当前位置:文档之家› 光纤通信系统的发展与现状

光纤通信系统的发展与现状

光纤通信系统的发展与现状
光纤通信系统的发展与现状

光纤通信系统的发展与现状

通信科学的发展历史悠久。近代通信技术分为电通信和光通信两类。电通信又分为有线通信和无线通信,是两种相当成熟的技术。通信技术发展过程中,围绕着增加信息传输的速率和距离,提高通信系统的有效性、可靠性和经济性方面进行了许多工作,取得了卓越的成就。光通信技术则是当代通信技术发展的最新成就,已成为现代通信系统的基石。

从广义的概念上说,凡是用光作为通信手段的都可称为光通信,则光通信的历史可追溯到远古时代,那时大部分文明社会已经用烟火信号传递单个信息,至18世纪末通过信号灯、旗帜和其他信号装置进行通信的类似方法已基本走到尽头。1792年,根据克劳特查普的建议,采用中继器使机械代码信号传送很长距离(约100km)。这种光通信系统速度很慢,其有效速率B<1b/s。

19世纪30年代电报的出现用电取代了光,开始了电信时代,利用新的代码技术,速率增加到3~10 b/s,采用中继站后允许进行长距离(约1000km)通信,1866年,第一条越洋电报电缆系统投入运营。电报也基本上使用数字法。1876年电话的发明引起了本质的变化,电信号通过连续变化电流的模拟形式传送,这种模拟电通信技术支配了通信系统达100年左右。

20世纪全球电话网的发展导致了电通信系统许多改进,使用同轴电缆代替双绞线大大提高了系统容量。第一代同轴电缆系统在1940年投入使用,是一个3MHz的系统,能够传输300路音频信号或1路视频信号,这种系统的带宽受到与频率相关的电缆损耗的影响,频率超过100MHz时,损耗迅速增加,这种限制导致了微波通信系统的发展。在微波系统中,利用1~10GHz的电磁波及合适的调制技术传递信号。最早的微波系统中,利用1~10GHz的电磁波及合适的调制技术传递信号。最早的微波系统工作于4GHz,1948年投入运营,从此以后,同轴和微波系统都得到了很大的发展,并都能工作于约100Mb/s。最先进的同轴系统于1975年投入运营,其速率达274Mb/s,但中继距离短(约1km),系统成本高。微波通通信系统速率亦受到载波频率的限制。

紧随研究与发展的步伐,经过许多现场试验后,于1978年工作于0.8μm的第一代光波系统正式投入商业应用,其比特率在20~100 Mb/s之间,最大中继距离约10km,最大通信容量(BL)约500(Mb/s)·km。与同轴电缆相比,中继间距长,投资和维护费用低,是工程和商业运营的追求目标。

在1970年时人们就认识到,使光波系统工作于1.3μm时,损耗<1.0dB/km,且有最低色散,可大大增加中继距离,这推动了全世界努力发展1.3μm的InGaAs半导体激光器和检测器。1977年研制成功这种激光器。接着在80年代初,早期的采用多模光纤的第二代光波通信系统问世,其中继距离超过了20km,但由于多模光纤的模间色散,早期的系统的比特率限制在100Mb/s以下。采用单模光纤能克服这种限制,一个实验室于1981年演示了比特率为2Gb/s,传输距离为44km的单模光波实验系统,并很快引入商业系统,至1987年1.3μm 单模第二代光波系统开始投入商业运营,其比特率高达1.7Gb/s,中继距离约50km。

第二代光波系统中继距离受到1.3μm附近光纤损耗(典型值为0.5dB/km)限制。理论研究发现,石英光纤最低损耗在1.55μm附近,实验技术上于1979年就达到了0.2dB/km的低损耗。然而由于1.55μm处高的光纤色散,而当时多纵模同时振荡的常规InGnAsP半导体激光器的谱展宽问题尚未解决,这两个因素,推迟了第三代光波系统的问世。后来的研究发现,色散问题可以通过使用设计在1.55μm附近,具有最小色散的色散位移光纤(DSF)与采用单纵模激光器来克服。在80年代这两种技术都得到了发展,1985年的传输试验显示,其比

特率达到4Gb/s,中继距离超过100km。至1990年,工作于2.4 Gb/s,1.55μm的第三代光波系统已能提供通信商业业务。这样的第三代光波系统,通过精心设计激光器和光接收机,其比特率能超过10Gb/s。后来,10Gb/s的光波系统在一些国家得到了重点发展。

第四代光波系统以采用光放大器(OA)增加中继距离和采用频分与波分复用(FDM与WDM)增加比特率为特征,这种系统有时采用零差或外差方案,称为相干广播通信系统,在80年代在全世界得到了发展。在一次试验中利用星型耦合器实现100路622Mb/s数据复用,传输距离50km,其信道间串扰可以忽略。在另一次试验中,单信道速率2.5Gb/s,不用再生器,光纤损耗用光纤放大器(EDFA)补偿,放大器间距为80km,传输距离达2232km。光波系统采用相干检测技术并不是使用EDFA的先决条件。有的实验室曾使用常规非相干技术,实现了 2.5Gb/s,4500km和10Gb/s,1500km的数据传输。另一实验曾使用循环回路实现了2.4Gb/s,2100km和5Gb/s,14000km数据传输。90年代初期光纤放大器的问世引起了光纤通信领域的重大变革。

