当前位置:文档之家› 南邮广播电视工程广测实验七-数字电视有线射频信号测量介绍

南邮广播电视工程广测实验七-数字电视有线射频信号测量介绍

南邮广播电视工程广测实验七-数字电视有线射频信号测量介绍
南邮广播电视工程广测实验七-数字电视有线射频信号测量介绍

通信与信息工程学院

2016 / 2017 学年第一学期

《广播电视测量技术》

实验报告

实验名称数字电视有线射频信号测量专业广播电视工程

学生班级B130114

学生学号B1311413

学生姓名陈超

指导教师姚锡林

日期:2016 年10 月9 日

1.实验目的:

在了解数字有线电视接收系统的组成、原理之后,利用矢量频谱信号分析仪观察有线电视QAM星座图特征,分析有线电视传输环境的特征。

2.实验内容:

在带宽有效的通信系统中,大容量信息必须通过高进制调制来传输。由信号星座图可以直观地看出,此时如果单独使用幅度或相位携带信息,则信号星座点仅分布在一条直线或一个圆上,不能充分利用信号平面。基于这种考虑,诞生了幅度和相位相结合的调制方式一一正交幅度调制((Quadrature Amplitude Modulation, QAM),它可以在保证最小欧氏距离的前提下,尽可能地增加星座点数目。目前M进制QAM调制方案己经广泛应用于数字视频广播,可以在有限带宽内传输高清晰度视频信号。图7.1为常见的M进制QAM信号星座图。从欧氏距离的角度看,图中矩形星座并不一定是最好的M元星座点分布,实际中也确实有通信系统选择了不同的信号映射方式,例如蜂窝形状。但是,矩形星座具有容易实现的独特优点,也很利于用正交相干方式解调。所以,矩形星座的QAM信号在实际应用中占了绝大部分。从QAM调制过程看,QAM信号可以看成是两路正交的多进制调幅信号之和。另一方面,在图7.1中M=4的QAM调制与QPSK调制完全等同。因此,也可以把QAM信号看成多层QPSK信号的线性组合。例如:一个16QAM星座图可以看成由两层QPSK调制组成,第一层调制确定了星座点处于哪个象限;第2层调制再映射为该象限的4个星座点

之一。

数字调制系统的星座显示图形相当于矢量仪中的矢量显示,可用来表示QAM信号中的同相(n分量和正交分量(Q>。符号是给定调制系统中传输信息的最小部分,一个符号在星座图中可描绘为一单个点。这些符号比特是通过复杂的代码转换过程由原始的MPEG-2传输流中导出的。这一转换过程包括了里德一索罗门编码、交织、随机化处理,QAM和格形编码或QPSK系统中的卷积(维特比)编码。人们希望能对系统的传输提供防护并能纠正比特错误,抵御脉冲噪声,将传输能量平均地分布于整个频谱。解码器端所采取的处理方式与上述过程相反,应能恢复基本上无差错的比特流。由于采取了误码校正,仅对传输流进行检查并不能提供传输通道或调制器和处理放大器包含有错误的任何指示,使得系统靠近“数字崩溃点”。一旦MPEG码流中的传送错误标志(TEF)作出报告,这时再采取校正措施常常是太迟了。

星座图可以认为是一种数字信号“2维眼图”的阵列,在星座图中标出了符号的着陆点,并给出了着陆的允许范围和判决边界。符号着陆点愈是靠近而聚集在接收符号的“云层”中,那么信号质量就愈佳。由于星座图映射为屏幕上信号的幅度和相位,因此可以利用该阵列的形状来判断和确定传输系统或传输通道中故障和失真的严重程度,有助于阻止传输质量的下降。

利用上述星座图,可以判断幅度不平衡、正交错误、相干干扰、相位噪声,

幅度噪声、相位错误和调制误差比等调制问题。

有线电视传输系统主要测量指标:

1)误差矢量幅度(EVM)

EVM是误差矢量的RMS幅度与最大符号幅度之比,并以百分比来表示。信号损伤增加时,EVM增加;信号损伤降低时,EVM减小。通过测量MER和EVM,能在BER迅速攀升和接收信号中断之前预测出系统的安全余量。

EVM表征的是调制精度,是衡量现代无线通信系统中数字调制质量的一项关

键指标。EVM是发射信号的理想的测量分量I(同相位)和Q(正交相位)(称为基准信

号“R")与实际接收到的测量信号“M”的I和Q分量幅值之间的矢量差。EVM适用

于每一个发射和接收的符号。

EVM是一个幅值量,表示为一个百分比,但是每个测量点上的相位和幅值误

差都是要测量的。很多信号都要测量EVM。实际上,EDGE标准要求要在200个以上

的突发脉冲上测量EVM,因此它通常指的是RMS或者峰值EVM。

RMS EVM定义为平均误差矢量功率与平均基准功率的比值的平方根。峰值EVM

是在测量区间内出现的最大EVM。通过EVM值可以观察到信号的质量,这是眼图或BER测量之类的其他性能指标无法表征的。EVM与误码率成正比,但是它比眼图或BER测试的速度更J决,并且能够提供更多可供观察判断的信息。

EVM和信噪比(SNR)以及信号与噪声加失真比(SNDR)也有直接的关系。我们可

以通过EVM判断通信系统不同层次引入的实际误差,这能够帮助设计者查找某些具

体的问题。

2 ) BER(误码率)

误码率是错误比特与全部传送比特之比。在早期的DTV监视接收机中,误码

率作为数字信号质量的唯一测量值。误码率的测量简单易行,因为它通常可由调谐

解码器芯片组提供且容易进行测量。不过,调谐器的输出BER通常是在前向误码校

正(FEC)之后,最好是在FEC(“前维特比”)之前来测量BER。这样,通过测量BER

可以反映出FEC的校正能力。在维特比去交织之后,采用里德·索罗门(Reed-Solomon, R-S)解码可以校正错误比特,以在输出端获取准无误码(quasi error-free)信号。

如果传输系统的工作状况远离信号崩溃点,这种运行状态是合适的。这时,只有很少的数据错误发生,前维特比(pre-Viterbi)误码率接近为零。如果传输系统工作在崩溃点边缘附近,则前维特比BER就会逐渐增加,后维特比(post-Viterbi) BER 的变化就比较徒峭,后FEC(在RS之后)就非常徒峭。因此,FEC能够对崩溃点的徒峭程度产生影响。这样,非常灵敏的误码率测量会产生告警信号并用来记录长时间的系统运行状态,最好是用来识别周期性损伤、瞬态损伤。BER的测量值常常用工程记数法来表示,并标明为瞬时码率和平均码率。典型的目标误码率为:1 E-09,准无差错的误码率为2E-04;临界误码率为1 E-03;当误码率大于1 E-03时则处于传输服务允许值之外。

