当前位置:文档之家› 积分因子的求法及简单应用

积分因子的求法及简单应用

积分因子的求法及简单应用
积分因子的求法及简单应用

积分因子的求法及简单应用

1. 恰当微分方程的概念及判定

1.1恰当微分方程的概念

我们可以将一阶方程

写成微分形式

f x, y dx dy 0

或把x,y 平等看待,写成下面具有对称形式的一阶微分方程

M X, y dx N x, y dy 0

这里假设M(x,y) , N(x,y)在某矩形域内是x ,y 的连续函数,且具有连续的一阶

M x, y dx N x, y dy du x, y

则称方程⑴为恰当微分方程.1

1.2恰当微分方程的判定

定理1假设函数M(x,y)和N(x,y)在某矩形域内是x ,y 的连续函数且具有 连

续的一阶偏导数,则方程⑴是恰当微分方程的充分必要条件是在此区域内恒有

利用定理1我们就可以判定出一个微分方程是否是恰当微分方程

2. 积分因子

如果对于方程⑴在某矩形域内 y x

,此时方程⑴就称为非恰当微分方

程。对于非恰当微分方程,如果存在某个连续可微的函数

偏导数,如果方程⑴的左端恰好是某个二元函数

u(x,y)的全微分.

u u — dx —dy x y

u(x,y)工0,使得

U x

y M x

y dx U x

y N x

y dy 0

为恰当微分方程,则称

的1个积分因子.

注可以证明,只要方程有解存在,则必有积分因子存在, 定理2函数u(x,y)是方程⑴的积分因子的充要条件是

N 丄M 丄卫上u x y y x

3. 积分因子求法举例

3.1观察法

对于一些简单的微分方程,用观察法就可以得出积分因子

1

⑴ ydx xdy 0有积分因子xy

1

1

1 1 1

⑵ ydx xdy 0

有积分因子7

—2

y

2 2 2 2

xy x y x y

例1 找出微分方程1 2 xy ydx 1

xy xdy 0的一个积分因子.

解将原方程各项重新组合可以写成

ydx xdy xy ydx xdy 0

1 1

由于xy 是ydx xdy 的积分因子,xy 也是ydx xdy 的积分因子,从而原方程

1

2

有积分因子xy

观察法只运用于求解简单的微分方程的积分因子,有的可以直接看出,有的 需要先将原方程重新组合,再运用观察法得出

3.2公式法

2 2

引理1微分方程⑴存在形如:u X ,u y ,

u x y

u xy

u x y

u(x,y)为方程⑴

并且不是唯一的.

y

x

的积分因子的充要条件有:

1 M

x 一——

N

y

方程⑴存在仅与 x 有关的积分因子的充要条件:

方程⑴存在仅与 y 有关的积分因子的充要条件:

③ 方程⑴有形如u

x y 的积分因子的充要条件: M N

X y y x

N M x y 是仅与x+y 有关的函数, M N

x y y x

N M x y 是仅与x-y 有关的函数; ④ 方程⑴有形如u

xy

的积分因子的充要条件:

M N

y x

x Ny Mx

y 是仅与y 有关的函数; xy

是仅与xy 有关的函数;

2

方程⑴有形如

的积分因子的充要条件:

y x 2Nx 2My M N

y x 2Nx 2My M N 2 y 2

y x 2 方程⑴有形如 2

y

是仅与 2 y 是仅与 u / x

的积分因子的充要条件:

x 2

2

y 有关的函数, 2 y

有关的函数; x

是仅与x 有关的函数;

y X

1 1 Ny 為M -

x x

y

是仅与x有关的函数。

若方程⑴中的M(x,y) ,

N(x,y) x的关系满足以上6个充要条件

之一时,则方程⑴的积分因子u(x,y) 都可由一阶线性齐次微分方程

d ln u x, y dz

z -

求得(其中z是z的函数).z可以取x,y,x

y xy

z dz

,由此可得u z e

我们将上述引理归结为求积分因子的公式法

2 3

例2求解微分方程x y

y dx x3y2 xdy 0的积分因子.

卫卫2 N

解由于y x,N x,y y M x, y x 2xy 观察可得:N x,y y M x,y X xy是关于xy的函数

u x, y e 故原方程有积分因子:1

—d xy

xy

1

xy

3.3 分组求积分因子法

定理3若u为方程⑴的一个积分因子, 且uMdx uNdy dv 则u

也是

方程⑴的积分因子,其中v是V的任一连续可微函数.

