当前位置:文档之家› 电动力学问题

电动力学问题

电动力学问题
电动力学问题

电动力学问题

1.说说为什么在非稳情况下要引入位移电流?

答:在非稳情况下,一般有0J ??≠,那么根据电荷守恒定律,0B J μ??=则不成立。由于电荷守恒定律是精确的普通规律,而0B J μ??=仅是根据稳恒情况下的实验定律导出的特殊规律,所以为了将0B J μ??=修改为服从普遍电荷守恒定律的要求,从而引入位移电流。

2.试叙述麦克斯韦方程组的重要作用。 答:麦克斯韦方程组是对电磁场基本规律作出的总结性,统一性的简明而完美的描述。它揭示了电磁场内部作用和运动,预告了电磁波的存在。指出光波是一种电磁波,同时揭示了电磁场可以独立于电荷之外而存在。

3.为什么在两介质分界面上,我们要用边值关系来描述界面两侧的场强与界面上电荷电流的关系?

答:在介质的分界面上,由于一般出现面电荷电流的分布,使得界面两侧的场量发生跃变,微分式的麦克斯韦方程组不在适用,因此在介质分界面上,我们要用边值关系来描述界面两侧场强与界面上电荷电流的关系。 4.试推导电荷守恒定律的积分形式并叙述其物理意义。

答:令ω为场的能量密度,S 为能流密度,f 表示场对电荷作用力密度,则场对电荷系统所做的功率为:

v f f vdv ?

内场能量增加率为:

v d

f dv dt

ω 通过界面S 流入V 内的能量为:

s s d σ-??

则能量守恒定律的积分形式为:

s s d σ-??=v f f vdv ?+

v d

f dv dt

ω 物理意义:单位时间通过界面S 流入V 内的能量等于场对V 内电荷作功的功率与V 内电磁场能量增加率之和。 5.静电场的基本规律是什么? 答:包括以下几方面:

① 泊松方程:2ρ?ε

?=-

② 边值关系:12//s s ??= 222

1n n

??

εεσ??-=-?? 或21n n D D σ-=-

③ 边界条件:电势/s ?

或电势的法线方向偏导数/s n

?

?? 6.写出磁失势的定义式,并由此推导出磁失势所满足的泊松方程。 答:定义式:B A =?? ①

在线性均匀介质内部有:

B H μ= ② 又 H J ??= ③ 将①②带入③得:

()A J μ????=

∴2()A A J μ???-?=

取A 满足规范性条件0A ??=,则有:

2A J μ?=-,此即为所满足的泊松方程。

7.写出磁标势所满足的定义式,由此推导出磁标势所满足的泊松方程并说明静电势与磁标势的区别。

答:定义式:m H ρ=-? ① 区别如下:

对①式两边取散度: ①静电势在电场中,磁标势在磁场中。

2m m H ρρ??=-???=-? ②电场强度E 等于电势的负梯即 又 0

m

H ρμ??=

而磁场强度等于磁标势的负梯度,即 则0

m

m ρ?μ?=-

此为磁标势所满足的泊松方程。 ③静电势是矢量,磁标势是标量。 8.试从麦克斯韦方程组出发,导出亥姆霍兹方程,并写出时谐电磁波的一般表达式。

答:麦克斯韦方程组为:(没有电荷电流分布的自由空间或均匀的绝缘介质情况)

B E t

???=-

? ① E ?=?m

H ?=-?D H t

???=-

?B

??0D ??=

又:对于一定频率的电磁波有:

(,)()i t E x t E x e ω-=

(,)()i t B x t B x e ω-=

又:对于线性均匀介质有:

D E ε= B H μ= ③

将①代入②并结合③得:

E i H ωμ??= H i E ωμ??=-

0E ??= 0B ??=

取④中第一式的旋度并利用第二式得:

2()E E ωμε????=

推出:220E E ωμε?+=(其中22()()E E E E ????=???-?=-?)

令K =即亥姆霍兹方程:220E K E ?+= 时谐电磁波的一般表达式即:

(,)()i t E x t E x e ω-= (,)()i t B x t B x e ω-=

9.写出平面电磁波的特性。

答:(1)电磁波是横波,E 和B 都与传播方向垂直。 (2)E 和B 互相垂直,E B ?沿波矢K 方向。 (3)E 和B 同向,振幅比为V 。

10.证明:在介质分界面上,入射波,反射波满足下列关系:

==ωωω'''

x x x k k k '''== 0y y y k k k '''===

并由此写出反射,折射定律。 答:由于是同一列波进行的传播,则其反射波,折射波的频率都相同,即==ωωω''' 令入射波,反射波,折射波的电场强度分别为E ,E ',E '',波失分别为k ,k ',

k '',则其平面波表示分别为:

()0i k x t E E e ω?-=

()0i k x t E E e ω'?-''= ①

()0i k x t E E e ω''?-''''=

由边界条件得:()n n e E E e E '''?+=?

将①式带入得:00

()ik x

ik x ik x n n e E e E e e E e ???'''?+=? ② ②式对整个界面都成立,选界面为平面Z=0,则上式应对Z=0和任意x,y 成立,

因此,三个指数因子必须在此平面上完全相等。故:

k x k x k x '''?=?=?

由于x 和y 是任意的,它们的系数也应各自相等,有:

x x x k k k '''== y y y k k k '''== ③ 如右图所示,取波失在xz 平面,则

0y k =,∴0y y k k '''==

即反射波失,入射波失,折射波失都 在同一平面上。

如右图,以θ,θ',θ''分别表示入射角,反射角和折射角,则有:

sin x k k θ=

sin x k k θ'''= ④

sin x k k θ''''''=

设1v ,2v 为电磁波在两种介质中的相速度,则有:

1

k k v ω

'==

2

k v ω

'=

⑤ 把④⑤代入③得:

θθ'=

1

212sin sin v n v θθ===' 这就是反射定律与折射定律。

11.由菲涅尔公式出发,写出布鲁斯特定律。 答:由菲涅尔公式:

tan()tan()E E θθθθ'''-=''+ 当0

90θθ''+=时,0E E

'=

而0E ≠,∴0E '=。即E 平行入射面的分量,没有折射波,因而反射光变为垂直于入射面偏振的完全偏振光。此即为布鲁斯特定律。

12.电磁场标势和失势的定义是什么?它们作怎样变化时,磁场具有规范不变性? 答:失势:B A =?? 标势:A E t

ψ?=-?-

? 当它们作以下规范变化时,电磁场具有规范不变性:

A A ψ'=+? t

ψ???'=-

? 13.什么叫做推迟势,其物理意义是什么?

答:推迟势:0(,)

(,)4r

r

x t c x t dV r

ρ?πε-'=

?

