析于一体,由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,是现代产品设计中的高级CAE工具之一。有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定合适的形函数,然后附上求解这个域总的满足条件,如结构的平衡条件、边界条件等,从而得到问题的解。这个解不是准确解,而是近似解,随着形函数精度的提高,有限元方法可以得到相对很高的计算精度高,而且能适应各种复杂形状,这样实际问题被较简单的问题所代替,有限元成为行之有效的工程分析手段。ANSYS主要分析类型包括:结构静力分析,结构动力学分析,结构非线性分析等。 ABAQUS同样也是一款功能强大的,以有限元理论为基础的工程模拟软件。与ANSYS相比,ABAQUS软件在求解非线性问题时具有非常明显的优势,其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面,而且采用了人机

材料力学性能答案

《材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是

相关主题
文本预览
相关文档 最新文档