也可以说

微分方程M1dx gdy M2dx ^dy

u1是第一部分的积分因子,即u-i M

1dx

U i N1dy du1

u2是第二部分的积分因子,即u2 M

2dx

u2N2dy

从1 u1, 2 u2中选择满足u2 2 u2的1 u1和2 u2,其中u-

2 U2

是分别关于U1,U2

的连续可微函数,这样

是原方程的积分因子.

将原方程各项重新组合

1 ""2~ x

y 是第一部分的积分因子

1

1

3

xy 是第二部分的积分因子

3 7

U2 2 xy

分别是第一、二部分的积分因子

5xydx

x y

所以

3

例3求解微分方程

5xy 3y dx

3x 2 7xy 2 dy 0

的积分因子.

丄 3y 3

dx

xy

7xy 2dy d In x 3y 7

5 3 需满足

U1 1 * x y

U 2 2

得到

故 原微分方程的积分因子为u

x,

y

2

5xydx 3x dy C 3 ,

3y dx

7xy 2dy

U i

2

3x dy d

In x 5y 3

U 2

5 3

U 1 1 x y

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

方程求积分因子的一个定理及其应用

玉溪师范学院学报第20卷2004年第12期 JournalofYuxiTeachersCollegeV01.20No.12Dec.2004 常微分方程求积分因子的一个定理及其应用 赵凯宏李晓飞米 (玉溪师范学院数学系,云南玉溪653100) [关键词]全微分方程;积分因子;首次积分 [摘要]将积分因子满足的偏微分方程改写成其特征方程,从而与常微分方程组的首次积分相联系.利用“可积组合法”来求积分因子,从而使所求常微分方程化成全微分方程.[中图分类号]0175[文献标识码]A[文章编号]1009—9506(2004)12—0031—04TheTheoremandItsApplicationforSolving IntegratingFactorsofOrdinaryDifferentialEquitions ZHAOKai—hongLIXiao—fei (DepartmentofMathematics,YuxiTeachers’College,Yuxi,Yunnan653100)KeyWords:completedifferentialequations;integratingfactors;Firstintegral Abstract:Thepartialdifferentialequitionssatisfiedwithintegralfactorsrewritetoitscharacteristicequitions.Hence,Itisrelatedtothefirstintegralofthesystemofordinarydifferentialequations.The integratingfactors are eaculatedbytheintegralcombinatorialmethod.Therefore,theordinarydifferential equitions becomethecompletedifferentialequations.1定理推导 满足设常微分方程 M(石,),)dx+N(x,),)咖=0 OM,ON 百≠面 (1) (2) 若存在函数肛(戈,Y)使得 It(x,Y)M(石,Y)dx+肛(戈,Y)N(戈,Y)dy=0(3) 成立 虫盟:业盟 (4) dydx 此时,方程(3)就变成了一个全微分方程,其通解为 I肛(戈,Y)M(戈,Y)dx+I肛(xo,Y)N(‰,Y)dy=c(5) 这里(z。,Yo)是肛(戈,Y)M(戈,Y),肛(戈,Y)N(戈,Y)公共定义域内的任意一固定点.C为积分常数.由于方程(3)与方程(1)是同解方程,所以(5)也是方程(1)的通解. 可见,要求解方程(1)关键是求积分因子肛(戈,Y),而要求p(z,Y)关键是解偏微分方程(4).方程(4)可化成如下的等价形式 N01_.业一M挚:巡一型(6) dxdVdyOx 若记 瓤收稿日期]2004一08—06 [作者简介]赵凯宏(1974一),男,甘肃泾川人,硕士,讲师,主要从事微分方程方面的研究  万方数据