3)调制误差比(MER )

TR101 290标准是用来描述DVB系统的测量准则。在标准中,调制误差比(MER)指的是被接收信号的单个“品质因数”C figure of merit )。 MER往往作为接收机对传送信号能够正确解码的早期指示。事实上,MER是用来比较接收符号(用来代表调制过程中的一个数字值)的实际位置与其理想位置的差值。当信号逐渐变差时,被接收符号的实际位置离其理想位置愈来愈远,这时测得的MER数值也会渐渐减小。一直到最后,该符号不能被正确解码,误码率上升,这时就处于门限状态即崩溃点。

图7.4是将MER接收机与一测试调制器相连接时所测得的曲线。连接妥当后,逐渐引入噪声,同时记录MER和前维特比BER的数值。在没有引入噪声时,MER 的起始值为3_SdB,而BER接近为零。随着噪声的增加,MER值逐渐降低,而BER

却保持恒定。当MER降低至26dB附近时,BER才开始攀升,说明崩溃点就在此值附近。因此,MER可用来指示系统在崩溃点之前的早期劣化渐变过程。因此,如果我们在用户点(或其附近)测出MER的安全余量,那么,位于前端调制器处的监视设备通过测量MER即可提供信号劣化的早期指示。当MER下降至24dB ( 64-QAM)或30dB (256-QAM)时,通用机顶盒就不能正确解调。

2.实验仪器:

在了解数字有线电视接收系统的组成、原理之后,利用矢量频谱信号分析仪观察有线电视QAM星座图特征,分析有线电视传输环境的特征。

3.实验过程及数据

1)将有线电视信号连接到N9020A;

2)按MODE键进入Vector Signal Analyzer(VXA) 矢量信号分析仪模式;3)按MEAS键进入Digital Demod 数字解调界面;

4)设置数字解调模式为64QAM;

5)输入中心频率800MHZ;

6)设置Points/Symbol 为1;

7)设置Symbol Rate符号率为6.875MHZ;

8)按SPAN X Scale键设置SPAN为FULL SPAN;

9)按AMPTD Y Scale 键设置Range为-10dBm。

图1 解调信号分析数据图

图2 解调信号星座图

图3 解调信号误差矢量

图4 解调信号频谱

图5 解调信号误差分析

4.实验小结:

此次实验利用矢量频谱信号分析仪观察有线电视信号并分析相关星座图、频谱等特征,其中星座图是判断相干干扰、想为噪声等的重要参考,解调后的有线电视信号星座图呈规范正方图形,无倾斜,说明解调频率等符合,实验过程中采用64QAM,星座点共有64个,各星座点均在着陆点圆圈内部跳动,很少跳出允许范围与判决边界,反应出相对卫星接收信号有线电视接收更加稳定,有线电视传输环境相对稳定。在解调模式确定的情况下,先后设定的中心频率、符号速率、频扫范围和灵敏度范围对解调信号的正确至关重要,实验过程中出现了星座图星星点点的跳动,经过中心频率的调整得以正确解调,实践与理论结合,对于原理的掌握与认识更加深入。

有线数字电视信号传输中参数的测量方法

有线数字电视信号传输中参数的测量方法 关键词:数字电视,传输,参数,测量,方 本文描述了在有线数字电视传输中测量参数的客观方法。重点是有线数字电视信号从信号源到用户接收端的端到端性能。这个传输链包括电缆分配系统,也可包括为有线电视前端提供信号源的链路,如卫星链路、地面传输链路、或宽带网络链路等。 因为卫星系统、地面系统、微波系统有截然不同的测量规范,这里不对它们一一进行定义。 同时建议在测量有线电视系统性能时,通过系统的信号不应是解调后的信号,即有线电视的源信号取自卫星传输(经QPSK、BPSK等调制)、地面开路传输(经8-VSB或COFDM调制)或多点分配微波系统。 本文所述内容适用于任何工作频率从30MHz到2150MHz的有同轴电缆输出的电视和声音信号的有线数字电视分配系统(包括独立接收系统)。 在未来的应用中,频率范围将可能扩展为从5MHz到3000MHz。 本文介绍了对有同轴电缆输出的有线数字电视分配系统工作特性的基本测量方法,以便评估此类系统的性能及其性能限制。 这些测量方法应用于经PSK、QAM和OFDM等方式调制后的数字信号(对于在有线系统中的VSB信号的测量,还需要另外的测量方法),测量的参数如下: ?系统输出口的相互隔离度 ?通道内的幅频响应 ?射频载波功率 ?射频噪声功率 ?载噪比(C/N) ?比特误码率(BER) ?比特误码率与Eb/No ?噪声余裕 ?调制误差率(MER) ?信噪比(S/N) ?射频相位抖动 ?回波(用于测量均衡器的屏蔽能力) 数字调制信号的测量方法不同于模拟调制信号,主要有以下几个原因: a) 除VSB调制方式外,数字调制的信号不存在载波,因此无法测量(例如ITU-T J83中的PSK或QA M 调制系统等),或是有几千条载波(例如OFDM调制系统,包括导频及BPSK、QPSK和QAM调制); b) 被调制信号频谱像噪声般平铺于频带中; c) 影响接收信号质量的参数与通过信道传输在解调和纠错前引入的比特或字符误码因素有关(如:噪声、幅度 和相位的失真等); 数字调制信号的测量方法基于以下几个条件: a) 对于各种基带系统,其输入输出信号为MPEG-2的传输流(TS),例如卫星,有线,SMATV,MMDS/MVDS和地 面分配系统; b) 通过卫星接收的PSK调制数字信号,例如QPSK等方式,能够以同样的调制方式在有线网络(SMATV)

有线数字电视机顶盒的使用

?机顶盒的使用 ?一、机顶盒的连接 1、与用户盒连接 2、与电视机连接 将随机配置的视音频线一端插入到机顶盒AV输出接口,另一端插入到电视机“红、白、黄”三色音视频输入接口,电视机如有多组音视频输入接口可任选一组。若您的电视机支 持HDMI高清输入,请使用HDMI线,连接机顶盒的HDMI输出接口与电视机的HDMI输入接口。 机顶盒与电视机的连接示意图如下:

注:①标清电视机可采用随机配置的AV视音频线与机顶盒相连。 ②高清电视机可采用AV视音频线或HDMI线与机顶盒相连,建议采用HDMI线连接方式 (此种连接方式可保证高清节目信号传输质量)。 3、双向网络连接 广电“一线通”用户或广电、联通、电信、移动宽带用户在使用机顶 盒双向或互联网功能时,由于线路入户方式及接入设备不同,机顶盒连接 与网络设置也会不同,下面将结合不同用户的业务开通方式分别加以介 绍。 无宽带网络用户,是指家庭中没有接入广电“一线通”和广电、联 通、电信、移动宽带网的用户。 广电“一线通”用户,是指家庭中接入广电“一线通”设备的用户。 广电宽带用户,是指家庭中接入广电宽带网的用户。 其他宽带用户,是指家庭中接入联通、电信、移动宽带网的用户。

⑴无宽带网络用户开通广电宽带上网及互动电视业务 可到邻近的广电营业厅办理宽带上网及互动电视业务。网络接入 分为宽带或广电“一线通”两种接入方式,根据用户现场网络情况确定方 式之一。 ①宽带方式 宽带方式是使用网线入户的接入方式。为了使用一根入户网线能够保证同时接入机顶盒和计算机,需增加交换机或路由器等设备,交换机与机 顶盒、计算机连接方式如下图所示: 机顶盒网络设置步骤如下: ⅰ在机顶盒主菜单界面上操作机顶盒遥控器上下左右键移到【自助服务】→【系统设置】→【网络设置】。 ⅱ按遥控器右键移动至【TCP/IP模式】,继续按遥控器右键切换为【PPPOE模式】,按遥控器上下键将焦点框移动至【自动拨号】,并按确 认键。图片显示如下:

数字电视的条件接收系统概述

数字电视的条件接收系统概述 条件接收就是对视频、音频和数据等信息加密、传输并为合法用户接收解密的过程。以只有获得授权的用户才能使用相关业务的方式实现数字电视广播系统的有偿服务。条件接收广播电视运营商管理手段的拓展,使运营商能够对用户收到的信息进行授权控制,是广播电视行业打破以广告为主要收入的单一经营模式,实现多元化经营的技术基础。 1 条件接收系统的概念和安全措施 1.1 条件接收系统CAS(Conditional Access System)的原理 首先了解两个在CA系统中容易混淆的概念:一个是加解扰(Scrambling-Descrambling),另一个是加解密(Encryption-Decryption)。加解扰技术被用来在发送端CA系统的控制下改变或控制被传送的服务(节目)的某些特征,使未被授权的用户无法获取该服务提供的利益;而加密技术被用来在发送端提供一个加密信息,使被授权的用户端解扰器能以此来对数据解密,该信息受CA系统控制,并以加密形式配置在传输流信息中以防止非授权用户直接利用该信息进行解扰,不同的CA系统管理和传送该信息的方法有很大不同。简单地说就是:加扰是通过控制字CW(Control word)对传输流进行按位加密的过程,而加密部分实际完成对控制字(CW)的保护。 CA系统的构成:首先是记录用户授权情况的数据库系统,即CA系统中的用户管理系统,其次是记录服务授权控制情况的数据库系统,这是节目管理系统;及服务加扰/解扰控制的系统;密钥的管理和传输系统、智能卡读写等。其中对信息加密、解密以及密码管理传输是CA系统的核心,对信息的加/解密的过程将上述所有涉及的技术都紧密连接起来而成为一个CA系统,如图1所示。 图1 常用条件接收系统原理

数字信号处理实验指导手册【模板】

数字信号处理实验指导手册 西安文理学院 机械电子工程系

目录 实验一离散时间信号 (2) 实验二时域采样定理 (7) 实验三离散时间系统 (10) 实验四线性卷积与圆周卷积 (13) 实验五用FFT作谱分析 (16) 实验六用双线性变换法设计IIR数字滤波器 (18) 实验七 FIR滤波器设计 (20)

实验一离散时间信号 【实验目的】 用MATLAB实现离散时间信号的表示和运算,掌握MATLAB的基本命令和编程方法,为后续实验打基础。 【实验原理】 在数字信号处理中,所有的信号都是离散时间信号,因此应首先解决在MATLAB中如何表示离散信号。 设一模拟信号经A/D变换后,得到序列信号 由于MATLAB对下标的约定为从1开始递增,因此要表示,一般应采用两个矢量,如:这表示了一个含9个采样点的矢量: 【实验内容】 熟悉下面序列(信号)的产生方法及相关运算 1、单位采样序列 2、单位阶跃序列 3、信号翻转 4、信号相加 5、信号折叠 6、信号移位 【参考程序】 单位采样序列 1、impluse1.m (图1-1) n=10; x=zeros(1,n);

x(1)=1; plot(x,'*'); 2、impluse2.m(图1-2) n=-5:5; x=[n==0]; stem(x,'*'); 3、impluse3.m(图1-3) n=1:10; n0=3; x=[(n-n0)==1]; plot(x,'*'); 单位阶跃序列 1、steps1.m(图1-4) n=10; x=ones(1,n); plot(x,'*'); 2、steps2.m(图1-5) n=10; x=ones(1,n); x(1)=0;