第五代光波通信系统的研究与发展经历了近20年历程,已取得突破性进展。它基于光纤非线性压缩抵消光纤色散展宽的新概念产生光孤子,实现光脉冲信号保形传输,虽然这种基本思想1973年就已提出,但直到1988年才由贝尔实验室采用受激喇曼散射增益补充光纤损耗,将数据传输了4000km,次年又将传输距离延长到6000km。EDFA用于光孤子放大开始于1989年,它在工程实际中有更大的优点,自那以后,国际上一些著名实验室纷纷开始验证通信作为高速长距离通信的巨大潜力。1990——1992年在美国与英国的实验室,采用循环回路曾将2.5与5Gb/s的数据传输km。1995年,法国的实验室则将20Gb/s的数据km,中继距离达140km。1995年线形试验也将20Gb/s的数据传输8100km,40Gb/s传输5000km。线形光孤子系统的现场试验也在日本东京周围的城域网中进行,分别将10Gb/s与20Gb/s的数据传输了2500km与1000km。1994年和1995年80Gb/s和160Gb/s的高速数据也分别传输500km和200km。

光波通信技术得到巨大发展,现在世界通信业务的60%需经光纤传输,至本世纪末将达85%。随着光波通信系统技术的发展,光波通信系统在通信网中的应用得到了相应的发展。现在世界上许多国家都将光波系统引入了公用电信网、中继网和接入网中。但是目前这种奇特媒质的真正应用还仅仅是在现有电信网络的骨架结构内用光纤代替铜线,是通信网的性能得到了某种改善,降低了成本,而网络的拓扑骨架结构基本上还是光波通信出现之前的模式,光波通信的潜力尚未完全发挥。在目前的通信网中光纤通信技术应用尚属于一种经典应用,在通信网的发展中属于第二代通信网(第一代为纯电信网)。进入90年代后,随着光纤与光波电子技术的发展,光放大器,波分复用器,光子开关,光逻辑门,路由器等许多新颖光纤与半导体功能光器件相继问世,在全世界范围内掀起了发展第三代通信网——全光通信网的潮流。这种通信网中,不仅用光波系统传输信号,交换、复用、控制与路由选择等亦全部在光域完成,由此构建真正的光波通信网。

光波通信发展至今不到30年,但其进展之快,对通信技术影响之大,始所未料,目前大量新的理论与技术研究和发展工作正在继续进行。

光纤通信的特点与应用

光纤通信技术的现状及发展趋势

https://www.doczj.com/doc/ec13982277.html,/20080308/ca464325.htm

(2008-05-12 15:54:56)

摘要简要介绍了光纤通信的现状,总结了目前正在使用的波分复用技术和光纤接入技术的基本原理和发展状况,从超大容量、超长距离传输技术和光弧子通信技术,以及全光网络3个方面论述了光纤通信技术的发展趋势。

光纤通信自从问世以来,给整个通信领域带来了一场革命,它使高速率、大容量的通信成为可能。光纤通信由于具有损耗低、传输频带宽容量大、体积小、重量轻、抗电磁干扰、不易串音等优点而备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年这20年间增加了近一万倍,传输速度在过去的10年中大约提高了100倍。目前,我国长途传输网的光纤化比例已超过80%,预计到2010午,全国光缆建设长度将再增加约105km,并且将有11个大城市铺设10G以上的大容量光纤通信网络[1]。

一、光纤通信技术的现状

光纤通信的发展依赖于光纤通信技术的进步。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。

1.波分复用技术

波分复用WDM(Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。自从上个世纪末,波分复用技术出现以来,由于它能极大地提高光纤传输系统的传输容量,迅速得到了广泛的应用。

1995年以来,为了解决超大容量、超高速率和超长中继距离传输问题,密集波分复用DWDM (Dens Wavelength Division Multiplexing)技术成为国际上的主要研究对象。DWDM光纤通信系统极大地增加了每对光纤的传输容量,经济有效地解决了通信网的瓶颈问题。据统计,截止到2002年,商用的DWDM系统传输容量已达400Gbit/s。以10Gbit/s为基础的DWDM 系统已逐渐成为核心网的主流。DWDM系统除了波长数和传输容量不断增加外,光传输距离也从600km左右大幅度扩展到2000km以上[2]。

与此同时,随着波分复用技术从长途网向城域网扩展,粗波分复用CWDM(Coarse Wavelength Division Multiplexing)技术应运而生。CWDM的信道间隔一般为20nm,通过降低对波长的窗口要求而实现全波长范围内(1260nm~1620nm)的波分复用,并大大降低光器件的成本,可实现在0km~80km内较高的性能价格比,因而受到运营商的欢迎。

2.光纤接入技术

光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab 和FTTH等不同的应用,统称FTTx。

FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制订了FTTH的技术标准和建设标准,有的城市还制订了相应的优惠政策,这些都为FTTH在我国的发展创造了良好的条件。