C语言__用六种方法求定积分

1. 描述问题 利用①左矩形公式,②中矩形公式,③右矩形公式 ,④梯形公式,⑤simpson 公式,⑥Gauss 积分公式求解定积分。 2. 分析问题 2.1定积分 21.1定积分的定义 定积分就是求函数()f x 在区间[],a b 中图线下包围的面积。即 ()0,,,y x a x b y f x ====所包围的面积。这个图形称为曲边梯形,特例是曲 边梯形。如下图: (图1) 设一元函数()y f x =,在区间[],a b 内有定义。将区间[],a b 分成n 个小区间[][][][]00112,,,,,......,i a x x x x x x b 。设1i i i x x x -?=-,取区间i x ?中曲线上任意一点记做()i f ξ,作和式: ()1lim n n i f i xi ξ→+∞ =?? ? ??? ∑ 若记λ为这些小区间中的最长者。当0λ→时,若此和式的极限存在,则称这个和式是函数()f x 在区间[],a b 上的定积分。 记作:()b a f x dx ? 其中称a 为积分下限,b 为积分上限,()f x 为被积函数,()f x dx 为被积式,∫ 为积分号。 之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 21.2定积分的几何意义[1] 它是介于x 轴、函数f(x)的图形及两条直线x=a ,x=b 之间的各个部分面积的代数和。在x 轴上方的面积取正号;在x 轴下方的面积取负号。如图

2.2言实现定积分计算的算法 22.1利用复合梯形公式实现定积分的计算 假设被积函数为()f x ,积分区间为[],a b ,把区间[],a b 等分成n 个小区间,各个区间的长度为h ,即()/h b a n =-,称之为“步长”。根据定积分的定义及几何意义,定积分就是求函数()f x 在区间[],a b 中图线下包围的面积。将积分区间n 等分,各子区间的面积近似等于梯形的面积,面积的计算运用梯形公式求解,再累加各区间的面积,所得的和近似等于被积函数的积分值,n 越大,所得结果越精确。以上就是利用复合梯形公式实现定积分的计算的算法思想。 复合梯形公式: ()()()1 122n n i i h T f a f x f b -=??=++ ??? ∑[2] 具体算法如下: 算法一 1:输入积分区间的端点值a 和b ; 2:输入区间的等分个数n (要求n 尽可能大,以保证程序运行结果有较高的精确度); 3:计算步长()/h b a n =-; 4:对累加和赋初值()/2a b T f f =-; 5:计算累加和 ()1 1n i i T f x -==∑ 6:算出积分值n T T h =?; 7:输出积分近似值n T ,完毕。 1.2.2利用Smpson 公式实现定积分的计算 假设被积函数为()f x ,积分区间为[],a b ,把区间[],a b 等分成n 个小区间,各个区间的长度为h 。在复合梯形公式的基础上,构造出一种加速计算积分的方法。作为一种外推算法, 它在不增加计算量的前提下提高了误差的精度。 具体算法如下: 算法二 1:输入积分上限b 和下限a ; 2:输入区间的等分个数n (要求n 尽可能大,以保证程序运行结果有较高的精确度); 3:利用辛甫生公式:[][][]()42/3S n T n T n =?-[2],实现对定积分的求解(其中 []2T n ,[]T n 均为梯形公式计算所得的结果,由此可见辛甫生公式是以梯形公式

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

浅谈积分因子及首次积分

浅谈积分因子与首次积分 摘要:本文先给出了微分方程中的积分因子、首次积分以及特征方程的相关定义并加深理解,后引出全微分方程积分因子存在的充要条件以及与之相关的两类重要命题,灵活的将用积分因子解微分方程的方法与偏微分方程首次积分联系起来,为求特殊积分因子提供了方便,最后应用性的求出了常见的几类微分方程的积分因子. 关键词:微分方程;积分因子;首次积分;特征方程;偏微分:合分比 Introduction to integral factor and the points for the first time Chen Xueyun (School of Mathematics and Statistics,Tianshui Normal University 741000) Abstract This paper firstly presents the definition of the integral factors ,first integral in differential equation and the characteristic equation and leads to the necessary and sufficient condition for the existence of all the integrating factor of differential equation as well as in connection with the two important types of proposition, Then it provides conveniences for special integral factor by combining the method of integral factor to solve differential equations with partial differential equation flexibly,Finally it finds out the integral factor of some types of differential equations via application. Keywords Differential equations,Integrating factor,For the first time points,Characteristic equation, Partial differential,points than

