当前位置:文档之家› 蛋白质的原核生物表达与纯化实验大纲

蛋白质的原核生物表达与纯化实验大纲

蛋白质的原核生物表达与纯化实验大纲
蛋白质的原核生物表达与纯化实验大纲

实验一:EV71病毒非结构基因(2b)的克隆

一.实验目的

通过本实验使学生掌握外源基因克隆的原理和方法

二.实验原理

基因克隆技术包括把来自不同生物的基因与具有自主复制能力的载体DNA在体外进行人工连接,构建成新的含目的基因的重组载体,然后将其导入受体生物中去进行表达,从而产生遗传物质和状态的转移和重新组合。

三.实验用品

1.材料:EV71病毒基因组序列载体pMAL-c2x (Amp抗性)大肠杆菌DH5a

2.器材:离心机、DNA电泳仪、微波炉、试管、摇床、酒精灯、高压蒸汽灭菌锅、培养皿等、三角瓶、天平

3.试剂与药品:氨苄青霉素、碱性裂解液、电泳缓冲液、Rnase A、Taq DNA 聚合酶、T4DNA 连接酶、1kb 分子量DNA Marker 、内切酶BamHI 和SalI、DNA 片段胶回收试剂盒、X-gal 贮液、IPTG 贮液、T ris 碱、Na 2EDTA、NaCl、CaCl 2、甘油、葡萄糖、酵母提取物、胰蛋白胨、分析纯无水乙醇、95%医用酒精、琼脂糖

四.方法与步骤

(一)缓冲液及培养基配制1.质粒提取试剂:

溶液I:葡萄糖50m mol/L,Tris-HCl(pH 8.0)25m mol/L,EDTA(pH8.0)10mmol/L 于6.895×104

Pa 灭菌15min,4℃保存。

溶液II:NaOH 0.2mol/L,SDS 1%。

SDS(10%,200ml):20g SDS,慢慢转移到约150ml 水的烧杯中,磁力搅拌至溶解,用水定容至200ml。

溶液III:(0.5M,pH5.2,KAC),用冰醋酸调pH

TE 缓冲液:1ml Tris-HCl(1M pH8.0),0.2ml EDTA(0.5M pH8.0),加灭菌水至100ml。2.LB 液体培养基(perliter ):

胰蛋白胨10g 酵母膏5g pH 7.0

NaCl

5g

(二).步骤

1.碱裂解法抽提质粒

实验原理:在pH 12.0~12.6碱性环境中,细菌的染色体DNA 变性分开,而共价闭环的质粒DNA 虽然变性但仍处于拓扑缠绕状态。将pH 调至中性并有高盐存在及低温的条件下,大部分染色体DNA 、大分子量的RNA 和蛋白质在去污剂SDS 的作用下形成沉淀,而质粒DNA 仍然为可溶状态。通过离心,可除去大部分细胞碎片、染色体DNA 、RNA 及蛋白质,质粒DNA 尚在上清中,然后用酚、氯仿抽提进一步纯化质粒DNA 。

步骤:

1)接种一单菌落于5ml 液体培养基中,加适量抗菌素,37℃摇床培养过夜;

2)取1.5ml(制备低拷贝质粒取5ml),12000r/min,离心1min(菌较多时可富集);

3)吸尽上清液,悬浮菌体于200ul预冷的溶液I中;

4)加入溶液II,400uL,用手颠倒7-8次,至菌液完全清亮,并有拉丝现象比较粘稠;

5)加入溶液III,300uL,用手颠倒7-8次;

6)离心(12000/min)10min;将上清转入新的EP管中;

7)离心(12000/min)10min,将上清转入新的EP管中,弃去沉淀;

9)加入异丙醇(1倍体积)750uL,颠倒几次混匀;放置5min;

10)离心(12000/min)10min,弃去上清;

11)加入70%乙醇500uL,放置2min;

12)离心(12000/min)2min;弃尽上清;

13)37℃放置10min(培养箱)干燥;