0(,)(,)4r

J x t u c A x t dV r

π-'=? 其物理意义在于,它反映了电磁场作用具有一定的传播速度,空间某点x 在其时刻的场值不

依赖于同一时刻的电荷电流分布,而是决定于较早时刻r

t c

-的电荷电流分布。即电荷产生的物理作用不能够立即传到场点,而是较晚时刻才传到场点,所推迟的时间r

c

正是电磁作用

从源点x '传到终点x 所需的时间,c 为电磁作用的传播速度。

14.为什么电磁辐射能把电磁能量传到任意处? 答:在辐射区内,1E R ∝

,1B R ∝,21

S R

∝,对球面积分和总功率与球半径无关,即2

2

1s d R d c R σσ?∝?=??

。能量在没有导体和电荷的情况下全部传出去了,没有转化为其他形式的能量。因此电磁能可以传到任意处。 15.洛伦兹变化的依据是什么?

答:间隔不变性和变换必须是线性的。 16.在四维空间推导出四维速度的表达式。 答:设四维空间位移u dx

u u v x a x = x ict ?=

u

u dx U d τ

=

dt =

∴四维速度:123,,,)(,)u U U U U ic r u ic μ=

=

17.从四维速度公式,写出相对论的质能关系。 答:由四维速度公式dx dx U r d dt

μμμμ

τ

=

=

定义四维动量 0P m u μμ=

其四维矢量的空间分量和时间分量分别为

0p rm v ==

2

0p icrm ?==

② 当v

c 时将p ?泰勒展开:

220011

(......)2

p m c m v c ?=+

由此式可知p ?与物体的能量有关,设相对论中物体的能量为

2w =

i p w c

?=

W 中包含物体的动能,当v=0时动能为0,因此相对论中物体动能

220T m c =

-

总能量为:2

0w T m c =+

令相对论动量,相对论能量分别有:

w v p =

w =

联立①②③得 2

00w m c =

此即为相对论质量关系。

18.从四维动量出发,写出相对论力学的两个方程。 答:定义u p 为四维动量,则四维力矢量u k 为u

u dp k d τ

=

又u k 的第四个分量4k 与空间分量k 有一定关系如下:

dw ick d ?τ-=

=2.c dp p w d τ

= dp v d τ

=?

k v =?

因此,作用于速度为v 的物体上的四维动量为

(,)u i

k k k v c

=?

其中

dp k d τ

=

=

k μ?=

名词解释: 1. 梯度

答:设体系中某处的物理参数为u ,在与其垂直距离的y d 处该参数为u du +,则称为该物理参数的梯度。梯度的大小为函数的最大变化率,方向是具有函数最大变化率的方向。算符表示:i j k x y z

????=

++??? 2. 极化强度

答:在外场作用下,电解质分子出现宏观电偶极矩分布。宏观电偶极矩分布用电极化强度矢

量描述,它等于物理小体积V ?内的总电偶极矩与V ?之比:i

i

p

p V

=

?∑

3. 能流密度

答:场的能流密度S ,它描述能量在场内传播。S 在数值上等于单位时间垂直流过横截面的能量,其方向代表能量传输方向。

4. 趋肤效应:对于高频电磁波,电磁场以及和它相互作用的高频电流反集中于表面很薄一

层内,这种现象称为趋肤效应。 5. 推迟势

答:空间某点x 在其时刻的场值不依赖于同一时刻的电荷电流分布,而是决定于较早时刻

r

t c

-的电荷电流分布。即电荷产生的物理作用不能够立即传到场点,而是较晚时刻才传到场点,所推迟的时间r

c

正是电磁作用从源点x '传到终点x 所需的时间,c 为电磁作用的传播

速度。0(,)

(,)4r

r

x t c x t dV r ρ?πε-'=

?

(,)

(,)4r

J x t u c

A x t dV r π

-'=?

6. 散度

答:在矢量场中一点M 处,作一包含M 在内的任一闭合曲面S ,称以下极限为矢量场在M

处的散度。lim v o

M dS divM V

?→?=??

7. 磁极化强度

答:单位体积内总磁偶极距:l

m

M V

=

?∑

8. 能量密度:

答:电磁场内单位体积的能量 9. 平面电磁波:

答:设电磁波沿x 轴方向传播,其场强在与x 轴正交的平面上各点具有相同的值,即E 和B 仅与x,t 有关,而与y,z 无关,这种电磁波称为平面电磁波。 10.复电容率

答:实部为位移电流的贡献,虚部为传导电流的贡献,引起能耗。 11.间隔

答:两个事件1111(,,,)x y z t 和2222(,,,)x y z t ,它们的间隔为:

222222

21212121()()()()s c t t x x y y z z ??----+-+-??

222()c t x =?-?

填空题:

1.建立麦克斯韦方程组所依赖的主要实验定律有:库伦定律 毕—萨定律 电磁感应定律和电荷守恒定律。

2.电磁场能量守恒定律的积分形式为:d

s d f vdv dv dt

σω-?=

?+

??

? 其物理意义是:单位时间流入V 内的电磁能量等于电磁场单位时间对带电粒子做的功与V

内电磁场能量的减少率之和。

3.电荷Q 均匀分布在半径为a 的介质球内,介质电容率为ε,求r a <处的电场强度

E =

34Qr a πε E ??=3

34Q

a

πε 4.在迅变电磁场作用下,只要电磁波的周期远大于17

10-秒,就可以认为导体内部的自由电

荷体密度ρ= 0

5.洛伦兹变换的依据是变换的线性和间隔不变性。

6.当电磁场的失势和标势作规范变换A A '→=A ψ'+?,??'→=t

ψ

??-

?时,电磁场具有规范不变性。

7.半径为R 的介质球内均匀分布有电荷Q ,介质的电容率为ε,则r R <处的电场强度

E =

34Qr R πε E ??=3

34Q

R

πε 0E ??= 8.在两介质分界面上,一般要出现面电荷电流分布,使物理量发生跃变,微分形式的麦克斯韦方程组不再适用,所以要用积分形式来描述分界面两侧的场。 9.电磁场能量守恒积分形式:d

s d f vdv dv dt

σω-?=

?+

??