积分因子的求法及简单应用

积分因子的求法及简单应用 数学科学学院 摘 要:积分因子是常微分方程中一个很基本但却又非常重要的概念,本文在介绍了恰当微分方程与积分因子的概念以及相关定理的基础上,归纳总结了求解微分方程积分因子的几种方法,并利用积分因子理论证明了初等数学体系中的对数公式与指数公式,提供了一种新的解决中学数学问题的途径,体现了积分因子的简单应用价值。 关键词:恰当微分方程;积分因子;对数公式;指数公式 1. 恰当微分方程的概念及判定 恰当微分方程的概念 我们可以将一阶方程 () ,dy f x y dx = 写成微分形式 (),0 f x y dx dy -= 或把x,y 平等看待,写成下面具有对称形式的一阶微分方程 ()(),,0 M x y dx N x y dy += ⑴ 这里假设M(x,y),N(x,y)在某矩形域内是x ,y 的连续函数,且具有连续的一阶偏导数,如果方程⑴的左端恰好是某个二元函数u(x,y)的全微分. 即 ()()(),,,u u M x y dx N x y dy du x y dx dy x y ??+== + ?? 则称方程⑴为恰当微分方程. [] 1 恰当微分方程的判定 定理1 [] 2 假设函数M(x,y)和N(x,y)在某矩形域内是x ,y 的连续函数且具

有连续的一阶偏导数,则方程⑴是恰当微分方程的充分必要条件是在此区域内恒 有M N y x ??=??. 利用定理1我们就可以判定出一个微分方程是否是恰当微分方程. 2. 积分因子 如果对于方程⑴在某矩形域内M N y x ??≠??,此时方程⑴就称为非恰当微分方 程。对于非恰当微分方程,如果存在某个连续可微的函数u(x,y)≠0,使得 ()()()(),,,,0u x y M x y d x u x y N x y d y += 为恰当微分方程,则称u(x,y)为方程⑴ 的1个积分因子. 注[] 1 可以证明,只要方程有解存在,则必有积分因子存在,并且不是唯一的. 定理2 []2 函数u(x,y)是方程⑴的积分因子的充要条件是 u u M N N M u x y y x ?? ????-=- ??????? 3. 积分因子求法举例 观察法 对于一些简单的微分方程,用观察法就可以得出积分因子 如: ⑴ 0ydx xdy +=有积分因子1 xy ⑵ ydx xdy -=有积分因子 2 1x -,2 1 y ,1 xy ,2 2 1 x y +,2 2 1 x y - 例1 找出微分方程 ()()110xy ydx xy xdy ++-=的一个积分因子.

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求 2 30 x dx ? 的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x = 2 n . (2)近似代替:△3 2()i i i S f x x n ξ?? =?=? ??? (3)求和:3 3 111222n n n i i i i i i S x n n n ===?????? ?≈?=? ? ? ????? ??∑∑∑. (4)取极限:S=333 2242lim n n n n n n →∞?? ?????? +++?? ? ? ? ???? ?????? L =4433322 44221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+??L =22 4(21) lim n n n n →∞++==4. ∴ 2 30 x dx ? =4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法

例2 求定积分 2 21 (21)x x dx ++? 的值. 分析:可先求出原函数,再利用微积分基本定理求解. 解:函数y =2 21x x ++的一个原函数是y =3 23 x x x ++. 所以.2 2 1 (21)x x dx ++? =322 1()|3x x x ++=81421133????++-++ ? ????? =193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数. 三、几何意义法 例3 求定积 分 1 1 dx -? 的值. 分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出. 解 :1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2 S π =半圆,又在x 轴上方. 所 以 1 1 dx -? = 2 π . 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴ 44 tan xdx π π-?;⑵22 sin 1 x x dx x π π - +?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很 难

微分方程积分因子的求法

微分方程积分因子的求法 何佳 【摘要】 利用积分因子,可以对一个一阶微分方程的求解进行统一处理。因此,如何求解积分因子就成为解一阶微分方程的一个重点了。但对于一个具体的方程,如何求出它的积分因子呢,一般的方法是解一个一阶偏微分方程,不过那是比较不容易的。但是,对于某些特殊的情况,却可以简单地得出积分因子。通过查找我们发现,在大多数《常微分方程》的教材中都只给出了只与x 或y 有关的积分因子的求法,但这是不够的。所以我们在这里来讨论一下关于求解()x y αβμ和 ()m n ax by μ+这两类积分因子的充要条件及部分例题,由此我们就可以得到形式 相近的积分因子。如:通过x y μ=+,可以得到x y μ=-的积分因子。如此举一反三,力求使得求积分因子的问题变的简便易行。同时,还对积分因子的求法进行了推广,总结出几类方程积分因子的求法。 【关键字】 微分方程 , 积分因子 , 求解方法