14)加入50uL TE或者灭菌的超纯水融解DNA。

15)质粒检测完毕后,置于-20℃保存

附注:质粒检测

电泳检测:质粒电泳一般有三条带,分别为质粒的超螺旋、开环、线型三种构型

吸光值检测:采用分光光度计检测260nm、280nm波长吸光值,若吸光值260nm/280nm的比值

介于1.7-1.9之间,说明质粒质量较好,1.8为最佳,低于1.8说明有蛋白质污染,大于1.8

说明有RNA污染。

2.EV71非结构基因2b引物设计:

F15‘cgggatccagcgcttcctgg3’BamHI(上游)

F25‘gcgtcgacttattggaatagag’SalI(下游)

3.目的片段EV712B基因PCR扩增和纯化;

实验原理:PCR是在模板DNA、引物和dNTPs的存在下依赖于DNA聚合酶的酶促反应。PCR技术的特异性取决于引物和模板结合的特异性。反应分为变性、退火、延伸三步,经过一定的循环,介于两个引物之间的特异DNA片段得到大量扩增。

实验步骤:

1.按下列体系配制反应混合液:

Template DNA0.5μl(20ng)

10×buffer2μl

Primer F(50μM)0.5μl

Primer R(50μM)0.5μl

dNTPs(10mM)0.5μl

Taq(5U/μl)0.5μl

O to19.5μl

Add ddH

2

2.反应程序设置:

预变性94℃3min

变性94℃30s

退火62℃30s共33循环

延伸72℃30s

延伸72℃10min

3.PCR产物纯化

根据天北京鼎国科技有限公司提供的小量DNA胶回收试剂盒纯化PCR产物,(按照试剂盒说明书)操作过程如下:

1)在DNA凝胶成像系统下切下所需的DNA条带装入已知重量的Eppendorf管中,并称重计算胶条的重量(W毫克);

2)加入2倍于W体积的S

液,置50℃水浴10min,使琼脂糖完全融化,不时颠倒混匀;

1

3)转移到柱子上如果总体积大于750uL,过柱时要分批上柱,每一次离心30s,倒掉收集管中的液体;

液,12000转,离心15s,弃去收集管中的液体;

4)加入500uL的含乙醇的W

1

液,静置1min,离心15s,弃去收集管中的液体;

5)加入500uL的W

1

6)再离心1min;

7)将吸附柱放入一干净的1.5ml的离心管中,在吸附膜中央加入30uL T

(2mM Tris)

1

液或水,静置5min,离心1min;

8)将1.5ml离心管存于-20℃。

5.目的基因PCR产物和载体的酶切及产物纯化回收:

1)按照下面酶切体系,分别依次加入纯化好的2b DNA,ddH2O,Buffer,BSA,酶。

I.PCR产物酶切体系:

DNA20ul

10×buffer8ul

BamHI2ul37℃,保温5-6h.

SalI2ul

ddH

O48ul

2

II.载体pMAL-c2x酶切体系:

载体DNA10ul

10×buffer5ul

BamHI2ul37℃,保温5-6h.

SalI2ul

O31ul

ddH

2

2)酶切产物检测:分别取3μl外源片段酶切产物和3μl载体pMAL-c2x酶切产物于

1.0%琼脂糖凝胶检测酶切是否完全.

3)酶切产物回收:(按照北京鼎国DNA胶回收试剂盒的操作方法)

①将PCR酶切产物和载体酶切产物按照1:3加入溶液A

②转移到柱上,静置3min,10000g离心1min。

③将滤过的溶液,再次吸入柱内,重复步骤2.

④弃掉滤液,向柱内加500ul溶液C,12000g离心1min。

⑤重复操作④后,12000g再次离心3min。

(2mM Tris)

⑥将吸附柱放入一干净的1.5ml的离心管中,在吸附膜中央加入30uL T

1液或水,静置5min,离心1min。(加水前保证乙醇完全除净)

⑦回收酶切产物放存于-20℃。

4)酶切回收产物检测:取2ul于1.0%琼脂糖凝胶检测.