?。其物理意义是:单位时间流入V 内的电磁能量等于电磁场单位时间对带电粒子做的功与V 内电磁场能量的减少率之和。 10.在导体中传播的平面时谐波的表达式为(,)E x t =()0x i x t E e e αβω-??-,它表示的是衰减波。式中α称为衰减常数,β称为相位常数。

11.电磁场失势的定义式为B A =??,标势的定义式为A

E t

??=-?-?。 大题:

电动力学试题库十及其答案

简答题(每题5分,共15分)。 1.请写出达朗伯方程及其推迟势的解. 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什 么? 3.请写出相对论中能量、动量的表达式以及能量、动量和静止质量的关 系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足: 1 21 2εεθθ= t a n t a n ,其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两 侧电力线与法线的夹角。(15分) 四. 综合题(共55分)。 1.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,介电常数为1ε和 2ε,今在两板上接上电动势为U 的电池,若介质是漏电的,电导率分别为1 σ和2σ,当电流达到稳恒时,求电容器两板上的自由电荷面密度f ω和介质分界面上的自由电荷面密度f ω。(15分) 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔内的电场(分离变量法)。(15分)

3.一对无限大平行的理想导体板,相距为d ,电磁波沿平行于板面的z 轴方向传播,设波在x 方向是均匀的,求可能传播的波型和相应的截止频率.(15分) 4.一把直尺相对于∑坐标系静止,直尺与x 轴夹角为θ,今有一观察者以速度v 沿x 轴运动,他看到直尺与x 轴的夹角'θ有何变化?(10分) 二、简答题 1、达朗伯方程:2 2 022 1A A j c t μ??-=-? 222201c t ?ρ?ε??-=-? 推迟势的解:()()0 ,,, , ,44r r j x t x t c c A x t dV x t dV r r ρμμ?π π ?? ?? ''-- ? ?? ?? ? ''= =?? 2、由于电磁辐射的平均能流密度为222 3 2 0sin 32P S n c R θπε= ,正比于2 sin θ,反比于 2 R ,因此接收无线电讯号时,会感到讯号大小与大小和方向有关。 3 、能量:2 m c W = ;动量:),,m iW P u ic P c μ?? == ??? ;能量、动量和静止质量的关系为:22 22 02 W P m c c -=- 三、证明:如图所示 在分界面处,由边值关系可得: 切线方向 12t t E E = (1) 法线方向 12n n D D = (2) 1 ε

电动力学

《电动力学》课程教学大纲 课程英文名称:Electrodynamics 课程编号:0312033002 课程计划学时:48 学分:3 课程简介: 电动力学的研究对象是电磁场的基本属性, 它的运动规律以及它和带电物质之间的相互作用,本课程在电磁学的基础上系统阐述电磁场的基本理论。另外,本课程还系统地阐述狭义相对论的重要内容,而相对论是现代物理学的重要基础,它与量子论一起对物理学的发展影响深刻,是二十世纪科学与技术飞速发展的基础。本课程是材料物理专业本科的重要专业基础课。 电动力学是物理类有关各专业的一门基础理论课。学电动力学的目的:(1)是使学生系统地掌握电磁运动的基本概念和基本规律,加深对电磁场性质的理解;(2)是使学生获得分析和处理一些问题的基本方法和解决问题的能力,提高逻辑推理和插象思维的能力,为后继课程的学习和独立解决实际问题打下必要的理论基础。 在教学过程中,使用启发式教学,尽量多介绍与该课程相关的前沿科技动态,充分调动和发挥学生的主动性和创新性;提倡学生自学,培养学生的自学能力。 一、课程教学内容及教学基本要求 第一章电磁现象的普遍规律 本章重点:在复习矢量分析、?算符、?算符及其运算法则、δ函数性质的基础上,从电磁场的几个基本实验律(库仑定律,毕奥--萨伐尔定律,电磁感应定律,电荷守恒律) 出发,加上位移电流假定, 总结出电磁场的基本运动规律Maxwell方程组、电荷守恒律和洛仑兹力公式。讨论了介质中的Maxwell方程, 电磁场的能量。本章内容是本课程的基础,必须深刻掌握。 难点:电磁场边值关系,电磁场的能量和能流。 本章学时:10学时 教学形式:讲授 教具:黑板,粉笔 第一节矢量分析和张量;?算符、?算符及其运算规则、δ函数性质 本节要求:理解:矢量分析和张量运算。掌握:?算符、?算符及其运算法则、δ函数性质(重点:考核概率50%)。 1 矢量分析和张量(理解:矢量运算法则,在电动力学中张量是如何引入的;了解:线性各

电动力学章节总结

第一章 一、总结 1.电磁场的六大基本方程及其对应的边值关系 2.介质的特性 欧姆定律: 焦耳定律: 另外常用: ; (可由上面相关公式推出) 3.洛仑兹力密度公式、电荷守恒定律 洛仑兹力密度公式: 由此式可导出: 电荷守恒定律: 稳恒条件下: 4.能量的转化与守恒定律 积分式: 其中, 微分式: 或 5.重要推导及例题 (1) .六个边值关系的导出; (2) .由真空中的麦克斯韦方程推出介质中的麦克斯韦方程; (3) .能流密度和能量密度公式的推导;

(4) .单根导线及平行双导线的能量传输图象; (5) .例题:所有课堂例题。 6.几个重要的概念、定义 (1) ; (2) ; (3) .矢量场的“三量三度”(见《矢量场论和张量知识》)和麦克斯韦电磁理论的“四、三、二、一”,其中“三量三度”见《矢量场论和张量知识》。 第二章 (1).唯一性定理的两种叙述 一般介质情况下的唯一性定理 有导体存在时的唯一性定理 (2).引入静电场标势的根据,的物理意义,的积 分表式 (3).与静电场标势有关的公式 (4).电多极展开的思想与表式,Dij=? a. 小区域电荷系在远区的电势 其中 为体系总电量集中在原点激发的电势; 为系统电偶极矩激发的电势; 为四极矩激发的势。 b. 电偶极矩、电四极矩 为体系的总电量 为体系的总电偶极矩 为体系的总电四极矩 c. 小电荷系在外电场中的能量 为电荷集中于原点时在外电场中的能量; 电力线 ;

为偶极矩在外场中的能量 为四极矩在外场中的能量 d. 用函数表示偶极矩的计算公式 其中;的定义满足 2.本章重要的推导 (1).静电场泊松方程和拉普拉斯方程导出:(1).;(2). (2).势函数的边值关系:(1);(2) (3).静电场能量: (4).静电场的引出。 由于静电场与静磁场的理论在许多情况下具有很强的对称性的,许多概念、知识点及公式也具有类似的形式,所以我们将第二、第三章的小结编排在一起,以利于巩固和复习。 第三章 1.基本内容 (1).引入的根据,的积分表式,的物理意义 (2).引入的根据及条件,的积分表式及物理意义 (3).磁标势与电标势()的比较及解题对照 标势 引入根据; ; 等势面电力线等势面磁力线等势面 势位差 微分方程 ; ; 边值关系 (4).磁多极展开与有关公式, a. 小区域电流在外场中的矢势