有线数字电视系统中的信号技术指标和具体的监测方法

有线数字电视系统中的信号技术指标和具体的监测方法 关键词:TS码流;QAM;监测;码流分析仪 1传输网络技术参数 经过MPEG-2信源编码和MPEG-2TS传输流复用后生成的MPEG-2传输复用包经过扰码、RS编码及卷积交织后,进行64QAM调制形成中频调制信号,中频调制信号经过上变频转为射频信号然后送入HFC网传送到用户。 数字电视和模拟电视的频谱结构及能量分布完全不同。由于QAM中的调幅是平衡调幅,抑制了载波,因而从频谱分析仪上看,一个数字频道的已调信号,像一个抬高了的噪声平台,均匀地平铺于整个限定带宽内。伴音信号在MPEG-2编码时,已经与图像信号以包的形式复用到了一起,因而,一个数字电视频道,不但没有所谓图像载波,也没有伴音载波。 1.1数字电视的信号电平 数字电视信号没有图像载波电平可取,整个限定的带宽内是平顶的,无峰值可言。所以,QAM数字频道的电平是用被测频道信号的平均功率来表达的,称为数字频道平均功率。在用户端电缆信号系统出口处要求:信号电平为47dBμV-67dBμV(比模拟电视信号的要求低10dB),数字相邻频道间最大电平差为≤3dB,数字频道与相邻模拟频道间最大电平差为≤13dB。 1.2数字电视的噪声电平 测量模拟频道噪声时,在模拟频道取噪声测试点,只要偏离图像载频即可。但是数字电视的频谱分布决定了测量数字频道噪声不能使用模拟频道的测量方法。数字频道内有用能量也像噪声,没有什么特点把它们分开,所以测量噪声,要到被测频道的邻频道去取样,并且这个邻频道应当是空闲的。 1.3误码率 数字电视信号是离散的信号,接收到的数字电视信号要么是稳定、清晰的图像,要么就是中断(包括马赛克、静帧),具有“断崖效应”的特点。信号的这种变化,只与传输的误码率有关,所以把误码率作为衡量系统信号质量劣变程度的最重要的指标。 1.4信噪比 信噪比(S/N)指传输信号的平均功率与噪声的平均功率之比。载噪比(C/N)指已调制信号的平均功率与噪声的平均功率之比,载噪比中的已调制信号的功率包括了传输信号的功率和调制载波的功率。在调制传输系统中,一般采用载噪比指标;而在基带传输系统中,一般采用信噪比指标。 数字调制信号对网络参数的要求主要反映在载噪比上,载噪比越大,信号质量越好,反之信号质量就差,模拟电视会出现“雪花干扰”,数字电视会出现马赛克,严重时会造成图像不连续甚至不能对图像解码。在有线网中,用户端电缆信号出口处数字频道载噪比达到31dB以上,就可传送64QAM信号。 1.5调制误差比 数字调制信号的损伤通常用星座图来观察。在星座图中,噪声呈云状,差拍干扰呈环状,IQ 不平衡的星座图不是正方形。调制误差比(MER)包含了信号的所有类型的损伤,如各种噪声、载波泄漏、IQ幅度不平衡、IQ相位误差、相位噪声等。MER的测试结果反映了数字接收机还原二进制数码的能力,它近似于基带信号的信噪比S/N。在用户端电缆信号出口处调制误差比MER要求达到30dB以上 2数字信号的监测

有线数字电视基本服务内容

河北有线数字电视基本服务内容 河北有线数字电视整体转换后,基本服务内容分为:基本电视节目、广播节目、电影点播、电视剧点播、新闻录播、阳光政务、信息服务等七大部分。 一、基本电视节目 中央电视台节目套、中央教育一台、河北电视台节目套、各省(自治区、直辖市)电视台上星节目套、河北各设区市当地节目—套。

注:以上部分节目可能根据相关政策做出适当调整,但节目总套数不变。 二、广播节目 中央人民广播电台节目套,河北人民广播电台节目套,设区市地方电台—套,中央国际广播电台英、日、俄语广播节目套。

三、电影点播 每天同时播出部电影,每天更新部电影,观众可以根据自己的喜好,有选择的进行点播。 四、电视剧点播 每天同时播出集电视剧,观众可随时点播。 五、新闻录播 设省、市两个频道,省级新闻录播频道主要录播中央、河北和外省市的新闻,市级新闻录播频道主要录播当地的新闻。让观众任何时间都可以看到最新的时事新闻。 六、阳光政务 阳光政务是政府实施政务公开的一种形式,通过数字电视这一可视化、大众化的媒介将人民群众和政府紧密联系在一起。 阳光政务信息将主要由省、市两级提供,省级平台发布省级内容,市级平台发布本市的内容,以省级平台为例主要包括以下内容:

市级平台以石家庄为例主要包括以下内容: 七、信息服务

我们将收集整理人们工作和日常生活需要的各种信息,分门别类的放在信息服务栏目里,供广大观众查询。与阳光政务相似,信息服务也将由省、市两级提供,省级平台发布省级内容,市级平台发布本市的内容,以省级平台为例主要包括以下内容:

市级平台以石家庄为例主要包括以下内容:

数字电视条件接收系统CAS原理

DVB-CAS工作原理介绍目录 一、 CAS简介 (1) 二、 DVB数字电视广播系统简介 1、DVB数字电视广播系统信号处理流程 (2) 2、数字电视信号的特点和EPG (4) 三、条件接收系统(CAS)工作原理 1、CAS系统组成 (7) 2、CAS系统加、解密流程 (8) 3、CAS授权流程及授权类型 (10) 4、智能卡的安全性能 (12) 5、CA的运行模式 (13) 6、CAS系统的应用模式 (13) 7、机卡分离 (14) 附录 附录一、智能卡的结构及其技术特点介绍 (16) 附录二、加密技术介绍 (19) 附录三、数字认证原理介绍 (20) 附录四、条件接收系统实例介绍(ChinaCrypt) (23)

DVB-CAS系统工作原理介绍 一、CAS简介 条件接收系统CAS(Conditional Access System)是付费数字电视广播的核心技术,其主要功能是阻止非法入侵数字广播网络,并允许被授权的用户收看特定的节目而使未被授权的用户无法收看。CAS的主要任务是阻止用户接收未被授权的节目和如何从用户处收费的问题,而在广播电视系统中,在发送端对节目进行加扰(Scrambling)、加密(Encryption),在接收端对用户进行寻址控制和授权解密、解扰是解决这个两个问题的基本途径。 CAS由前端(广播)和终端(接收)两个部分组成:前端完成广播数据的加扰并生成授权信息以及完成解扰密钥的加密工作,从而将被传送的节目数据由明码变为密码,加扰后的数据对未授权的用户无用,而向授权用户提供解扰用的信息,这些信息以加密的形式复用到MPEG-2 的传送流中,授权用户对它进行解密后即可得到解扰密钥(即控制字CW,Control word)并实现对信号的解扰和MPEG-2解码。终端由智能卡(或其他CA卡)和解扰器完成解密和解扰。CAS是实现付费电视广播的技术保障。 为了对数字广播中与CAS相关的环节有一个大致的了解,以便于理解CAS系统的工作流程,在介绍DVB-CAS前,首先有必要对DVB数字电视广播系统的工作原理及数字电视广播信号的构成作一个简要介绍。 二、DVB数字电视广播系统简介 目前在国际上占主流的数字电视广播标准有欧洲的DVB标准、北美国家的ATSC标准及日本的ISDB标准,该三种标准的主要技术差异如下表: 由上表可以看出,该三种标准的信源编、解码都基本采用MPEG-2编、解码标准(只有ATSC的音频压缩编码标准为AC-3标准),各种标准的差异主要在于调制方式的差异、图象清晰度等级不同和编码分类不同(ATSC标准为MP@HL(主类、高级)、高清标准;DVB、ISDB标准为MP@ML(主类、主级)、标清标准)。