6.DNA体外连接反应

1)按照下列体系完成连接体系:

2b酶切回收产物13uL

载体4uL

T4DNA连接酶1uL20ul

10×T4DNA ligase Buffer 2.0uL

ddH2O0uL

2)混合均匀后,于16℃或者4℃连接过夜。

4.大肠杆菌CaCl2法制备感受态细胞

1)挑取保存的感受态细胞在平板上划单菌落;

2)挑取长好的单菌落接入到装有5ml LB的三角瓶中,摇床过夜培养;

3)从universal中取1ml过夜培养物,转接于装有20ml LB(用SOC或SOB可提高感受态效率)的250ml三角瓶中,培养2.5~3小时至OD600=0.6;

4)将培养物倒入50ml已预冷的大离心管中,置于冰上待冷却;

5)离心,4℃.5000rpm.3分钟;

6)倒去上清液,先加少量0.1M CaCl2,打散沉淀,再加10ml,混匀,于冰上放置至少30分或过夜;

7)离心,4℃.5000rpm,3分钟;

8)弃上清,加1ml0.1M CaCl2,在冰上轻轻打散沉淀,即可使用。

以上步骤均需注意无菌和低温操作。

附注:

影响感受态细胞转化效率的因素及实际操作过程中应注意的事项:

1.细菌的生长状态:实验中应密切注视细菌的生长状态和密度,尽量使用对数生长期的细胞(一般通过检测OD600来控制。DH5α菌株OD600为0.5时细胞密度是5×107/ml);

2.所有操作均应在无菌条件和冰上进行;

3.经CaCl2处理的细胞,在低温条件下,一定的时间内转化率随时间的推移而增加,24小时达到最高,之后转化率再下降(这是由于总的活菌数随时间延长而减少造成的);

4.化合物及无机离子的影响:在Ca2+的基础上联合其他二价金属离子(如Mn2+或Co2+)、DMSO或还原剂等物质处理细菌,可使转化效率大大提高(100-1000倍);

5.所使用的器皿必须干净。迹量的去污剂或其它化学物质的存在可能大大降低细菌的转化效率;

6.质粒的大小及构型的影响:用于转化的应主要是超螺旋的DNA;

7.一定范围内,转化效率与外源DNA的浓度呈正比;

8..DNA转化

实验原理:

低渗溶液中,细菌细胞膨胀成球形,转化混合物中的热激法:大肠杆菌在0℃CaCl

2

DNA形成抗DNase的羟基-钙磷酸复合物粘附于细胞表面,经42℃短时间热冲击处理,促进细胞吸收DNA复合物,在丰富培养基上生长数小时后,球状细胞复原并分裂增殖。在被转化的细胞中,重组子基因得到表达,在选择性培养基平板上可挑选所需的转化子实验步骤:

1)取100μl感受态细胞和5ul的酶连产物或1-2ul质粒混合;

2)冰上静置30分钟;

3)42℃热激90秒,然后在冰上放置5min;

4)加0.75ml LB培养基,在37度摇床上培养45分钟。然后3600转离心2分钟,去掉大部分上清(此步不作为快转,作为慢转,慢转可提高效率,有些抗生素如Kan筛选时用慢转较好);

5)涂布于有抗生素的筛选平板,一般12小时可有转化子出现。

9.重组质粒pMAL-c2X-2b鉴定

1)用消毒的牙签仔无菌工作台上挑取白斑,放于含5ml的LB培养基(加入Amp)过夜培养。

2)按以上步骤1提取质粒

3)按以上步骤3做PCR扩增,用琼脂糖凝胶电泳检测片段的大小。

4)对提取的质粒步骤4酶切,然后用琼脂糖凝胶电泳检测片段的大小,是否为目的带。

5)对提取的质粒进行测序进一步检测克隆片段完全正确。

实验二:融合蛋白MBP-2b的诱导表达

一.实验目的:

通过本实验了解蛋白质的原核表达

二.实验原理;

将外源基因克隆在pMAL-c2x表达载体中,让其在E.coli如中表达。先让宿主菌生长,IPTG(异丙基硫代-β-D-半乳糖)诱导的tac启动子紧邻多克隆位点和rrnb终止子,连接区

跨越B—半乳糖苷酶a-互补片段氨基末端,可以通过蓝白斑筛选质粒中有外源片段插入的

克隆。由于质粒中同时含有lacI基因的cIq等位基因,因此在大多数的大肠杆菌中都可以

利用IPTG诱导MBP融合蛋白的表达。表达的融合蛋白(MBP-2b)可经SDS-PAGE检测或做Western-blotting,用抗体识别之。

三.实验内容

1.融合蛋白(MBP-2b)小规模诱导表达

2.SDS-PAGE电泳技术;