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案

第 40 页 电动力学答案 第一章 电磁现象的普遍规律 1. 根据算符?的微分性与向量性,推导下列公式: B A B A A B A B B A )()()()()(??+???+??+???=?? A A A A )()(2 2 1??-?=???A 解:(1))()()(c c A B B A B A ??+??=?? B A B A A B A B )()()()(??+???+??+???=c c c c B A B A A B A B )()()()(??+???+??+???= (2)在(1)中令B A =得: A A A A A A )(2)(2)(??+???=??, 所以 A A A A A A )()()(2 1 ??-??=??? 即 A A A A )()(2 2 1??-?=???A 2. 设u 是空间坐标z y x ,,的函数,证明: u u f u f ?=?d d )( , u u u d d )(A A ??=??, u u u d d )(A A ? ?=?? 证明: (1) z y x z u f y u f x u f u f e e e ??+??+??= ?)()()()(z y x z u u f y u u f x u u f e e e ??+??+??=d d d d d d u u f z u y u x u u f z y x ?=??+??+??=d d )(d d e e e (2) z u A y u A x u A u z y x ??+ ??+??=??)()()()(A z u u A y u u A x u u A z y x ??+??+??=d d d d d d u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (e e e e e e ??=??+??+???++=

电动力学_知识点总结材料

第一章电磁现象的普遍规律 一、主要容: 电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出 , 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。完成由普通物理到理论物理的自然过渡。 二、知识体系: 三、容提要: 1.电磁场的基本实验定律: (1)库仑定律: 对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)

(3)电磁感应定律 ①生电场为有旋场(又称漩涡场),与静电场本质不同。 ②磁场与它激发的电场间关系是电磁感应定律的微分形式。 (4)电荷守恒的实验定律 , ①反映空间某点与之间的变化关系,非稳恒电流线不闭合。 ② 若空间各点与无关,则为稳恒电流,电流线闭合。 稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。 2、电磁场的普遍规律—麦克斯韦方程 其中: 1是介质中普适的电磁场基本方程,适用于任意介质。 2当,过渡到真空情况: 3当时,回到静场情况: 4有12个未知量,6个独立方程,求解时必须给出与,与的关系。 介质中: 3、介质中的电磁性质方程 若为非铁磁介质 1、电磁场较弱时:均呈线性关系。 向同性均匀介质: ,, 2、导体中的欧姆定律 在有电源时,电源部,为非静电力的等效场。 4.洛伦兹力公式

电动力学复习总结电动力学复习总结答案

第二章 静 电 场 一、 填空题 1、若一半径为R 的导体球外电势为b a b r a ,,+=φ为非零常数,球外为真空,则球面上的电荷密度为 。 答案: 02a R ε 2、若一半径为R 的导体球外电势为3 002cos cos =-+E R E r r φθθ,0E 为非零常数, 球外为真空,则球面上的电荷密度为 . 球外电场强度为 . 答案:003cos E εθ ,303[cos (1)sin ]=-+-v v v r R E E e e r θθθ 3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。 答案: σφ εφσφεφεφφερφ-=??=-=??-??=- =?n c n n ,,,,1122212 4、设某一静电场的电势可以表示为bz y ax -=2φ,该电场的电场强度是_______。 答案:z y x e b e ax e axy ? ??+--22 5、真空中静场中的导体表面电荷密度_______。 答案:0n ? σε?=-? 6、均匀介质部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ_____的倍。 答案: -(1- ε ε0 ) 7、电荷分布ρ激发的电场总能量1 ()() 8x x W dv dv r ρρπε''= ??v v 的适用于 情 形. 答案:全空间充满均匀介质 8、无限大均匀介质中点电荷的电场强度等于_______。 答案: 3 4qR R πεv 9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生

的电势为等于 . 答案: 04q a πε 10、无电荷分布的空间电势 极值.(填写“有”或“无”) 答案:无 11、镜象法的理论依据是_______,象电荷只能放在_______区域。 答案:唯一性定理, 求解区以外空间 12、当电荷分布关于原点对称时,体系的电偶极矩等于_______。 答案:零 13、一个外半径分别为R 1、R 2的接地导体球壳,球壳距球心a 处有一个点电荷,点电荷q 受到导体球壳的静电力的大小等于_______。 答案:212014() R q a R a a πε- 二、 选择题 1、泊松方程ε ρ φ- =?2适用于 A.任何电场 B. 静电场; C. 静电场而且介质分区均匀; D.高频电场 答案: C 2、下列标量函数中能描述无电荷区域静电势的是 A .2363y x + B. 222532z y x -+ C. 32285z y x ++ D. 2237z x + 答案: B 3、真空中有两个静止的点电荷1q 和2q ,相距为a ,它们之间的相互作用能是 A .a q q 0214πε B. a q q 0218πε C. a q q 0212πε D. a q q 02132πε 答案:A 4、线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ? ??21; C. ρφ D. E D ??? 答案:B 5、两个半径为12,R R ,124R R =带电量分别是12,q q ,且12q q =导体球相距为a(a>>12,R R ),将他们接触后又放回原处,系统的相互作用能变为原来的 A. 16,25倍 B. 1,倍 C. 1,4倍 D. 1 ,16倍 答案: A

电动力学答案完整

1.7. 有一内外半径分别为 r 1 和 r 2 的空心介质球,介质的电容率为ε,使介质内均匀带静止由电荷f ρ求 1 空间各点的电场; 2 极化体电荷和极化面电荷分布。 解(1) f s D ds dV ρ→ ?=??, (r 2>r> r 1) 即:()2 3 31 443 f D r r r π πρ?=- ∴()3 313 3f r r E r r ρε→ -= , (r 2>r> r 1) 由 ()33 210 43f f s Q E d s r r πρεε?= = -? , (r> r 2) ∴()3 32 13 03f r r E r r ρε→ -= , (r> r 2) r> r 1时, 0E = (2)()0 00 00 e P E E E εεεχεεεε-===- ∴ ()()()33310103 30033303p f f f f r r r P r r r r r εερεερρεεεεεερρεε??-?? -??=-??=--??=-??- ???????--=--=- (r 2>r> r 1) 12p n n P P σ=- 考虑外球壳时, r= r 2 ,n 从介质 1 指向介质 2 (介质指向真空),P 2n =0 () () 2 3 333 1021103 3 2 133p n f f r r r r r r P r r r εσεερρεε=--??==-=- ??? 考虑内球壳时, r= r 1 () () 1 3 3103 03p f r r r r r r σεερε=-=--=