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

广东省有线U互动快速使用手册

U互动快速使用手册 1.遥控器介绍 1.1 遥控器具体使用 2.U互动使用 2.1 主页界面认识 2.2 主页界面菜单使用 2.3 看电视 2.4 时移、回看功能 2.5 互动点播 2.6 机顶盒设置与帮助 3.移动U宽频使用及管理 3.1 移动U宽频(家庭宽带上网)使用步骤 3.2 移动U宽频CMCC上网 3.3 Wi-Fi名称修改和密码管理 4.多屏互动使用 4.1 支持系统 4.2 安装方法 4.3 多屏软件使用 5.简单故障与处理 5.1 新装U宽频48小时后任未收到中国移动发送的认证短信 5.2 上网登陆过程中出现“页面信息不存在或已丢失”等提示,不能正常上网 5.3 上网登陆过程中提示“登陆账号不符”,不能正常上网 5.4 电视显示蓝屏、雪花、保护画面、只能看到模拟频道等 5.5 上网不正常 5.6 体验专区个别节目有图像没声音 5.7 电视显示蓝屏、雪花、保护画面、只能看到模拟频道等 5.8 直播电视频道列表中没有频道、频道表错误、没有电视节目单信息 5.9 遥控器不能控制机顶盒 5.10 全部或部分直播节目出现黑屏、提示“信号中断,请检查网络信号”、全部或部分直播节目出现马赛克 5.11 电视画面只有声音没有图像 5.12 电视画面只有图像没声音

1.1 遥控器具体使用回到目录 ○红色键:查看当前所观看的频道信息;设置喜爱频道时使用。 ○绿色键:设置喜爱频道时使用,喜爱频道编辑。 ○黄色键:进入所观看电视节目的时移功能;设置喜爱频道时使用。 ○蓝色键:设置喜爱频道时使用,频道隐藏。点播时用于搜索功能启动。 #号键:16︰9与4︰3图像显示切换。输入法下起中/英切换使用。 *号键:声道切换,立体声/混合声/左声道/右声道 电视机控制区:供将电视机遥控器对应按键功能复制过来,实现机顶盒遥控器与 电视机遥控器的二合一功能。 遥控器复制(学习)步骤: 1、按本机“设置”键3秒后松开,红灯长亮。 2、10秒内按下本机电视机“电源”键,红灯闪烁一下。 2.1 主页界面认识回到目录 正常开机需要约45-60秒时间。开机默认进入主页界面,见图

数字有线机顶盒基本使用方法与常见问题

数字有线机顶盒基本使用方法和常见问题数字电视机顶盒STB(Set-TopBox)是信息家电之一,它是一种能够让用户在现有模拟电视机上观看数字电视节目,并进行交互式数字化娱乐、教育和商业化活动的消费类电子产品。目前我们使用的是数字有线电视机顶盒(DVB-C),是可以将有线的数字电视信号转换成电视机可接收的模拟信号的变换设备,它对经过数字化压缩的图象和声音信号进行解码还原,产生模拟的视频和音频信号,通过机顶盒上的各种信号输出端(音视频输出端子、分量视频输出端子、S-视频输出端子、HDMI端子)经由信号线输送到电视机相应输入端,来收看高质量的电视节目。 基本使用方法 1.机顶盒主要端口功能 有线电视信号输入(射频输入)端子,连接有线电视信号线; 有线电视信号输出(环路输出)端子,连接到电视机,要观赏模拟方式播放的节目时,加以连接; 视频输出端子(黄色),连接到电视机的视频输入端子; 音频输出端子(红色、白色),连接到电视机的音频输入端子,红色是右声道,白色是左声道; 色差分量输出端子,连接到有分量视频输入端子的电视机,但是,还需要连接音频输出; S-视频输出端子,连接到有S-视频输入端子的电视机,同样需

要连接音频输出; HDMI端子,数字信号输出接口,高质量地传送数字图象和声音; 数字音频(广播)输出接口( SPDIF),通过此接口可以实现数字音频(广播)的光纤信号输出; RS232串行端子,用于机顶盒和外部连接设备之间的信号接收和发送,是维护人员专用的接口。 2.系统连接 A、通过同轴电缆(有线电视信号线)连接有线电视CATV用户 盒到机顶盒的信号输入端口; B、通过音视频线(黄红白线),颜色对应地连接机顶盒背面的音 视频输出端到电视机的音视频输入端,也可采用分量视频线(红蓝绿线),S-端子视频线和HDMI线连接到电视机相应的输入端口上; C、通过同轴电缆连接机顶盒的环路输出到电视机的有线输入端 用于收看模拟电视(可选操作); D、接通机顶盒电源。 3.快速安装使用 A、检查系统连接; B、插入节目运营商提供的智能卡,卡上绘有插入方向的箭头, 按箭头方向插入前面板的插槽即可; C、打开电视机并将电视机切换到视频/AV状态(或S视频、HDMI 等相应状态),打开机顶盒电源出现“徐州有线数字电视”界面(初

有线数字电视系统设计方案

有线电视系统设计方案 一、方案介绍: 根据贵单位的需要及实际情况,该系统设计思路定位成集中供电型860MHz邻频传输系统,系统的总容量100套(PAL-D)电视信号,入户电平65±3dB,初期系统节目数量定为20套(根据需要可增加其它节目内容)。数字卫星接收机完全符合DVB-S标准,采用意法ST 处理器,具有高灵度信号接收功能;调制器采用内嵌式微机控制电路,图像中频、伴音中频、射频本振均采用PLL锁相。 二、系统设计依据: 本有线电视系统以国家有关标准为依据,参考国内和研究了国内若干个城市有线电视系统的先进技术资料及经验,并结合贵单位的实际情况,设计出符合贵单位特点的有线电视系统。 系统设计的主要技术指标的依据如下: 1、GY/T106-92 《有线电视系统技术规范》 2、GB50200-94 《有线电视系统工程技术规范》 3、GB/T50311-2000 《建筑与建筑群综合布线系统工程设计规范》 4、GB6510-86 《30MHz-1GHz声音和电视信号的电缆分配系统》 5、GBJ 《民用建筑电缆电视工程技术规范》 6、GB7401-87 《彩色电视图像质量主观评价方法》 三、本系统功能特点 1)、向用户传输N套(PAL-D)高清晰数字卫星电视模拟信号,也可以在N套节目的

基础上增加自办节目。 2)、网络通过光缆可以实行远距离传输,图像清晰、流畅。 3)、系统容量大,传输节目多。 四、广播电视系统组成及指标分配: 1、系统组成 系统主要由信号源、机房前端、干线传输、分配放大、同轴电缆分配网络组成。 2、指标分配: 五、系统组成框图:

六、主要设备选用 1、华泰750MH邻频调制器或PBI-4000MUV 广播级全频道捷变式邻频调制主机 (入网证书编号:011040100427) (3C证书编号:2003020815000065) 是专业级的全频道870MHz捷变式邻频电视调制器,采用高可靠性残留边带滤波器,中频调制信号处理方式;双重PLL 频率锁定,性能稳定可靠;射频放大采用进口模块组件,非线性失真小,确保高输出电平;其带外寄生输出抑制度大于 60dB(若外加频道滤波器,可大于70dB);微电脑CPU控制,可编程100个频道,两位LED频道显示;有断电记忆功能,具有频率微调功能,最大微调频率范围可达±4MHz,射频输出电平高达115dBμV,有极好的音频及视频线性度;可独立或与视景调制器,PBI-3000MC, 2500MB, 2000MB调制器或其它品牌的调制器组成中大型的CATV系统,尤其可用于CATV系统的扩容和节目的增加。 技术参数: 输出频率:48MHz~870MHz(Ch1~Ch56,Z1~Z43频道连续可调) 图像载频准确度:≤5KHz(VHF);小于等于10KHz(UHF); 射频输出频率微调范围:最大4MHz(0.5MHz步进)

数字信号处理实验二FFT频谱分析

实验三:用FFT 对信号作频谱分析 10.3.1 实验指导 1.实验目的 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。 2. 实验原理 用FFT 对信号作频谱分析是学习数字信号处理的重要容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 3.实验步骤及容 (1)对以下序列进行谱分析。 ?? ? ??≤≤-≤≤-=?? ? ??≤≤-≤≤+==其它n n n n n n x 其它n n n n n n x n R n x ,07 4, 330,4)(,074, 830,1)() ()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。 并进行对比、分析和讨论。 (2)对以下周期序列进行谱分析。 4() cos 4 x n n π = 5()cos(/4)cos(/8)x n n n ππ=+ 选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。 (3)对模拟周期信号进行谱分析 6() cos8cos16cos20x t t t t πππ=++ 选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。 4.思考题 (1)对于周期序列,如果周期不知道,如何用FFT 进行谱分析? (2)如何选择FFT 的变换区间?(包括非周期信号和周期信号)

有线电视高清线及数字信号介绍

有线电视高清线及数字信号介绍

显示器的对角线数恒定时,面积(r长宽比,c对角线长) 16:9是在忽悠,骗人。上述计算描述了材料方面的考虑。还有几点我们看看: 1、黄金比是16:9.889最接近于16:10而不是16:9; 2、高清比向2.35:1发展,也就16:9也会有黑边; 3、在高度没变不变的情况下(假如显示器高度与A4纸一样高):16:9大于24英寸,16:10的22英寸,A3的20.3英寸,4:3的19.7英寸; 4、16:9的笔记本比16:10更难放入包内。 地面数字高清一体机。其实这种地面数字高清一体机在去年3月28日,东芝就已经推出,而这种一体机的宣传语一直都是“无需机顶盒,直接接收高清信号”,正是这句宣传语让许多消费者产生了疑惑,认为购买了这种数字高清一体机就能直接接收有线电视节目,其实这是完全错误的。 地面数字高清一体机是把高清信号接收器内置在电视中,通过无线天线接口连接天线就能接收到高清电视广播信号,其形式和有线电视出现前利用天线接收电视节目类似,东芝、LG是数字高清一体机生产较早的企业,而今年各大厂商纷纷推出的LED液晶

电视多集成了这一功能,而普通电视要想接收高清数字广播信号,则需要购买地面数字电视机顶盒。此外有线电视机顶盒,则是通过有线电视射频线接入机顶盒,再由机顶盒通过分量或AV线转接到电视机上,最终接收到的仍然是模拟信号。所以这两种机顶盒是完全不同的东西。 ●什么是地面数字高清电视? 所谓地面数字高清一体机指的就是电视集成了地面数字信号接收器,归根结底还是一台电视,只是换了一种看似高端的叫法。地面数字电视按照信息产业部SJ/T11324-2006《数字电视接收设备术语》的定义就是——用地面广播传播方式传输数字电视信号的一种电视系统。简单的说就是电视台的电视塔发射信号,电视接收信号,与早期收看电视相似。 普通电视要想接收地面高清广播信号就需要“地面数字电视机顶盒”,这才是诸多宣传中提到的“机顶盒”,其功能就是接收广播中心发射站发送的地面数字电视信号,需要说明的是这种机顶盒需要外接天线使用。

有线电视信号故障原因及排除方法

《中国有线电视》2009(05) C H I N A D I G I T A L C A B L ET V·维护与维修·有线电视信号故障原因及排除方法 ◆郭学亮(巴里坤县广播电视局,新疆巴里坤839000) 1 电缆系统、放大器部分 (1)从电视台出来往南传输的主干线无信号,且60V电送不上,造成几百用户无电视信号。 排除方法:接到电话后,经过现场观察和测试,发现前端出来有3级“干放”都是60V供电,但是测得“干放”输入电压只有16V,问题不在放大器,最后发现在电视前端有一台60V供电电源,测得输出电压仅为20V左右,停电检查发现该供电电源输入端的配合间隙松弛,点打火严重,更换进线接头和底座后送电,信号恢复正常。 (2)各频道电视信号有条纹干扰,高端比中端明显,晚上比白天明显。 排除方法:有一部分放大器是老型号放大器,使用时间过长,中间某一级放大器失控造成高调干扰,产生非线性失真。当时是冬季,气温低,信号变化大,用场强仪测量放大器输出电平,低端为100d B,高端为113 d B,发现问题后,更换一台新型的放大器,重新调整均衡器,使低端为100d B,高端为102d B,再观察电视画面,条纹干扰现象消失,图像恢复正常。 (3)某村的电视画面从低端到高端全部出现拉横丝形状,而且无色彩。 排除方法:测量放大器的进线信号为78d B,高低端差4d B,这时测放大器最大增益仅为十几d B,与放大器正常值30d B相差甚远,这种情况是放大器模块质量差而引起的拉横丝状,更换一台放大器以后,电视恢复正常。 (4)某村低端正常,高端电视图像雪花点严重。 排除方法:从光接收机到用户住地有600多m,中间一级“干放”,输出电平高频端为97d B,低频端为96 d B,到用户放大器的输出电平高频端为66d B,低频端为79d B,这样,放大器的信号电平难以调平,更换连接头及干线放大器,故障还是没有排除,最后怀疑是 -12同轴电缆的质量有问题,更换200多m电缆后,高频端电平恢复,故障消失。 (5)用户电视出现竖白带干扰,且由左向右有规则漂移。 排除方法:安装有线电视的时候,5层楼每个单元装的都是四分支,主输出直接给了5层的用户,这样,5层的住户信号电平过高,导致灵敏度高的彩电出现白带干扰。维修时对这一户采取了应急处理措施,在用户盒与用户线之间加一分支器,衰减信号8d B,竖白带干扰立刻消失,画面清晰。 (6)一片用户低频端的信号雪花干扰严重,高频端可以看。 排除方法:这是有线电视维修中经常遇到的故障,首先检查放大器,发现放大器电缆接头焦味扑鼻,由此可以断定有220V交流电通过电视支线电缆。早期安装的分支、分配器都没有电容隔离,当220V电流进入电缆后,把分支、分配器里的电容击穿,造成低频端过不去,但对高频端影响不大。处理这种故障时:①先把漏电源找出来处理;②更换放大器进线接头,更换烧坏的分支分配器。完成上述维修后,用户的电视图像可恢复正常。 (7)高频端、中频端、低频端不规则的几个频道出现网状和雨刷现象。 排除方法:这种故障也比较常见。首先测量放大器的输入和输出电平,结果测得输入电平过高,超过了80d B,导致放大器产生非线性失真,从而引起严重干扰。可在放大器的进线端加一分支器来衰减进线信号,以保证放大器的输入值在70~80d B之间,然后重新调整放大器,用户信号正常。 2 光缆系统、光发射机、光接收机部分 (1)故障现象:网络开通后,个别光节点处的图像出现一条或两条水平滚动条。