3.western Blot技术

4.银染对SDS-PAGE胶显色

四.实验用品

1.材料:重组质粒pMAL-c2x-2b(Amp抗性)大肠杆菌DH5a

2.器材:离心机、电泳仪、试管、摇床、酒精灯等

3.试剂与药品:PBS、氨苄青霉素、碱性裂解液、电泳缓冲液、低分子量标准蛋白Marker、X-gal贮液、IPTG贮液、Amylose纯化柱、Western Blotting使用的一抗和

二抗等:

五.实验方法与步骤

(一)培养基配制:

1.培养基

LB液体培养基(per liter):

胰蛋白胨10g

酵母膏5g pH7.0

NaCl5g

(二).SDS-PAGE及WB所用试剂:

1.配制母液:

30%丙稀酰胺(Acr母液):29g丙烯酰胺和1g N,N‘–亚甲双丙烯酰胺加入温热的去离子水中,确保溶液的pH值不超过7.0,置暗色瓶中室温保存。

10%的SDS溶液:10g SDS加蒸馏水至100ml,50℃水浴下溶解,室温保存

10%的过硫酸铵溶液:0.1g过硫酸胺加入1.0ml超纯水中,溶解后,4℃保存,保存时间为1周。四甲基乙二胺(TEMED)

分离胶缓冲液(1.5mol/L Tris·HCl):45.43g Tris(MW121.14)加入200ml超纯水中溶解后,用浓盐酸调pH至8.8,最后用超纯水定容至250ml,室温下保存。

浓缩胶缓冲液(1.0M Tris·HCl):30.28g Tris(MW121.14)加入200ml超纯水中,溶解后,用浓盐酸调pH至6.8,最后用超纯水定容至250ml,室温下保存。

50%(v/v)甘油:取50ml甘油加入50ml去离子水

1%(w/v)溴酚蓝:100mg溴酚蓝加去离子水至10ml,搅拌直到完全溶解,过滤除去聚合的染料。

20%Tween20:20ml Tween20加蒸馏水至100ml,混匀后4℃保存。

使用液

表一10%分离胶、12%分离胶和5%浓缩胶

Table.1.10%separation gel,12%separation gel,and5%concentrated plastic 10%分离胶(15ml)12%分离胶(15ml)5%浓缩胶(5ml)超纯水 5.9ml 4.9ml 3.4ml

30%丙烯酰胺 5.0ml 6.0ml830μl

1.5mol/L Tris·HCl 3.8ml 3.8ml-

(pH8.8)

1.0mol/L Tris·HCl--630μl

(pH6.8)

10%SDS150μl150μl50μl

10%AP(过硫酸胺)150μl150μl50μl

TEMED6μl6μl5μl

加TEMED后,立即混匀即可灌胶。(为了加快凝胶,可以将过硫酸胺和TEMED量加大,一般加至原来的2倍,根据实验当时的温度适当调整)

5X SDS上样缓冲液10ml

1.0mol/L Tris·HCl(pH6.8)0.6ml

2-巯基乙醇0.5ml

10%SDS 2.0ml

1%溴酚蓝 1.0ml

50%甘油 5.0ml

去离子水0.9ml

混匀后,分装于1.5ml离心管中,4℃保存。

电泳液缓冲液1000ml

Tris(MW121.14) 3.03g

甘氨酸(MW75.07)18.77g

SDS1g

蒸馏水至1000ml

溶解后室温保存,可重复使用3~5次。

(电泳液可以回收重复利用,一般将回收的电泳液加入垂直电泳槽的下半部分,上半部分最好使用新鲜的电泳缓冲液,可以配制成10×电泳液缓冲液进行保存,稀释10倍使用)转移缓冲液1000ml

甘氨酸(MW75.07) 2.9g

Tris(MW121.14) 5.8g

SDS0.37g

甲醇200ml

蒸馏水至1000ml

溶解后室温保存,可重复使用3~5次(先用蒸馏水溶解甘氨酸、Tris和SDS,然后再加入甲醇,最后补足水。如果先加入甲醇,溶解甘氨酸、Tris和SDS等比较困难。可以配制成2×转移缓冲液进行保存,稀释后使用)