在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的直接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。

xPON意味着包括多种PON的技术,例如APON(也称为BPON)、EPON(具有GE能力的称为GEPON)以及GPON。APON出现最早,我国的“863”项目也成功研发出了APON,但由于诸多原因,APON在我国基本上没有应用。目前用得比较多的是EPON中的GEPON,我国的GEPON依然属于“863”计划的成果,而且得到广泛的应用,还出口到日本、独联体、欧洲、东南亚等海外一些国家和地区。GPON由于芯片开发出来比较晚,相对不是很成熟。成本还偏高,所以,起步较晚,但在我国已经开始有所应用。由于其效率高、提供TDM 业务比较方便,有较好的QoS保证,所以,很有发展前景。EPON和GPON各有优缺点,EPON更适合于居民用户的需求,而GPON更适合于企业用户的接入[3]。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

1.超大容量、超长距离传输技术

波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有很大的应用前景,这几年波分复用系统发展也确实十分迅猛。目前,1.6Tbit/s的WDM系统已经大量商用,同时,全光传输距离也在大幅度扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM 技术是通过提高单信道速率提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分

复用,从而大大提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此,现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。欧共体的RACE计划和美国正在执行的ARPA计划在发展宽带全光网中都部署了WDM和OTDM混合传输方式,以提高通信网络的带宽和容量。WDM/OTDM系统已成为未来高速、大容量光纤通信系统的一种发展趋势,两者的适当结合应该是实现Tbit/s以上传输的最佳方式。实际上,最近大多数超过3Tbit/s的实验都采用了时分复用(TDM、OTDM、ETDM)和WDM 相结合的传输方式[4]。

2.光弧子通信

光弧子是一种特殊的ps数量级上的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而,经过光纤长距离传输后,波形和速度都保持不变。光弧子通信就是利用光弧子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

在光弧子通信领域内,由于其具有高容量、长距离、误码率低、抗噪声能力强等优点,光弧子通信备受国内外的关注,并大力开展研究工作。美国和日本处于世界领先水平。美国贝尔实验室已经成功实现了将激光脉冲信号传输5 920km,还利用光纤环实现了5Gbit/s、传输15 000km的单信道孤子通信系统和10Gbit/s、传输11 000km的双信道波分复用孤子通信系统;日本利用普通光缆线路成功地进行了超高20Tbit/s、远距离1 000km的孤立波通信,日本电报电话公司推出了速率为10 Gbit/s、传输12 000km的直通光弧子通信实验系统。在我国,光弧子通信技术的研究也有一定的成果,国家“863”研究项目成功地进行了OTDM光弧子通信关键技术的研究,实现了20Gbit/s、105km的传输。近年来,时域上的亮孤子、正色散区的暗孤子、空域上展开的三维光弧子等,由于它们完全由非线性效应决定,不需要任何静态介质波导而备受国内外研究人员的重视[5]。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使?a href="https://www.doczj.com/doc/ec13982277.html,/cnii_zte/index.htm" class="yt" >中兴俾?0~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000公里以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然,实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使我们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

3.全光网络

未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此,真正的全光网成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然,全光网络的发展并不可能独立于众多通信技术之中,它必须要与因特网、A TM网、移动通信网等相融合[6]。

目前全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

三、结束语

目前,光纤通信已成为一种最主要的信息传输技术,迄今尚未发现可以取代它的更好的技术。即使是在全球通信行业处于低迷时期,光纤通信的发展也从未停滞过,就我国而言,2002年的光通信市场相比2001年仍处增长状态。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。

光纤通信实习报告范文

光纤通信实习报告范文 生产任务单的基本内容以及一些常用的光通讯英文术语。为更好地开展以后的工作,现将本次实习总结如下:本次实习主要分以下四部分: 一、产品的工艺流程: 产品的工艺流程一般包括以下几个环节:串件-固化-研磨-组装-测试-端检-包装。 1.串散件: 根据不同的产品型号选择不同的散件,严格按照顺序进行连接,一般大口朝上,起到环环相扣的作用。常用的散件有:尾套(红、黑、白、绿、蓝、黄)、弹簧、圆环、压环、止动环、内框、外框、内螺、外螺、插芯、白管、防尘帽。 根据研磨盘的大小确定每捆多少根,方便研磨。串好后对齐两端用扎线整理平整,方便接下来的工序。剥缆皮不可用力过大,光纤容易断,根据不同的产品型号,选择不同的切割齿,剥不同长度的缆皮。对于转接的光缆串散件时要分清两头,防止两边串重。要认真领悟散件作用,严格区分不同的颜色要求,做到不重不漏不乱。 2.固化: (1)剥纤:用剥纤刀剥光纤,控制长度 (2)组装插芯:白管放正(LC插芯要白管),勿忘放弹簧(外框、内框、白管、弹簧)

(3)注胶插芯:控制胶量(插芯头出现胶珠为宜)和时间(一次注射12个,防止胶干 (4)连接光纤和插芯:轻,易断;纤芯露出一小段为止 固化前要清洁固化炉;固化时应注意温度,炉温稳定时才可固化,不同光缆设置不同的固化时间和温度,并摆放整齐光缆,防止烧掉热缩管和光缆。胶干后将变成红褐色。固化后金属散件不要接触到光缆。 3.组装:使用的工具有压紧机(压接压环和小圆环)、压接钳、尖嘴钳、剪刀(剪卡普隆丝)、刀片(割缆皮)。 (1)剪卡普隆丝,按规定预留长度 (2)固定卡普隆丝和缆皮 (3)压紧机压接压环和小圆环 (4)对于FC、ST产品则要组装内螺、外螺: 内螺外螺要拧紧。 (5)套紧尾套 (6)检查插芯弹性,弹性不好的用钳子移动插芯位置再试。 4.研磨:根据不同的产品型号选择不同的研磨盘,对称装上光缆,保证平衡,在离插芯约15CM处扎好,并使光缆与插芯成一条直线,防止光缆与插芯相连处断裂。 第一轮研磨除胶:先在砂纸上成8或0字型进行磨胶,