有线数字电视机顶盒原理及常见问题处理办法

有线数字电视机顶盒原理及常见问题处理办法 1数字电视机顶盒的原理 数字电视机顶盒从功能上看是计算机和电视机相结合的产物,从信号处理和应用操作上看,它包含以下几个层次: 物理层和链路层: 包括高频调谐, QPSK/QAM /COFDM /VSB解调、卷积码解码、去交织、RS(里德- 索罗门)解码、解能量扩散。 传送层:包括解复用,它把MPEG - 2传送流分成视频、音频和数据包。 节目层:包括MPEG - 2视频解码、MPEG - 2 AAC(或AC - 3)音频解码。 应用层:包括业务信息( SI) 、电子节目指南EPG、图形用户界面(GU I) 、浏览器、遥控、CA等。 输出接口:包括模拟视频/音频接口、数据接口、键盘、鼠标等。 图1为有线数字电视机顶盒原理框图。 图1有线数字电视机顶盒原理框图 高频头(调谐器)接收来自有线网的射频信号并下变频为中频信号,经QAM解调器进行解调,输出包含音频、视频和其他数据信息的传送流( TS) 。传送流中一般包含多个音视频流及一些数据信息。TS流解复用器则用来区分不同的节目,提出相应的音视频流和数据流,送入MPEG - 2解码器和相应的解析软件,完成数字信息的还原。对于付费电视, CA模块对音视频流实施解扰,并采用含有识别用户和进行记账功能的智能卡,保证合法用户正常收看。 视频PES送入MPEG - 2 视频解码模块进行解码,然后输出到PAL /NTSC编码器,编码成模拟电视信号,再经视频输出电路输出。音频PES送入音频解码模块进行解码,输出PCM音频数据经D /A 变换器变换成立体声模拟音频信号,经音频输出电路输出。 2使用中出现的问题及解决办法 2. 1不能正常接收某一个频点上的数字电视节目 (1)原因分析 用频谱仪看此频点的波形图是否有陷波点。正常的数据信号显示的波形应该是完整平滑的,如果有陷波点,只有平坦部分的数据能够收全,该段的数字电视节目就能收到,恰好在陷波点位置的数据就收不到,那一段的数字电视节目就收不到。造成这种现象有可能是用户线和用户盒不规范,也有可能是分支分配器输入输出

数字电视条件接收系统的破解与反破解技术

数字电视条件接收系统的破解与反破解技术

数字电视条件接收系统的破解与反破解技术 道高一尺魔高一丈--数字电视条件接收系统的破解与反破解技术 提要: 本文将结合国内外数字电视条件接收技术的发展和应用实践,探讨CA技术的安全性及反破解对策。本文针对宽带互联网能迅速发展,CA技术将面临的新挑战,着重指出当前国内使用的部分条件接收技术存在的一个严重缺陷,希望能起到亡羊补牢的警示作用。 数字广播电视的条件接收系统是以单向实时广播模式运作的信息保安系统,目的是确保只有经过合法授权的用户才能有条件地享受被保护的信息(内容)服务。 从CA技术推出那天起,破解者们就开始加以攻击,而CA技术的开发者们也不断地从黑客们的攻击中发现自身的弱点加以完善。回顾历史,CA的破解及反破解大致经历了以下几个阶段: 一、基于算法的破解: 数字电视起步初期,一些条件接收开发者仍然沿用模拟加密的思路,采用一些比较简单的算法对数字广播信号中的某些参数加密从而达到有条件接收的目的。一个经典的做法是利用改变节目的PID配合可寻址授权来实现CA,主要用在卫星广播上,但很快就被人用逐一试探PID的方法破解了。近年也有国内企业用类似的方法做简单的低成本CA,但由于DVB广播参数上能加密的数据有限,只要配合码流分析仪,一般都可以被破解。这种方法除了用于临时的、低值的服务外,已基本没有前途。 从算法入手是破解CA的最直接方法。由于解密部分是在IC卡内实现的,如果CA厂家选的IC卡功能比较弱,又没有完整卡上操作系统(COS)支持的话,是很难实现高安全度