TBS缓冲液1000ml

Tris·HCl 1.21g

NaCl8.8g

去离子水至1000ml

用浓盐酸调pH至7.5

(可以配制成10×TBS缓冲液进行保存,稀释10倍使用)

TBST缓冲液

20%Tween20 1.65ml

TBS700ml

混匀后即可使用,最好现用现配。

封闭液

1%BSA(牛血清蛋白)-TBS:称量1.0gBSA溶解于100mlTBS溶液中

或者5%脱脂奶粉-TBS:称量5g脱脂奶粉溶解于100mlTBS溶液中

最好现用现配。

抗体缓冲液:1%BSA-TBST或者5%脱脂奶粉-TBST

一抗溶液:用抗体缓冲液按1:1000-1:2000稀释

二抗溶液:用抗体缓冲液按1:2000-1:5000稀释

显色液:将10mg AEC溶于0.5ml DMF,再加入9.5ml Aectate buffer,再加10ul过氧化氢,立即使用。

2.电泳缓冲液

TAE:50×TAE缓冲液配制(1L溶液各成分的用量):

2mol/L Tris碱+1mol/L乙酸+100mmol/L EDTA+水

首先称242g Tris碱,加57.1ml的冰乙酸和200ml的0.5mol/L EDTA,加水至850ml,调pH到8.0,然后定容至1L。

3.抗生素

试验中用到的抗生素及各抗生素使用浓度如下:

氨苄青霉素(Amp)100mg/ml,无菌水配制

卡那霉素(kana)50mg/ml,无菌水配制

IPTG(200mg/ml):将1g IPTG溶于4ml超纯水,定容至5ml,于0.2um细菌过滤除菌,分装成1ml每份,存于-20℃。

X-gal试剂(20mg/ml):将20mg X-gal溶于1ml二甲基甲酰胺中,-20℃避光保。(三)融合蛋白(MBP-2b)小规模诱导表达;

1.将上述在大肠杆菌DH5a鉴定得到的重组菌落(pMAL-c2x-2b)诱导表达,取100

微升接种于5毫升含氨苄青霉素LB液体培养基中,37℃,220rpm/min振摇培养过夜。

2.次日将培养过夜的菌液50μl再接种于5ml(1:50)LB液体培养基中,37℃,220 rpm/min振摇培养至光密度(OD600=0.6)时,取1ml样本作为诱导前标本,12000g离心1min 收集菌体沉淀,-20℃冻存备用。

3.加入IPTG(设置不同的浓度,温度,时间梯度)于菌液中,220rpm/min取1ml

样本作为诱导后标本,同上法收集菌体沉淀,-20℃冻存备用。

4.将诱导前后菌体离心沉淀加入等体积的2×SDS上样缓冲液,煮沸加热5min。

(四)SDS聚丙烯酰胺凝胶(SDS-PAGE)电泳分离。具体步骤如下:

1.清洗玻璃板:一只手扣紧玻璃板,另一只手蘸点洗衣粉轻轻擦洗。两面都擦洗过后用自来水冲,再用去离子水冲洗干净后立在盘里晾干。

2.灌胶与上样

(1)玻璃板对齐后放入夹中卡紧。

(2)按前面方法配10%或者12%的分离胶,加入TEMED后立即摇匀即可灌胶。灌胶时,可用1ml枪沿玻璃放出胶,待胶面升到离玻璃板口2cm-3cm时即可。然后胶上加一层水赶走气泡,且水封后的胶凝的更快。(灌胶时开始可快一些,胶面快到所需高度时要放慢速度。操作时胶一定要沿玻璃板流下,这样胶中才不会有气泡。加水液封时要慢,否则胶会被冲变型。)

(3)当水和胶之间有一条折射线时,说明胶已凝了,再等几分钟使胶充分凝固就可倒去胶上层水并用吸水纸将水吸干。

(4)按前面方法配5%的浓缩胶,加入TEMED后立即摇匀即可灌胶。将剩余空间灌满浓缩胶然后将梳子插入浓缩胶中。插梳子时要使梳子保持水平,由于胶凝固时体积会收缩减小,使加样孔的上样体积减小,所以在浓缩胶凝固的过程中要在两边补胶。待到浓缩胶凝固后,两手分别捏住梳子的两边竖直向上轻轻将其拔出。