1.11. 平行板电容器内有两层介质,它们的厚度分别为 l 1 和l 2,电容率为ε1和ε,今在两板接上电动势为 Ε 的电池,求 (1) 电容器两板上的自由电荷密度ωf (2) 介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为 σ 1 和σ 2 当电流达到恒定时,上述两问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向 则11221211220(0) n n f l E l E E D D E E εεσ-=???-=-==??介质表面上 故:211221 E E l l εεε= +,121221 E E l l εεε= + 又根据12n n f D D σ-=, (n 从介质1指向介质2) 在上极板的交面上, 112f D D σ-= 2D 是金属板,故2D =0 即:11211221 f E D l l εεσεε==+ 而20f σ= 3 122f D D D σ'''=-=-,(1D '是下极板金属,故1D '=0) ∴31 121221 f f E l l εεσσεε=- =-+ 若是漏电,并有稳定电流时,由j E σ = 可得 1 11 j E σ= , 2 22 j E σ= 又1 21 2121212,() n n j j l l E j j j j σσ?+=???===?稳定流动

电动力学复习总结第一章电磁现象的普遍规律2012答案

第一章 电磁现象的普遍规律 一、 填空题 1.已知介质中的极化强度Z e A P =,其中A 为常数,介质外为真空,介质中的极 化电荷体密度=P ρ ;与P 垂直的表面处的极化电荷面密度P σ分别等于 和 。 答案: 0, A, -A 2.已知真空中的的电位移矢量D =(5xy x e +2z y e )cos500t ,空间的自由电荷体 密度为 。 答案: 5cos500y t 3.变化磁场激发的感应电场的旋度等于 。 答案: B t ?-? 4.介电常数为ε的均匀介质球,极化强度z e A P =A 为常数,则球内的极化电荷 密度为 ,表面极化电荷密度等于 答案0,cos A θ 5.一个半径为R 的电介质球,极化强度为ε,电容率为2r r K P =,则介质中的自由电荷体密度为 ,介质中的电场强度等于 . 答案: 20r K f )(εεερ-= 2 0r r K εε- 二、 选择题 1.半径为R 的均匀磁化介质球,磁化强度为M ,则介质球的总磁矩为 A .M B. M R 334π C.3 43R M π D. 0 答案:B 2.下列函数中能描述静电场电场强度的是 A .z y x e x e y e x ++32 B.φθe cos 8 C.y x e y e xy 236+ D.z e a (a 为非零常数) 答案: D

3.充满电容率为ε的介质平行板电容器,当两极板上的电量t q q ωsin 0=(ω很小),若电容器的电容为C ,两极板间距离为d ,忽略边缘效应,两极板间的位移电流密度为: A .t dC q ωω εcos 0 B. t dC q ωωsin 0 C. t dC q ωωεsin 0 D. t q ωωcos 0 答案:A 4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的a 为非零常数 A .r e ar (柱坐标) B.y x e ax e ay +- C. y x e ay e ax - D.φe ar 答案:A 5.变化磁场激发的感应电场是 A.有旋场,电场线不闭和 B.无旋场,电场线闭和 C.有旋场,电场线闭和 D.无旋场,电场线不闭和 答案: C 6.在非稳恒电流的电流线的起点.终点处,电荷密度ρ满足 A.J ??=ρ B.0=??t ρ C.0=ρ D. 0≠??t ρ 答案: D 7.处于静电平衡状态下的导体,关于表面电场说法正确的是: A.只有法向分量; B.只有切向分量 ; C.表面外无电场 ; D.既有法向分量,又有切向分量 答案:A 8.介质中静电场满足的微分方程是 A.;,0t B E E ??-=??=?? ερ B.0,=??=??E D ρ; C.;0,0=??=??E E ερ D.;,t B E D ??-=??=?? ρ 答案:B 9.对于铁磁质成立的关系是 A.H B μ= B.H B 0μ= C.)(0 M H B +=μ D.)(M H B +=μ 答案:C 10.线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ?2 1; C. ρφ D. E D ? 答案:B

电动力学

电动力学 第一章静电场 一、考核知识点 1、真空与介质中静电场场方程,场的性质、物理特征。 2、电场的边值关系、在两种介质分界面上电场的跃变性质。 3、由场方程、边值关系,通过电荷分布确定场分布及极化电荷的分布。 4、静电场的势描述。由势分布确定场分布、荷分布;通过静电势的定解问题,确定静 电势的分布、场分布及介质极化性质的讨论。 二、考核要求 (一)、场方程、场的确定 1、场方程,场的边值关系,体、面极化电荷密度的确定式等规律的推导。 2、识记: (1)、真空与介质静电场方程。 (2)、电场的边值关系。 (3)、体、面极化电荷密度的确定式。 3、领会与理解: (1)、静电场的物理特征。 1

2 (2)、P D E ,,与电荷的关系,力线分布的区别与联系。 (3)、在介质分界面上场的跃变性质。 4、应用: 通过对称性分析,运用静电场的高斯定理确定场,讨论介质的极化,正确地由电荷分布画出场的力线分布。 (二)、静电势 1、静电势方程、边值关系的推导。 2、识记:静电势的积分表述、势方程、势的边值关系、势的边界条件、唯一性定理。 3、领会与理解:势的边值关系与边界条件,荷、势与场的关系,解的维数的确定,电像法的指导思想与像电荷的确定。 4、应用:求解静电势定解问题的方法(分离变量法、电像法)的掌握及应用,求解的准确性,场的特征分析及由势对介质极化问题的讨论。 第二章 稳恒磁场 一、考核知识点 1、电荷守恒定律。 2、稳恒磁场场方程,场的性质特点。 3、由场方程,通过流分布确定场分布与磁化流。 4、磁场的边值关系。 5、稳恒磁场的矢势。 6、由磁标势法确定场。

电动力学-知识点总结

第一章电磁现象的普遍规律 一、主要内容: 电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。完成由普通物理到理论物理的自然过渡。 二、知识体系: 三、内容提要: 1.电磁场的基本实验定律: (1)库仑定律:

对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即: (2)毕奥——萨伐尔定律(电流决定磁场的实验定律) (3)电磁感应定律 ①生电场为有旋场(又称漩涡场),与静电场本质不同。 ②磁场与它激发的电场间关系是电磁感应定律的微分形式。 (4)电荷守恒的实验定律 , ①反映空间某点与之间的变化关系,非稳恒电流线不闭合。 ② 若空间各点与无关,则为稳恒电流,电流线闭合。 稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。 2、电磁场的普遍规律—麦克斯韦方程 其中:

1是介质中普适的电磁场基本方程,适用于任意介质。 2当,过渡到真空情况: 3当时,回到静场情况: 4有12个未知量,6个独立方程,求解时必须给出与,与的关系。介质中: 3、介质中的电磁性质方程 若为非铁磁介质 1、电磁场较弱时:均呈线性关系。 向同性均匀介质: ,, 2、导体中的欧姆定律 在有电源时,电源内部,为非静电力的等效场。 4.洛伦兹力公式 考虑电荷连续分布,