光纤通信的发展现状

则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤, 并常以某种功能器件的形式出现。光纤通信之所以发展迅猛, 主要缘于它具有以下特点: 通信容量大、传输距离远;信号串扰小、保密性能好;抗电磁干扰、传输质量佳;光纤尺寸小、重量轻, 便于敷设和运输;材料来源丰富, 环境保护好;无辐射, 难于窃听;光缆适应性强, 寿命长。 作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都经历着一个发展的过程。光纤通信技术的几种关键技术分为--- 波分复用技术。波分复用WDM(Wavelength Division Multiplexing) 技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率( 或波长) 不同, 将光纤的低损耗窗口划分成若干个信道, 把光波作为信号的载波, 在发送端采用波分复用器( 合波器) , 将不同规定波长的信号光载波

合并起来送入一根光纤进行传输。在接收端, 再由一波分复用器( 分波器) 将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立( 不考虑光纤非线性时) , 从而在一根光纤中可实现多路光信号的复用传输。自从上个世纪末, 波分复用技术出现以来, 由于它能极大地提高光纤传输系统的传输容量, 迅速得到了广泛的应用。 2. 光纤接入技术。光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化, 满足大众的需求, 不仅要有宽带的主干传输网络, 用户接入部分更是关键, 光纤接入是网高速信息流进千家万户的关键技术。在光纤宽带接入中, 由于光纤到达位置的不同, 有FTTB、FTTC、FTTCab 和FTTH 等不同的应用, 统称FTTx。 光纤通信技术发展的现状--- 1.市场需求的培育发展和产业链的形成尚需时日。FTTH除了提供高带宽外, 更重要的是运营商能提供什么具体服务内容让用户需求更高的带宽, 使得在既有宽带接入技术无法满足之下,推动用户走向光纤到户。然而用户上网经常使用的服务为看新闻, 搜寻引擎,电子信箱,这些

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

————————————————————————————————作者:————————————————————————————————日期: 2

学号:20085044013 本科学年论文 学院物理电子工程学院 专业电子科学与技术 年级2008级 姓名王震 论文题目光纤通信技术发展历程、特点及现状 指导教师张新伟职称讲师 成绩

2012年1月10日 目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

光纤通信技术调研报告

光纤通信技术现状综述 信息工程学院通信工程赵爱杰20092420253 导读 概述 主要技术 相干光通信技术 概念 关键技术 主要优势 光孤子通信技术 概念 关键技术 主要优势 全光通信网 概念 关键技术 主要优势 总结 参考网站 概述 光纤通信,顾名思义,就是利用光导纤维传导经过调制而携带信息的光信号,实现信息传递的通信方式。光纤通信技术发展历史并不长,1966年高锟发表论文《Dielectric-Fibre surface waveguides for optical frequencies》奠定了光纤技术进入实用的里程碑。经过短短几十年发展,现在光纤技术已经以其突出优势在通信领域得到了广泛应用。 光纤技术相比其他通信技术,具有其无与伦比的优越性,其中最突出的就是其超大容量:理论上讲,一根头发丝粗细的光纤可同时传输1000亿个话路,虽然目前如此高的传输量仍未达到,但相比明线、双绞线、同轴电缆、无线信道这些传统传输介质,其传输能力仍然高出几十甚至上千倍,而把若干根光纤聚集成光缆的传输信息量就可想而知了。所以可以预见,当下乃至未来若干年的信息爆炸时代,光纤通信将逐步成为信息传输的主流技术。 其次,光纤技术还有很多传统传输技术无法比拟的有点,如传输距离长、保密性能好、适应能力强、抗干扰性好、体积小重量轻,便于施工维护、制造原料来源广,生产成本低廉等。 主要技术 目前光纤通信的主要技术有:相干光通信技术,光孤子通信技术,全光通信