(5)将其放入电泳槽中。

(6)加足够的电泳液后开始准备上样。(电泳液至少要漫过内测的小玻璃板)用微量进样器或者枪头贴壁吸取样品,将样品吸出不要吸进气泡。将加样器针头或者枪头插至加样孔中缓慢加入样品。(加样太快可使样品冲出加样孔,若有气泡也可能使样品溢出。加入下一个样品时,进样器需在外槽电泳缓冲液中洗涤一下,以免交叉污染)

(7)电泳:电泳时间一般2~3h,电压为浓缩胶时用80V-100V,到分离胶以后用120V-150V。电泳至溴酚兰刚跑出即可终止电泳,进行转膜(做转膜的SDS-Page胶蛋白marker 要预染的)或者考染。

(五)western blot具体步骤如下;

1.SDS-PAGE电泳完成后,用适量的半干转移液浸泡胶大约15min。

2.根据胶的大小,剪一张同样大小的硝酸纤维素膜转至半干转移液中大约10min。

3.用适量干转移液湿润海绵垫和比胶略小的24层滤纸2张。

4.戴手套按照以下顺序组装电转夹:电转夹阳极面、24层滤纸、硝酸纤维素膜(Nitrocellulose Blotting Membranes,NC、胶、24层滤纸、电转夹

阴极面,用吸量管在滤纸表面慢慢滚动,以排出胶和膜之间的气泡。

5.在伯乐半干转印槽(Biorad Trans-Blot SD Semi-Dry Transfer Cell),15V电转30 min;

6.拆卸伯乐半干转印槽,可用预染marker直接观察转移的效率(看原来的SDS-PAGE胶

上条带颜色的深浅)。

7.用TBS-T洗脱NC膜三次每次5min用5%脱脂牛奶封闭膜,放在水平摇床上震摇,室温2小时,之后再用TBS-T洗脱NC膜三次每次10min,封闭液稀释一抗,工作浓度大约在一抗与封闭比值为1:2000,放在水平摇床上震摇,室温至少12小时直至过夜。

8.TBS-T洗NC膜三次每次10min,按照操作说明用封闭液稀释MBP标记的二抗,(初次使用建议按照1:3000稀释,以后可根据实验情况调整稀释比例),膜在二抗中室温于摇

床2小时。

9.TBS-T洗膜三次,每次大约10min;之后TBS洗膜三次,每次于摇床洗5min,洗去残留的Tween-20。

10.将膜置于底物溶液(如:用0.01克的AEC加入500微升的DMF中,再加入9.5毫升的Acetate Buffer最后加入15微升的30%H2O2显色缓冲液混匀)中,在水平摇床避光显色,观察变化。与预染蛋白Marker对比(融合蛋白MBP-2b分子量约56KDa)

实验三:融合蛋白MBP-2b纯化

一.实验目的;

通过本实验了解融合蛋白MBP-2b纯化

二.实验原理;

亲和层析法几乎可以将麦芽糖结合蛋白纯化成单组分,麦芽糖结合蛋白(MBP)是一个有大肠杆菌malE基因编码的周质蛋白,是细菌麦芽糖转运系统的成员之一。MBP能结合微摩水平的麦芽糖和麦芽糊精,因此可以交联了的麦芽糖的琼脂糖进行纯化。然后用含有Amylose的纯化柱对融合蛋白亲和层析以得到较为单一的蛋白。

三.实验内容

1.融合蛋白(MBP-2b)大规模诱导表达

2.融合蛋白(MBP-2b)纯化;

四.实验用品

1.材料:重组质粒pMAL-c2x-2b(Amp抗性)大肠杆菌DH5a

2.器材:离心机、锥形瓶、试管、摇床、酒精灯等

3.试剂与药品:column Bufffer、氨苄青霉素、IPTG贮液、Amylose纯化柱等

五.实验方法与步骤

(一)培养基配制、

1.培养基

含葡萄糖的LB液体培养基(per liter):

胰蛋白胨10g

酵母膏5g

NaCl5g

葡萄糖2g

pH7.0

2.column Bufffer(per liter):

3.洗脱液:

.Water:3column volumes

0.1%SDS:3column volumes Water

1column volumes Column Buffer:3column volumes

(二).方法与步骤(参见NEB公司,英文版)

用含10mM麦芽糖(maltose)Column Buffer过柱

稀释融合蛋白(MBP-2b).收集约两倍柱体积的液体,

保存-80℃备用.