电动力学知识点归纳

《电动力学》知识点归纳 一、试题结构 总共四个大题: 1.单选题('210?):主要考察基本概念、基本原理和基本公式, 及对它们的理解。 2.填空题('210?):主要考察基本概念和基本公式。 3.简答题 ('35?):主要考察对基本理论的掌握和基本公式物理意 义的理解。 4. 证明题 (''78+)和计算题(''''7689+++):考察能进行简单 的计算和对基本常用的方程和原理进行证明。例如:证明泊松方程、电磁场的边界条件、亥姆霍兹方程、长度收缩公式等等;计算磁感强度、电场强度、能流密度、能量密度、波的穿透深度、波导的截止频率、空间一点的电势、矢势、以及相对论方面的内容等等。 二、知识点归纳 知识点1:一般情况下,电磁场的基本方程为:??? ? ? ????=??=??+??=????- =??.0;;B D J t D H t B E ρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==J ρ)的自由空间(或均匀 介质)的电磁场方程为:??? ? ? ?? ? ?=??=????=????-=??.0;0;B D t D H t B E (齐次的麦克斯韦方程组)

知识点2:位移电流及与传导电流的区别。 答:我们知道恒定电流是闭合的: ()恒定电流.0=??J 在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。一般说来,在非恒定情况下,由电荷守恒定律有 .0≠??-=??t J ρ 现在我们考虑电流激发磁场的规律:()@.0J B μ=?? 取两边散度,由于 0≡????B ,因此上式只有当0=??J 时才能成立。在非恒定情形下,一般有 0≠??J ,因而()@式与电荷守恒定律发生矛盾。由于电荷守恒定律是精确的普 遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。 把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流 J 合起来构成闭合的量 ()()*,0=+??D J J 并假设位移电流D J 与电流J 一样产 生磁效应,即把()@修改为 ()D J J B +=??0μ。此式两边的散度都等于零,因而理论上就不再有矛盾。由电荷守恒定律 .0=??+ ??t J ρ电荷密度ρ与电场散度有关系式 .0 ερ =??E 两式合起来得:.00=??? ? ? ??+??t E J ε与()*式比较可得D J 的一个可能表示式 .0 t E J D ??=ε 位移电流与传导电流有何区别: 位移电流本质上并不是电荷的流动,而是电场的变化。它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。而传导电流实际上是电荷的流动而产生的。 知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。 答:电荷守恒定律的积分式和微分式分别为:0 =??+????-=???t J dV t ds J S V ρρ 恒定电流的连续性方程为:0=??J

电动力学试题及参考答案

电动力学试题及参考答案 一、填空题(每空2分,共32分) 1、已知矢径r ,则 r = 。 2、已知矢量A 和标量φ,则=??)(A φ 。 3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。 4、在迅变电磁场中,引入矢势A 和标势φ,则E = , B = 。 5、麦克斯韦方程组的微分形式 、 、 、 。 6、电磁场的能量密度为 w = 。 7、库仑规范为 。 8、相对论的基本原理为 , 。 9、电磁波在导电介质中传播时,导体内的电荷密度 = 。 10、电荷守恒定律的数学表达式为 。 二、判断题(每题2分,共20分) 1、由0 ερ =??E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该 点散度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波是横电磁波。( ) 4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。( ) 5、只要区域V 内各处的电流密度0=j ,该区域内就可引入磁标势。( ) 6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。( ) 7、在0=B 的区域,其矢势A 也等于零。( ) 8、E 、D 、B 、H 四个物理量均为描述场的基本物理量。( ) 9、由于A B ??=,矢势A 不同,描述的磁场也不同。( ) 10、电磁波的波动方程012222 =??-?E t v E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性和微分性,证明 0)(=????φr 式中r 为矢径,φ为任一标量。 2、已知平面电磁波的电场强度i t z c E E )sin(0ωω -=,求证此平面电磁波的磁场强度为 j t z c c E B )sin(0ωω-=

电动力学章节总结

本章总结 一、总结 1 .电磁场的六大基本方程及其对应的边值关系 欧姆定律:■ p = J E = ^― — cE 2 P P = -(1 )p f - - 另外常用:. 「 ; 「一 (可由上面相关公式 推出) 3. 洛仑兹力密度公式、电荷守恒定律 电荷守恒定律: 萌 di = J r 4一 dt IS^dl =-f — dS □ b 忍 lH di =l f -^- — Ib dS 页 J dt h 炒罰=0 护廳=-张 ju 厶 妄 X (总2 - Sj ) - 0 沁風-戸1) = S 址〔万立-£) = J 乳( & - 5J = 0 乳(£ 一尺2 — 口」 2. 介质的特性 D = E £ f5 = E 05+F= (1+监)窃直=右电丘=压 P = 1 屁盪=(S — 1)% 盪=(e-£0)S 焦耳定律: 洛仑兹力密度公式: f - p (S + vx 由此式可导出: V ■ D = Py V 直=0 Vx ^ = f M B = [i 0S + + 唧誘二四

4. 能量的转化与守恒定律 积分式: 5. 重要推导及例题 (1) .六个边值关系的导出; (2) .由真空中的麦克斯韦方程推出介质中的麦克斯韦方程; (3) .能流密度和能量密度公式的推导; (4) .单根导线及平行双导线的能量传输图象; (5) .例题:所有课堂例题 6. 几个重要的概念、定义 (1). ''V - ■.- --; (2). (3) .矢量场的“三量三度”(见《矢量场论和张量知识》)和麦 克斯韦电磁 理论的“四、三、二、一”,其中“三量三度”见《矢量 场论和张量知识》。 本章内容归纳 (1) .唯一性定理的两种叙述 一般介质情况下的唯一性定理 St 占 dt 稳恒条件下: V 0 ( [J dS=O 微分式: 5譽—总 其中, 9p =了疔

电动力学习题集答案

电动力学第一章习题及其答案 1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普 适常数)中的_ C ___选项成立时,则必有高斯定律不成立. 2. 若 a 为常矢量 , r (x x ')i ( y y ')j (z z ')k 为从源点指向场点的矢量 , E , k 为常矢量,则 ! (r 2 a ) =(r 2 a ) (r a 2r a , )a ) ddrr r a 2r r r 2 r i j — k (x x ') (y y ') (z z ') i j k — ! 2(x x ') (x x ') ,同理, ? x (x x ') 2 (y y ') 2 (z z ') 2 / r 2 (x x ')(y y ')(z z ') (y y ') (x x ') ( (y y ') 2 (z z ') y (x x ') 2 (y y ') 2 (z z ') # 2 , z 2 2 (z z ') r 【 r e e e x x x ! r (x-x') r (y-y') y (z-z') 3 z , ' x y z x x ' y y ' z z ' 0, x (a r ) a ( r ) 0 , : ) r r r r r r r 0 r rr ( r 1 1 r 《 a , , ( ) [ a (x -x' )] [ a (y - y')] … j [a (z -z')] a r i k x y z * r r r r 1 r 1 r … r 3 r 2 3 r , ( A ) __0___. r r , [E sin(k r )] k E 0 cos(k r ) __0__. (E 0e ik r ) , 当 r 0 时 , ! (r / r ) ik E 0 exp(ik r ) , [rf (r )] _0_. [ r f ( r )] 3f (r )r # s 3. 矢量场 f 的唯一性定理是说:在以 为界面的区域V 内, 若已知矢量场在V 内各点的旋度和散 度,以及该矢量在边界上的切向或法向分量,则 在 内唯一确定. f V 0 ,若 J 为稳恒电流情况下的电流密度 ,则 J 满足 4. 电荷守恒定律的微分形式为 — J t J 0 . 5. 场强与电势梯度的关系式为, E .对电偶极子而言 ,如已知其在远处的电势为

电动力学复习提纲及复习习题参考答案..