网等,下面注意作简要介绍: 相干光通信技术: 所谓相干光技术就是在光通信中使用相干调制和外差检测技术。所谓相干调制,就是利用传输信号来控制光载波的频率、相位和幅度。外差检测,就是利用一束本机振荡产生的激光与输入信号在光混频器中进行混频,得到与信号光频率、相位和幅度按相同规律变化的中频信号的技术。 在发送端,采用外调制方式将信号调制到光载波上传输,当信号光到达接收端时,首先与一束本振光信号进行相干耦合,然后由平衡接收机进行探测。相干光通信根据本振光频率与信号光频率不等或相等,可分为外差检测和零差检测。前者光信号经光电转换后获得的是中频信号,还需要二次解调才能被转换成基带信号。后者光信号经光电转换后被直接转换成基带信号,不用二次解调,但它要求本振光频率与信号光频率严格匹配,并且要求本振光与信号光的相位锁定。 关键技术: 1)外光调制技术,光调制是根据某些电光或声光晶体的光波传输特性随电压或声压等外界因素的变化而变化的物理现象而提出的。外光调制器主要包括三种:利用电光效应制成的电光调制器、利用声光效应制成的声光调制器和利用磁光效应制成的磁光调制器。采用以上外调制器,可以完成对光载波的振幅、频率和相位的调制。 2)偏振保持技术,在相干光通信中,相干探测要求信号光束与本振光束必须有相同的偏振方向,才能获得相干接收所能提供的高灵敏度,所以在相干光通信中应采取光波偏振稳定措施。主要有两种方法:一是采用“保偏光纤”使光波在传输过程中保持光波的偏振态不变;二是使用普通单模光纤,在接收端采用偏振分集技术,信号光与本振光混合后首先分成两路作为平衡接收,对每一路信号又采用偏振分束镜分成正交偏振的两路信号分别检测,然后进行平方求和,最后对两路平衡接收信号进行判决,选择较好的一路作为输出信号。 3)频率稳定技术,激光器稳频技术主要有三种,(1)将激光器的频率稳定在某种原子或分子的谐振频率上。在1.5μm波长上,已经利用氨、氪等气体分子实现了对半导体激光器的频率稳定;(2) 利用光生伏特效应、锁相环技术、主激光器调频边带的方法实现稳频;(3)利用半导体激光器工作温度的自动控制、注入电流的自动控制等方法实现稳频。 相干光通信技术相对于传统的光强度调制有突出有点: 1)灵敏度高,中继距离长,相干光通信的一个最主要优点是相干检测能改善接收机的灵敏度。相同条件下,相干接收机比普通接收机灵敏度高20dB,可以达到接近散粒噪声极限的高性能,因此也增加了光信号的无中继传输距离。 2)选择性好,通信容量大,相干光通信提高了接收机的选择性,在直接检测中,接收波段较大,为抑制噪声干扰,探测器通常需要放置窄带滤光片,但其频带仍然很宽。在相干外差探测中,探测的是信号光和本振光的混频光,因此只有在中频频带内的噪声才能进入系统,而其他噪声均被带宽较窄的微波中频放大器滤除。可见,外差探测有良好的滤波性能。此外,由于相干检测优良的波长选择性,相干接收机可以使频分复用系统的频率间隔大大缩小,从而实现密集波分复用,具有以频分复用实现更高传输速率的潜在优势。

我国光纤通信的现状分析及发展前景

我国光纤通信的现状分析及发展前景 1、光纤通信技术当前发展现状 近些年来,最为流行与最受关注的通信技术可以说是光纤通信技术、卫星通信应用技术以及无线通讯技术。而光纤通信技术在这三种支柱性通信技术中,所涉及到的领域技术最为广泛,这是由于光纤通信技术有着非常多的显著优势与实用特性。 1.1 实用性强、频带宽、容量大 一般光纤能够利用的频宽数量大概可达50000GHz,并且其传输损耗低、实用性强。自1987年我国投入使用时,其就能以1.7Gb/s的一对光纤就能同时对两万多路电话进行传输;2.4Gb/s时,同样也能对三万多组电话进行传输。其频宽能力强大,不仅仅是数据承载通信容量大,而且还能够满足宽带营运实施的综合性业务流转,协调于综合业务宽带的利用效率与开发,如其能够满足数字网B-ISDN发展的需求。 1.2 信号光功率损失小,中继距离长,成本低 由于光纤本身的损耗程度一般低于0.2dB/km,这和其他传输媒介的损耗程度比较而言,光纤传导的信号功率损失程度非常小,也就是说其满足一定的比特率要求的光接收机灵敏度很高,即满足系统误比特率要求的最低接收光功率越小,中继距离就越长。其中其存在的最大中继距离可能高达上千米甚至是上万米,这对光纤通信传输系统所投成本的稳定性,以及实现传输可靠性的现实意义来说,非常重要。 1.3 抗电磁干扰 光纤自身是绝缘体材料,本身不受高空电离层的强度环境变化与雷电或是太阳表面黑子变化活动的干扰,也不受电路系统高压馈电线与相关设施、设备的诸多方面干扰。总的来说,光纤传导受电磁干扰的特性以及受其他方面干扰自身传导通信功能的可能性很小。 1.4 光波传输良好,即保密性好 光波当在光缆中运行传输时,由于自身材料的传导性能,使其光波在传输过程当中也就很难外泄出来,即使存在外漏现象,也很微弱,是在正常损益范畴之内。所以有时对于光纤表面上会上一层消除光谱色散损耗的消光剂。从而使波形因为客观性其他原因引起的失真外泄现象大幅度降低,也使系统传输信息的保密性程度提升了。 2、光纤通信技术的发展趋势

光纤通信技术发展历程、特点及现状

本科学年论文 学 院 物理电子工程学院 专 业 电子科学与技术 年 级 2008级 姓 名 王震 论文题目 光纤通信技术发展历程、特点及现状 指导教师 张新伟 职称 讲师 成 绩 2012年1月10日 学号:

目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70

光纤通信的发展前景

光纤通信的现状及其未来发展 光信息科学与技术08-1班 韩欣欣 08133102 关键词:光纤通信 光纤到户 未来发展 摘要:光纤通信自问世以来,给整个通信领域带来了一场革命,它使高速率,大容量的通信成为可能。目前它已经成为一种不可替代的、最主要的信息传输技术。 引言: 光无处不在。在人类发展的早期,人类已经开始使用光传递信息了。但那时候传递的信息容量非常少,局限性也很大。 随着社会的发展,信息传输与交换量与日俱增,传统的电通信方式已不能满足人们的需要。为了扩大通信容量,通信方式从中波、短波发展到微波、毫米波,这实际上就是通过提高通通信载波频率来扩大通信容量的。这样就出现了现在的光通信技术,就是光纤通信。 光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。 与传统的电通信相比,光纤通信是以很高频率的光波作为载波,以光纤为传输介质的通信。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,自其出现以来就备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980年至今增加了近一万倍 传输速度在过去的10年中大约提高了100倍。 光纤发展与应用 为了发展光通信技术,人们又考虑和尝试了各种传输介质,但是他们的损耗都非常的高。直到1966年美籍华人高锟博士和霍克哈姆发表论文,预见了低损耗的光纤能够应用于通信,敲开了光纤通信的大门。从此光纤在通信中的应用引起了人们的重视。 很快在1970年8月美国康宁公司首次研制成功损耗为20dB/kM光纤。光纤通信的时代由此开始了。 1972年,随着光纤制备工艺中的原材料提纯、制棒和拉丝技术水平

光纤通信发展与现状解析

公选课课程论文 (2010 -2011 学年第二学期光纤通信发展与现状 学生:周丹丹 提交日期:2011 年 4 月 18 日学生签名:周丹丹 光纤通信发展与现状 周丹丹 摘要:

本文通过介绍及时、准确全面地获取信息在当今这个竞争时代的重要性,指出光纤通信与我们的生活息息相关对我们的生产和生活中起到了相当关键的作用。并简单介绍了了国际光纤通信四十多年来的发展历程,并进一步描述了自 1960年光纤之父高锟等人首先提出了用低吸收的光纤做光通信至今,光纤通信的发展。并具体针对在我国出现不久的 3G 手机上网和手机网上银行做了一些介绍,并提出自己的一些观点和看法。最后结合现状和相关文献对光纤通信未来的发展趋势和方向做一些介绍。 关键字:光纤通信、发展、手机、 3G 、光联网 一、信息的重要性 回顾历史,古人烽火狼烟、快马加鞭、鸿雁传书……这些历史典故都告诉我们一个道理——只有具备及时获取全面、准确的信息,把握动态、解决问题的能力,才能抓住机遇、才能充分展示和发挥自己的才华、扬长避短,取得成功。 一直到信息大爆炸的今天,竞争日益激烈。各个国家、企业甚至个人想要在竞争中掌握主动权,就一定要及时、详细了解当今世界的各个行业的发展的现状和趋势,结合自身条件及时调整自己的战略,使之与时代环境相符合。只有这样才可能在竞争中取得最后的胜利,使人类文明不断前进、不断进步。 如何才能满足人们的需求,有效、及时地传递大量信息呢?人们迫切需要一种新的传输媒介。 二、关于光纤通信 【 1】 光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。光纤通信系统可分为三个基本单元:光发射机、光纤和光接收机。它首先要在发射端将需传送的信号进行光电转换,再经光纤传输到接收端,接收端将接收到的光信号转变成电信号, 最后还原成原信号。光纤通信系统的构成具体如下:

我国光纤光缆行业的发展现状及前景

我国光纤光缆行业的发展现状及前景近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 一、我国光纤光缆发展的现状 1.普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G..652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G..653规定的色散位移单模光纤实现了这样的改进。 2.核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G..652光纤和G..655光纤。G..653光纤虽然在我国曾经采用过,但今后不会再发展。G..654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 3.接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加

光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G..652普通单模光纤和G..652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 4.室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并且还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。结合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 5.电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 二、光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

光纤现状及其发展

光纤通信的现状及其发展 光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。下面简单描述我国光纤光缆发展的现状: 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在主干线(包括国家主干线、省内主干线和区内主干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今

后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。主干线光缆中采用分立的光纤,不采用光纤带。主干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的

光纤通信综述

一、概述 随着社会信息技术的发展,3G网络的实施,4G网络的开发与研 究,IPTV三网融合、物联网等的实施和提出,对现有的网络提出了革 命性的要求,人类对于信号传输带宽的需求一直在以惊人的速度增长。移动性、无线化、数字化和宽带化是当今信息业发展的趋势,超高速、超大容量成为信息传送追求的主要目标。 光纤通信(Optical Fiber Communications)技术是利用光波作为载波来传递信息的技术。当今,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。 在20世纪60年代初期,由于人们无法解决光的散射等问题,光通信一直没有重大的发展。直到20世纪60年代中期,情况才发生改变,而改变这一现状的正是一位中国人-高锟。1966年,高锟发表了关于通信传输新介质的论文,提出可以利用光导纤维进行信息传输的可能性和技术途径,这才奠定了光通信的基础。1970年,美国康宁公司 按照高锟的思路造出了损耗为20dB/km的石英光纤,使得光纤的研制取得重大突破。1972年,该公司生产的高纯石英多模光纤的损耗下 降到4dB/km。到了20世纪80年代初,单模光纤在波长1.55um的损耗已经下降到0.2dB/km,而目前G.654光纤在1.55um波长附近损耗仅0.1510.2dB/km,接近光纤的理论极限。由于高锟在开创光纤通信历史上的卓越贡献,2009年10月6日被授予了诺贝尔物理学奖。