具体步骤如下:

(1)将过夜活化的含pMAL-c2X-2b重组质粒的大肠杆菌,

以1%加入400ml含葡萄糖的LB培养基37℃培养。

为0.5,在冰中降温至零度,再加入IPTG

(2)生长至OD

600

至终浓度为0.8mM,继续37℃培养4h。

(3)以4000g,4℃离心20min收集细菌,以每克细菌(湿

重)加入10ml Column Buffer,将细菌悬浮。

(4)将悬浮的细菌置于-20℃过夜。

(5)将过夜冻存的细菌放在冰水浴中使其融解,加入

cocktail混合蛋白抑制剂或者PMSF。

(6)以15sec的短促脉冲超声波(0.3,40%)破碎细菌,

并每次停顿15sec降温,每间隔1min取蛋白粗提物,用紫

外分光光度计测量蛋白浓度,以检测蛋白的最大释放量的

时间。

(7)9000g离心,保留上清。将此粗提物以1:5用Column

Buffer稀释。

(8)将填充料直链淀粉琼脂(Amylose Resin)加入纯化柱上,以8柱体积(column volume)的Column Buffer洗柱。

(9)粗提物以1ml/min的速度过柱。

(10)以12柱体积(column volume)的Column Buffer洗柱,以洗去杂蛋白。

(11)用含有10mM的麦芽糖的column volume洗脱目的蛋白,收集洗脱液,每管1ml左右,大约收集7管。

(12)分别用3倍柱体积的水,3倍柱体积0.1%SDS,1柱体积水,3柱体积Column Buffer依次清洗柱子以回收利用。

(13)跑SDS-PAGE或者western blot检测,样品纯化情况。

生化实验操作考核要点(新)

【实验操作考核要点】 一、目的要求 1.掌握组织样品的制备方法,了解其注意事项。 2.了解肝糖原提取、糖原和葡萄糖鉴定与蒽酮比色测定糖原含量的原理和注意事项,掌握其操作方法。 3.正确操作使用刻度吸管和可调微量移液器。 4.熟练运用溶液混匀的各种方法(视具体情况,采用合适的混匀方法)。 5.正确掌握溶液转移的操作。 6.正确操作使用分光光度计。 二、操作考核内容 按百分制计。 1.吸量管操作(20分); 2.可调式微量移液器操作(20分); 3.溶液混匀操作(视具体情况,采用合适的混匀方法)(15分); 4.溶液转移操作(10分); 5.分光光度计比色操作(25分)。 6.整体表现(10分)。 三、操作考核标准 (一)吸量管操作(20分,每项操作5分) 1.执管 要求右手拿吸量管,左手拿橡皮球,只能用食指而不能用拇指按压吸量管上口来调节吸取液量的刻度;吸液、排液整个操作过程吸量管应始终保持垂直。 2.坐姿 要求腰、背保持竖直,看刻度时眼睛保持平视。 3.吸取溶液 吸量管插入液面深度约0.5cm,不能一插到底,也不能插入过浅而吸进空气致使溶液进入橡皮球内;调控吸量管吸取液量的刻度时,吸量管尖应离开液面靠在容器内壁上。 4.排出液体