2011级电动力学复习提纲 数学准备 理解散度、旋度、梯度的意义,熟悉矢量的梯度、散度、旋度在直角、球、圆柱坐标系中的运算,以及散度定理(高斯定理)、旋度定理(斯托克斯定理)。章后练习1、2。 第1章 理解全章内容,会推导本章全部公式。重点推导麦克斯韦方程组,以及用积分形式的麦克斯韦方程组推出边值关系。章后练习1、2、5、9、10、12 第2章 能推导能量转化与守恒定律,并且能说明各物理量及定律的物理意义。能认识电磁场动量及动量转化和守恒定律,并且能说明各物理量及定律的物理意义。了解电磁场的角动量,理解电磁场有角动量且角动量转化和守恒的意义。P35例题,书后练习2、3 第3章 理解静电场和静磁场的势函数,为什么可以提出,在求解静电磁场时有什么意义。势的方程和边值关系及推导。深入理解唯一性定理,能应用其解释电磁现象,比如静电屏蔽现象。熟悉电磁能量势函数表达式及意义。会独立完成P48例题1,,P55例1、例2,P57例5,。练习1、3、6、7 第4章 掌握静像法、简单情形下的分离变量法;理解多极矩法,掌握电偶极矩的势、场,以及能量、受力等;知道电四极矩的表示,计算。了解磁偶极矩的表示、能量。熟悉超导的基本电磁性质及经典电磁理论的解释。会独立熟练计算P62例题1、P64例2及相关讨论;P69例1、P72例3;P74例1、例2。练习3、4、5、7、10、12 第5章 1、理解如何由麦克斯韦方程推导自由空间的波动方程,理解其意义。 2、能推出电场和磁场的定态方程(亥姆霍兹方程),熟练掌握自由空间平面电磁波表达式,并且能应用其证明平面电磁波性质; 3、能推导反射、折射定律、费涅尔公式,并且能应用其讨论布儒斯特定律、半波损失等常见现象; 4、理解全反射现象,知道什么情形下发生全反射,折射波表示,透射深度; 5、熟悉电磁波在导体空间表达式,理解其物理意义、理解良导体条件及物理意义;能推导导体中电荷密度;知道导体内电场和磁场的关系;理解趋肤效应,计算趋肤深度;理想导体的边值关系; 6、理解波导管中电磁波的求解过程和结果,知道结构。能计算截止频率。了解谐振腔中的电磁场解,理解且求解共振频率。 7、独立计算P103,P111,P120例1、P121的例2、例3。练习5、7、 8、9,10 第6章 1、熟悉并且理解时变电磁场的电磁势及与电磁场的关系; 2、什么是规范变换和规范不变性,熟悉库仑规范和洛仑兹规范; 3、熟悉达朗贝尔方程,理解什么是近区、感应区、辐射区及特点;了解多极展开方法的应用;理解什么是推迟势,物理意义和表达式; 4、熟悉电偶极辐射的电磁场及性质特点、偶极辐射的功率特点。 5、独立完成练习2 第7章 1、了解狭义相对论的产生过程,对电磁学发展的意义; 2、熟练掌握狭义相对论的原理;洛仑兹变换式、间隔的概念及表示; 3、熟悉物理量按变换性质分类;理解如何得到协变物理量、判断物理规律的协变性、熟悉教材给出的四维物理量、洛伦兹变换矩阵; 4、熟练掌握相对论的多普勒效应及特点; 5、了解协变的电动力学规律; 6、熟悉如何求解以匀速运动的带电粒子的势函数、电磁场及特点; 7、独立完成P159例4、P162例1、P164例2,P165例3、例4,练习2、8,9,11,12

电动力学_知识点总结

第一章电磁现象的普遍规律一、主要内容: 电磁场可用两个矢量—电场强度和磁感应强度来完全 描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。完成由普通物理到理论物理的自然过渡。 二、知识体系: 三、内容提要:

1.电磁场的基本实验定律: (1)库仑定律: 对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即: (2)毕奥——萨伐尔定律(电流决定磁场的实验定律) (3)电磁感应定律 ①生电场为有旋场(又称漩涡场),与静电场本质不同。 ②磁场与它激发的电场间关系是电磁感应定律的微分形式。 (4)电荷守恒的实验定律 , ①反映空间某点与之间的变化关系,非稳恒电流线不闭合。 ② 若空间各点与无关,则为稳恒电流,电流线闭合。 稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。 2、电磁场的普遍规律—麦克斯韦方程

其中: 1是介质中普适的电磁场基本方程,适用于任意介质。 2当,过渡到真空情况: 3当时,回到静场情况: 4有12个未知量,6个独立方程,求解时必须给出与,与的关系。介质中: 3、介质中的电磁性质方程 若为非铁磁介质 1、电磁场较弱时:均呈线性关系。

向同性均匀介质: ,, 2、导体中的欧姆定律 在有电源时,电源内部,为非静电力的等效场。 4.洛伦兹力公式 考虑电荷连续分布, 单位体积受的力: 洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。 说明:① ② 5.电磁场的边值关系 其它物理量的边值关系:

电动力学答案

2.一平面电磁波以045=θ从真空入射到24=ε的介质。电场强度垂直于入射面。求反射系数和折射系数。 解:由 1 122sin sin εμεμθθ = ' ' 1r 2r 12sin sin εεεεθθ=='' 1 2 s i n s i n 450= ''∴θ 解得 030=''θ 由菲涅耳公式: θ εθεθεθε''+''-=' sin sin sin sin E E 2121 = =+= 3 12cos cos cos 2E E 211+= ''+=' 'θεθεθε 由定义:

3 2323131E E R 2 2 +-=? ??? ??+-='== 3 2321 22 223312cos cos E E T 2 1 22 +=???? ??+=''''= = εεθθ 7.已知海水的1 1m 1s ,1-?==σμ,试计算频率ν为50,9 61010和Hz 的三种电磁波在海 水中的透入深度. 解: ωμσ α δ2 1 = = , 72m 1 1042502 7 50 =????= -=ππδ γ , 5m .01 1042102 7610 r 6 =????= -=ππδ 16mm 1 1042102 7 910r 9 =????= -=ππδ

2. 设有两根互相平行的尺,在各自静止的参考系中的长度均为,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子。求站在一根尺上测量另一根尺的长度。 解:根据相对论速度交换公式可得2'∑系相对于1'∑的速度大小是 )/1/(2'22c v v v += (1) ∴在1'∑系中测量2'∑系中静长为0 l 的尺子的长度为 220/'1c v l l -= (2) 将(1)代入(2)即得: )/1/()/1(22220c v c v l l +-= (3) 此即是在1'∑系中观测到的相对于2'∑静止的尺子的长度。 3. 静止长度为l 0的车厢,以速度v 相对于地面S 运行,车厢的后壁以速度u 0向前推出一个小球,求地面观察者看到小球从后壁到前壁的运动时间。 解:根据题意取地面为参考系S ,车厢为参考系S ’,于是相对于地面参考系S ,车长为 220/1c v l l -=, (1) 车速为v ,球速为 )/1/()(200c v u v u u ++= (2) 所以在地面参考系S 中观察小球由车后壁到车前壁 l t v t u +?=? 所以 )/(v u l t -=? (3) 将(1)(2)代入(3)得:2 2 0200/1)/1(c v u c v u l t -+= ? (4) 4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物时,看见其避雷针上跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线上的两铁塔。求列车上观察者看到的两铁塔被电光照亮的时刻差。设建筑物及两铁塔都在一直线上,与列车前进方向一致。铁塔到建筑物的地面距离都是l 0。 解:取地面为静止的参考系∑,列车为运动的参 考系'∑。 取 x 轴与 x ′轴平行同向,与列车车速方向一致,令t=0时刻为列车经过建筑物时,并令此处为∑系与'∑的原点,如图。 在∑系中光经过c l t /0=的时间后同时照亮左 右两塔,但在'∑系中观察两塔的位置坐标为 ) /1(/1/1'2 2 02 2 0c v c v l c v vt l x --=--=右 )/1(/1/1'2 20 220c v c v l c v vt l x +--= ---= 左 即:)/1(/1'220c v c v l d --=右,)/1(/1'2 20 c v c v l d +--=左 时间差为 2220 /12''c v c vl c d c d t -= -= ?右左 5. 有一光源S 与接收器R 相对静止,距离为0l ,S-R 装置浸在均匀无限的液体介质(静止折射 率n )中。试对下列三种情况计算光源发出讯号到接收器收到讯号所经历的时间。 (1)液体介质相对于S-R 装置静止;

电动力学考试重点超详细

练习题 (一)单选题(在题干后的括号填上正确选项前的序号,每题1分) 1.高斯定理 → → ??E S d s = ε Q 中的Q是() ①闭合曲面S外的总电荷②闭合曲面S的总电荷③闭合曲面S外的自由电荷④闭合曲面S的自由电荷 2.高斯定理 → → ??E S d s = ε Q 中的E ? 是( ) ①曲面S外的电荷产生的电场强度②曲面S的电荷产生的电场强度 ③空间所有电荷产生的电场强度④空间所有静止电荷产生的电场强度 3.下列哪一个方程不属于高斯定理() ① → → ??E S d s = ε Q ② → → ??E S d S =V d V ' ?ρ ε 1 ③▽ → ?E=- t B ? ? → ④ → ? ?E= ε ρ 4.对电场而言下列哪一个说确() ①库仑定律适用于变化电磁场②电场不具备叠加性 ③电场具有叠加性④电场的散度恒为零 5.静电场方程 → → ??l d E L = 0 () ①仅适用于点电荷情况②适用于变化电磁场 ③L仅为场中一条确定的回路④L为场中任一闭合回路 6.静电场方程▽ → ?E= 0 ( ) ①表明静电场的无旋性②适用于变化电磁场 ③表明静电场的无源性④仅对场中个别点成立 7.对电荷守恒定律下面哪一个说法成立( ) ①一个闭合面总电荷保持不变②仅对稳恒电流成立 ③对任意变化电流成立④仅对静止电荷成立 8.安培环路定理 → → ??l d B L = I0μ中的I为() ①通过L所围面的总电流②不包括通过L所围曲面的总电流③通过L所围曲面的传导电流④以上说法都不对

9.在假定磁荷不存在的情况下,稳恒电流磁场是 ( ) ① 无源无旋场 ② 有源无旋场 ③有源有旋场 ④ 无源有旋场 10.静电场和静磁场(即稳恒电流磁场)的关系为 ( ) ① 静电场可单独存在,静磁场也可单独存在 ② 静电场不可单独存在,静磁场可单独存在 ③ 静电场可单独存在,静磁场不可单独存在 ④ 静电场不单独存在,静磁场也不可单独存在 11.下面哪一个方程适用于变化电磁场 ( ) ① ▽→?B =→J 0μ ②▽→?E =0 ③→??B =0 ④ → ??E =0 12.下面哪一个方程不适用于变化电磁场 ( ) ① ▽→?B =→J 0μ ②▽→ ?E =-t B ??→ ③▽?→B =0 ④ ▽?→E =0 ερ 13.通过闭合曲面S 的电场强度的通量等于 ( ) ① ???V dV E )(ρ ②????L l d E ρ ρ)( ③ ???V dV E )(ρ ④???S dS E )(ρ 14.通过闭合曲面S 的磁感应强度的通量等于 ( ) ①???V dV B )(ρ ② ????L l d B ρρ)( ③ ??S S d B ρρ ④ 0 15.电场强度沿闭合曲线L 的环量等于 ( ) ① ???V dV E )(ρ ② ????S S d E ρρ)( ③???V dV E )(ρ ④???S dS E )(ρ 16.磁感应强度沿闭合曲线L 的环量等于 ( ) ① l d B L ρρ????)( ② ????S S d B ρρ)( ③??S S d B ρρ ④???V dV B )(ρ 17. 位置矢量r ρ的散度等于 ( ) ①0 ②3 ③r 1 ④r 18.位置矢量r ρ的旋度等于 ( ) ①0 ②3 ③r r ρ ④3r r ρ 19.位置矢量大小r 的梯度等于 ( ) ①0 ② r 1 ③ r r ρ ④3r r ρ 20.)(r a ρρ??=? (其中a ρ为常矢量) ( ) ① r ρ ② 0 ③ r r ρ ④a ρ

相关主题
文本预览
相关文档 最新文档