的复杂算法的。随着计算技术和密码学理论的发展,许多原以为非常难破的加密算法纷纷告破。到目前为止,大部分密钥长度小于100bit的单一算法都有很大机会被破,就连曾被公认为破解难度极大的128bitRSA算法也被一群高中生用几十台PC联网破解了。要对付算法破解,主要有两种措施,一是加长密钥,根据香农定理,信息的容量与其长度成指数关系,密文的信息量越大,破解的难度就越大;二是采用多重算法,根据密码学原理,加密系统有四 个要素,即:密文=算法(明文,密钥)。在大部分的加密应用中,明文和密钥是被保护的对象,四个要素中有一半是未知的,安全性是比较高的。但在数字广播的实际应用中,明文与密文是可截取的,而一个可靠的加密系统采用的算法应该是可以公开的,所以采用单一算法的CA系统,只有一个未知要素,比较容易被解析或穷举方法破解,但如果采用多重算法的话,情况就完全不是同了,因为:密文=算法2(算法1(明文,密钥1),密钥2),所以整个系统中有六个要素,其中三个是未知的,这就大大增强了安全性,使解析法的破解几乎没有可能,如果再配合长密钥和时间因子的话,穷举法也非常难破。但要做到这点,必须选择功能强大的IC卡。许多新一代的智能卡已内置了DES和1024bitRSA 等公认的高强度加密算法。以硬件协处理的方式大大加快了IC卡的信息处理能力,这已成为国际上提高CA安全性的重要手段。 二、基于IC卡的破解 在通常的加密技术应用中,解密机是破译者争夺的关键设备,许多间谍故事都是围绕着它展开的,但在CA系统中,作为解密机的IC卡却是破解者唾手可得的。与电信行业不同,数字广播是单向系统。一旦IC卡被破,非法使用者是无法追踪的,所以数字电视黑客们都把IC卡作为重点攻击对象。IC卡的破解主要有两种方法:对功能比较简单的IC卡,有人采用完全复制的方法,特别是那些采用通用程序制造,不经厂家个性化授权(如在半导体厂出厂前预置专用的客户密码识别号等)的IC卡最容易被破解,早期的CA厂家几乎都受过这样的攻击,但随IC卡技术的发展,完全拷贝复制的情况已少见,代之而起的是仿制卡。由于一些CA厂 家采用了功能不强的IC卡,在卡内不能完成全部的EMM,ECM解密工作,要借助机顶盒内的CPU做部分解密操作,有的甚至只在IC卡中存密钥,解密都在盒内做,安全性相当差。对这种IC卡,破译者一般有两种做法,一是先找出密钥库,放入自制卡中替代,考虑到运营商会经常更改密钥,黑客们还会提供在线服务,以电子邮件等方法及时发布密钥更改升级。二是找出IC卡的授权操作指令加以修改或屏蔽,让EMM无法对IC卡发生作用,所以很多伪卡就是用过期真卡把有效期延长而成的,而且伪卡往往对所有节目都开放,不

对有线数字电视前端系统的设计的浅析

对有线数字电视前端系统的设计的浅析 摘要:近几年来,有线数字电视在我国的建设获得了极大的发展,作为有线数 字电视中心环节的前端系统的设计工作也处于不断地进步中。当前时期,设计人 员充分地做好前端系统设计的优化工作,已经成为有线数字电视进一步发展的必 然要求,也是推动有线字电视为人们提供更大的便利的必要保证。而本文则从其 前端系统设计工作的角度出发,通过析有线数字电视的前端系统组成,谈论了设 计工作中应该注意的几个问题,以求推动前端系统的逐渐完善。 关键词:有线数字电视;前端系统;组成部分;设计;注意问题 1 有线数字电视的前端系统的系统组成分析 前端系统是整个有线电视网络运行的必要保障,其系统的工作状况将直接对有线数字电 视工作造成影响,我国有线数字电视设计人员要想全面推动数字电视技术的优化发展,就必 须对前端系统进行持续的完善设计。而就前端系统的组成来讲,它主要可以分为信号的接收、处理、输出以及系统的管理工作四个部分,本文下面就对这四个部分做一下详细介绍。 首先,就前端系统的信号接收部分来讲,这一部分主要负责接受数字电视的不同网络所 发出的各种信号,然后再将这些信号转化为与MPEG-2的标准相符的TS信息流。而数字电视 网络所发出的信号繁多、复杂,信号接受工作就变得较为繁杂。信号接收部分主要以卫星接 收机、光收机以及编码器等几种信息转化设备,工作人员要对系统的接收环节进行优化,就 应该选用类似综合IRD接收机的卫星接收机,这种接收机带有AIS标准的基带数字信号的传 输设备。而且,还要为卫星接收机选择具备稳定振频及较低噪声温度的高频头以及与天线技 术标准要求相符合的可靠的卫星天线等。 其次,就前端系统的信号处理部分来讲,这一部分则主要利用复用器设将信号接收环节 所转换的TS流转换为多个电视节目所需要的TS流,同时对这些再度转化后的TS流进行CA 加密处理,最终进行信号传输。而处理环节的具体功能可归纳为对于传输码流即TS流的监视、解扰及复用,还有对于业务信息即SI的处理等,处理环节是整个系统的核 心。工作人员要采用集成管理系统来对此部分信号进行管理,而且每一个前端处理部位都具 备一个异步串行即ASI的接口,以保证设备具有必须的兼容性。同时,工作人员在利用前端 系统处理环节来增加节目时是虚拟进行的,他们是将节目设置到了某个随意的复用器中,然 后由机顶盒利用SI信息找寻到这个虚拟的节目。 再者,就前端系统的信号输出部分来讲,它主要是将处理部分再度处理好的加密的TS系 统制作成为RF信号,然后再传输到整个的HFC网络。这一环节需要使用64QAM的调制器以 及38MB/S的宽带,而且此调制器一般要低于模拟调制器10db的输出电平。同时,模拟频道 的载频则是以图像载波频率的形式呈现,而数字频道的载频一般处于8MHz频道的中心位置。 此外,就前端系统的系统管理环节来讲,它主要是对前端信号输入以及输出工作的状态 进行管理,同时监视其输入及输出信号有无与质量,其设备工作利用DVB-ASI进行基带信号 的传输连接,对所有基于SNMP的前端管理系统皆适用。从细节上来,这个系统管理环节的 管理服务器需要负责对用户信息进行收集,并做好计费工作及各种影视资料的安全保密管理,而管理的网络控制部分则要完成对服务器收集的各种信息进行传递及对影视材料与数据的后 台交换等。 2 前端系统的设计与实现 2.1 设计需求 伴随着双向网的改造深入进行,长沙市数字电视目前拟开展的业务主要包括数字视频转播、数据广播和NVOD准视频点播。其中视频转播主要包括:5套长沙本地的模拟视频信号 数字化;湖南省SDH网络传输的17套数字电视节目信号;国内的卫视节目(24套各省卫视 加上15套中央卫视),从22个央视节目平台和14个境外卫视节目中挑选22套节目。随着 4县并网的完成以及长沙城市的发展,整个数字前端系统将需要提供过百万用户的业务需求(广播业务与交互式业务)。 2.2 设计原则

相关主题
文本预览
相关文档 最新文档