光纤通信(Optical Fiber Communications)技术是利用光波作为载波来传递信息的技术。当今,光纤以其传输频带宽、抗干扰性高和信号.衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。 在20世纪60年代初期,由于人们无法解决光的散射等问题,光通信一直没有重大的发展。直到20世纪60年代中期,情况才发生改变,而改变这一现状的正是一位中国人-高锟。1966年,高锟发表了关于通信传输新介质的论文,提出可以利用光导纤维进行信息传输的可能性和技术途径,这才奠定了光通信的基础。1970年,美国康宁公司按照高锟的思路造出了损耗为20dB/km的石英光纤,使得光纤的研制取得重大突破。1972年,该公司生产的高纯石英多模光纤的损耗下降到4dB/km。到了20世纪80年代初,单模光纤在波长1.55um的损耗已经下降到0.2dB/km,而目前G.654光纤在1.55um波长附近损耗仅0.1510.2dB/km,接近光纤的理论极限。由于高锟在开创光纤通信历史上的卓越贡献,2009年10月6日被授予了诺贝尔物理学奖。 目前,随着数据业务的爆炸性增长,通信道路越来越拥挤,光通信将成为唯一的出路。因此,现在世界上所有新建的通信干线均采用光纤。波分复用(WDM)系统也在海底光缆系统上使用,Tyco全球网大西洋部分有对光纤,目标容量为每对光纤传输64个10Gb/s WDM信道。2002年阿10.2Tb/s(25642.7Gb/s)L波段成功进行了距离为尔卡特在C波段和3100km的传输实验。根据OFC2009年报道,NTT 2007年演示了一个线路容量为10Tb/s的系统[NThB1],该系统采用DWDM的DQPSK

中国光纤通信技术的现状及未来.

中国光纤通信技术的现状及未来 光纤通信是我国高新技术中与国际差距较小的领域之一。光纤通信由于其具有的一系列特点, 使其在传输平台中居于十分重要的地位。虽然目前移动通信, 甚至卫星移动通信的热浪再现高波,但 Telecom99的展示说明,光纤通信仍然是最主要的传输手段。在北美,信息量的 80%以上是通过光纤网来传输的。在我国光纤通信也得到广泛的应用,全国通信网的传输光纤化比例已高达 82%。光纤通信技术的应用基本达到国际同类水平,自主开发的光纤通信产品也比较接近国际同类产品水平, 但实验室的研究水平还有一定的差距。本文扼要回顾我国光通信走过的历程, 并从光纤光缆、光器件、光传输设备和系统等几方面介绍光通信的研发、应用现状, 展望光通信在我国的应用前景, 将激励我们为振兴我国光通信民族产业做出更大的贡献。 1 我国光通信历程的回顾 我国的光通信起步较早, 70年代初就开始了大气传输光通信的研究,随之又进行光纤和光电器件的研究,自 1977年初,研制出第一根石英光纤起,跨过一道道难关,取得了一个又一个零的突破。如今回顾起来,所经历的“里程碑”依然历历在目: 1977年,第一根短波长 (0. 85mm 阶跃型石英光纤问世,长度为 17m ,衰减系数为300dB/km。 研制出 Si-APD 。 1978年,阶跃光纤的衰减降至 5dB/km。 研制出短波长多模梯度光纤,即 G .651光纤。 研制出 GaAs-LD 。 1979年,研制出多模长波长光纤,衰减为 1dB/km。 建成 5.7km 、 8Mb/s光通信系统试验段。

1980年, 1300nm 窗口衰减降至 0.48dB/km, 1550nm 窗口衰减 为 0.29dB/km。 研制出短波长用的 GaAlAs-LD 。 1981年,研制出长波长用的 InGaAsP-LD 和 PIN 探测器。 多模光纤活动连接器进入实用。 研制出 34Mb/s光传输设备。 1982年,研制成功长波长用的激光器组件和探测器组件 (PIN-FET。 研制出光合波分波器、光耦合器、光衰减器、滤光器等无源器件。 研制出 140Mb/s光传输设备。 1984年,武汉、天津 34Mb/s市话中继光传输系统工程建成 (多模。 1985年,研制出 1300nm 单模光纤,衰减达 0.40dB/km。 1986年,研制出动态单纵模激光器。 1988年,全长 245km 的武汉椌V輻沙市 34Mb/s多模光缆通信系统工程通过邮电部鉴定验收。 扬州——高邮 4Mb/s单模光缆通信系统工程通过邮电部鉴定验收。 1989年,汉阳——汉南 40Mb/s单模光传输系统工程通过邮电部鉴定验收。 1990年, 研制出 G .652标准单模光纤, 最小衰减达 0.35dB/km。到 1992年降至0.26dB/km。成功地研制出 1550nm 分布反馈激光器 (DFB-LD。 1991年,研制出 G .653色散位移光纤。最小衰减达 0.22dB/km。