【目录】 引言 (1) 目录 (2) 一、()x y αβμ和()m n ax by μ+两类积分因子 § 1、 与()x y αβμ有关的积分因子 …………………………………………… 3 § 2、 与()m n ax by μ+有关的积分因子 …………………………………………… 4 二、微分方程积分因子求法的推广 § 1、 满足条件 ()P Q P Qf x y x y ??-=-??的积分因子求法 (7) § 2、 方程1123422(3)36330m m m m x mx y xy dx y x y x y dy +-????++++++=????积 分因子 (10) § 3、 方程13()30m m m x m x y x dx x dy -??+++=?? 积分因子 (12) § 4、 方程1(4)4450m m m m x mx y y dx x x y dy -????++++++=????积分因子 …………………………………………… 13 参考文献 (15)

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

微分方程的积分因子求解法

创作编号:BG7531400019813488897SX 创作者:别如克* 常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词:全微分方程,积分因子。 一、基本知识 定义1.1 对于形如 dx y N M(1.1) x ),( ),(= +dy x y 的微分方程,如果方程的左端恰是x,y的一个可微函数),(y x U的全微分,即d),(y y x M),( dx ),(+,则称(1.1)为全微分方程. x U= dy y N x 易知,上述全微分方程的通解为),(y U=C, (C为任意常数). x 定理1.1 (全微分方程的判别法)设),(y x N在x,y平面上 M,),(y x 的单连通区域G内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为

x y x N y y x M ??=??) ,(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??) ,(ln ) ,(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得: x y x y x N ??) ,() ,(μ-y y x y x M ??),(),(μ=),(),(),(y x x y x N y y x M μ??? ? ????-??. 上式整理即得(1.4). 证毕 注1.1 若),(y x μ0≠,则(1.3)和(1.1)同解。所以,欲求(1.1)的通解,只须求出(1.3)的通解即可,而(1.3)是全微分方程,故关键在于求积分因子),(y x μ。 为了求解积分因子),(y x μ,必须求解方程(1.4)。一般来说,偏微分方程(1.4)是不易求解的;但是,当),(y x μ具有某种特殊形式时还是较易求解的。

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

积分因子法习题

习题2—5 1. 求解下列微分方程: (1)0)()23(2232=++++dy y x dx y xy y x ; 解 这里x x Q y x x y P 2,32322=??++=??,因此原方程不是恰当方程,由于 3)(1=??-??x Q y P Q , 于是原方程有积分因子 x dx e e x 33)(=?=μ. 将它乘原方程两边,得到一个恰当方程 0)()23(223323=++++dy y x e dx y xy y x e x x , 改写为 0)(])23([2333223=++++dy y dx y e dy e x ydx x x e x x x , 即 0)3 1()(3332=+y e d y e x d x x . 由此可求得通积分 C y e y e x x x =+33323 1. (2)0)(22=++-dy x y x ydx ; 解 把方程改写为 0)()(22=+--dy y x xdy ydx . 容易观察出一个积分因子为2 21y x +=μ,将它乘原方程两边,得 022=-+-dy y x xdy ydx . 即 0)(arctan =--dy x y d . 从而原方程的通积分为 C y x y =+arctan . (3)0)1(2223=-+dy y x dx xy ; 解 这里222,6xy x Q xy y P =??=??,因此原方程不是恰当方程,由于

y y P x Q P 2)(1-=??-??, 于是原方程有积分因子 2)2(1)(y e x dx y =?=-μ. 将它乘原方程两边,得 01)2(22=- +dy y dy x xydx , 从而原方程的通积分为 C y y x =+12. (4)0)(2223=-+dy xy x dx y ; 解 把方程改写为 02)2(223=+-dy x dy xy dx y . 不难看出,前一组有积分因子y x 21和通积分C x y =2,因而它有更一般的积分因子)(12 12x y g y x ,前一组有积分因子21x 和通积分C y =,故它有更一般的积分因子)(122y g x .为使关系式 )(1)(122212y g x x y g y x = 成立,可取 1)(21=x y g ,y y g 1)(2=. 从而得到原方程的积分因子y x 21 =μ,以它乘方程的两端,得到 0222 2=+-dy y x xydy dx y . 从而原方程的通积分为 C x y y =-2 2 ln . 此外,原方程还有解0,0==y x . 2. 证明方程 0),(),(=+dy y x Q dx y x P ①

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

相关主题
文本预览
相关文档 最新文档