光通信的历史及其发展现状

光通信的历史、现状、发展趋势 06007235 方云龙光通信的历史: 原始形式的光通信是通过中国古代的“烽火台”报警,欧洲人用旗语传送信息。1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏型。 1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器,给光通信带来了新的希望。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。 1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。通过“原材料的提纯制造出适合于长距离通信使用的低损耗光纤”这一发展方向。 1970年,美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。把光纤通信的研究开发推向一个新阶段。 1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2μm)。在以后的10 年中,波长为1.55 μm的光纤损耗:1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km,接近了光纤最低损耗的理论极限。 1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但它为半导体激光器的发展奠定了基础。1977 年,贝尔实验室研制的半导体激光器寿命达到10万小时。1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55 μm的连续振荡半导体激光器。 1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。1980 年,美国标准化FT - 3光纤通信系统投入商业应用。 1976 年和1978 年,日本先后进行了速率为34 Mb/s的突变型多模光纤通信系统,以及速率为100 Mb/s的渐变型多模光纤通信系统的试验。1983年敷设了纵贯日本南北的光缆长途干线。 随后,由美、日、英、法发起的第一条横跨大西洋TAT-8海底光缆通信系统于1988年建成。第一条横跨太平洋TPC-3/HAW-4 海底光缆通信系统于1989年建成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。 现状: 目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH(光纤到户)用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM(Wavelength Division Multiplexing:波分复用)和PON(Passive Optical Network:无源光纤网络),这两个已经相对比较成熟。 今天,40Gbps的光通信系统得到广泛商用。作为新一代光网络的领军技术,40G商用大门的开启,满足日益增长的带宽需求同时,还为ROADM、先进光调制技术、超强EFC等新技术的应用赢得了市场发展空间,并为全光网的演进、升级创造了条件。不过,这只是40Gbps的一个开始,要承担起未来传输主力的重任,40G还需要很多路要走。现在对40Gbps,乃至更高速率的100Gbps而言,光学硬件的发展是关键,同时还必须与其他光通讯技术协同发展,包括复杂的调制技术、信号处理技术、并行接口、主动追踪和补偿技术,这些条件

最新光纤通信调研报告

光纤通信调研报告 第1篇第2篇第3篇第4篇第5篇更多顶部 目录 第一篇:光纤通信综述报告第二篇:光纤通信第三篇:光纤通信第四篇:光纤通信第五篇:光纤通信更多相关范文 正文第一篇:光纤通信综述报告光纤通信综述报告 前言:孙老师,您好!在您给我们从光纤的历史、光纤通信的特点、光纤通信的应用给我们介绍了光纤通信之后,我对光纤通信有了一个更深层次的认识,也引发了我对光纤通信的兴趣,下面就是我结合您给我们讲的知识和我课外了解、收集的材料写的关于光纤通信的综述报告。 摘要:光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。 一、光纤通信的发展史

1、世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。 1970年损失为20db/km 的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。 1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45mb/s。 在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。光纤通信系统开始显示出长距离、大容量无比的优越性。 1996年技术取得突破,贝尔实验室发展了技术,美国mci公司在1997年开通了商用的线路。光纤通信系统的速率从单波长的2.5gb/s和10gb/s爆炸性地发展到多波长的

通信工程毕业论文光纤通信技术的现状及发展趋势

光纤通信技术的现状及发展趋势 摘要:光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要综述我国光纤通信研究现状及其发展。 关键词:光纤通信核心网接入网光孤子通信全光网络 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1 我国光纤光缆发展的现状 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它

在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过 的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限, 在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径 和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C 低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。 并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全 介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设 的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生 产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如 大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 2 光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是

光纤通信发展

摘要]对光纤通信技术领域的主要发展热点作一简述与展望,主要有超高速传输系统、超大容量波分复用系统、光联网技术、新一代的光纤、IP over SDH与IP overOptical以及光接入网。 关键词:光纤超高速传输超大容量波分复用光联网 光纤通信的诞生与发展是电信史上的一次重要革命。近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,本文旨在对光纤通信领域的主要发展热点作一简述与展望。 1 向超高速系统的发展 从过去2O多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾。传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因。目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多。高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。我国也将在近期开始现场试验。 需要注意的是,10Gbps系统对于光缆极化模色散比较敏感,而已经敷设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。 在理论上,上述基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,采用色度色散和极化模色散补偿以及伪三进制(即双二进制)编码后已能传输100km。然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,没有太多潜力可挖了,此外,电的40Gbps系统在性能价格比及在实用中是否能成功还是个未知因素,因而更现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入大规模商用阶段,而其它方式尚处于试验研究阶段。 2 向超大容量WDM系统的演进 如前所述,采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。采用波分复用系统的主要好处是:(1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;(2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;(3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;(4)利用WDM网络实现网络交换和恢复可望实现未来透明的、具有高度生存性的光联网。 鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。如果认为1995年是起飞年的话,其全球销售额仅仅为1亿美元,而2000年预计可超过40亿美元,2005年可达120亿美元,发展趋势之快令人惊讶。目前全球实际敷设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2*16*10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80*2.5Gbps)或400Gbps(40*10Gbps)。实验室的最高水平则已达到2.6Tbps(13*20Gbps)。预计不久实用化系统的容量即可达到1Tbps的水平。可以认为近2年来超大容量密集波分复用系统的发展是光纤通信发展史上的又一里程碑。不仅彻底开发了无穷无尽的光传输键路的容量,而且也成为IP业务爆炸式发展的催化剂和下一代光传送网灵活光节点的基础。 3 实现光联网——战略大方向

相关主题
文本预览
相关文档 最新文档