吸量管尖应靠上受纳容器内壁,让管内溶液自然流出。不能用橡皮球吹压,而且在流净后吸量管尖停靠受纳容器内壁至少3秒。 (二)可调式微量移液器操作(20分,每项操作5分) 1.设定容量值 转动加样器的调节旋钮,反时针方向转动旋钮,可提高设定取液量。顺时针方向转动旋钮,可降低设定取液量。在调整设定移液量的旋钮时,不要用力过猛,并应注意使取液器显示的数值不超过其可调范围。 2.吸液 (1)选择合适的吸头安放在取液套筒上,稍加扭转压紧吸嘴使之与套筒之间无空气间隙; (2)把按钮压至第一停点,垂直握持加样器,使吸头浸入液面下2~3毫米处,然后缓慢平稳地松开按钮,吸入液体,等一秒钟,然后将吸头提离液面,贴壁停留2-3秒,使管尖外侧的液滴滑落。 3.放液 (1)将吸头口贴到容器内壁底部并保持100°~40°倾斜; (2)平稳地把按钮压到第一停点,等一秒钟后再把按钮压到第二停点以排出剩余液体; (3)压住按钮,同时提起加样器,使吸头贴容器壁擦过,再松开按钮。按吸头弹射器除去吸头。 4.压放按钮时保持平稳;加样器不得倒转;吸头中有液体时不可将加样器平放。取液器吸嘴为一次性使用。实验完毕,将取液器读数调至最大量程值,竖立放于支架上。 (三)溶液的混匀(操作流程中下划实线的三处,每项操作5分,共15分)1.肝糖原的提取与鉴定操作中,肝匀浆上清液中加5ml 95%乙醇后的混匀最好用倾倒混匀,也可用滴管或吸量管吸、吹混匀,或用玻璃棒搅拌混匀。 2.肝糖原定量测定中,肝组织消化液沸水浴后全部转入100 ml容量瓶,加水至刻线后的混匀应采用倒转混匀。 3.肝糖原定量测定中,加蒽酮溶液后的混匀,可将试管倾斜约45o再作旋转混匀。因蒽酮溶液(浓硫酸配制)比重大于样品水溶液很多,一加入便沉于管

质粒DNA的提取和纯化实验报告

质粒DNA的提取和纯化实验报告

实验一、质粒DNA的提取和纯化 一、实验目的: 1、学习并掌握碱裂解法小量制备质粒DNA的方法。 2、初步了解DNA纯化的原理。 二、实验原理 1、细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 2、质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 3、碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 4、纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 三、实验步骤 1、挑取单菌落接种到含Amp的LB液体培养基试管内(3.5ml/管) 2、将试管放入恒温震荡培养箱中,37℃,200r/min培养12-16h。 3、将菌落转入1.5ml离心管中(尽量倒满)1200r/min,离心30s(沉淀菌体) 4、重复一次第三步的过程 5、弃掉上清液并扣干,加入预冷的Solution1 100微升,剧烈震荡打散菌体

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total-RNA。 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种

原核蛋白表达常见问题解析

原核蛋白表达常见问题解析 1、为什么目的蛋白总是以包涵体的形式出现? 在原核蛋白表达纯化中目的蛋白经常发生错误的折叠,并聚集成为 包涵体。经过诱导,目的蛋白通常可达细胞总蛋白的50%以上。虽然有一定比例的蛋白以可溶的单体形式存在,而多达95%(甚至更多)的蛋白则在包涵体中。实验过程中,可以采取降低诱导温度,例如25–30°C,或降低IPTG浓度(0.01–0.1mM)并延长诱导时间,还有采用特别的 培养基等方法获得更多的可溶蛋白。 2、跨膜蛋白为什么很难表达? 跨膜蛋白的表达成功率相对较低是一个实验结果,究其原理,目前 众说纷纭很多种理论。以我们浅薄的理解层面来看,主要有以下几个 原因: 跨膜蛋白一般都是强疏水性的氨基酸分子和亲水性的分子跳跃式 的连接,形成的亲水疏水的一个最简单的跨膜化学结构,这种结构与 信号肽结构相似,对于原核细胞来说,简单的细胞器很难像真核细胞 一样完成信号肽识别及切除、引导内质网、高尔基体重新包装及分泌 这一复杂过程,有些蛋白是多次跨膜,对于原核细胞来说几乎是不可 能完成的任务。 另外,对于疏水性的片段,在原核细胞中极易形成包涵体,疏水 性多肽会抑制翻译过程,甚至与原核膜结构融合形成毒性,出于生物 自我保护的本能,所有的细胞器都会停止合成蛋白的过程。 3、如何选择蛋白表达宿主菌?

4、我们有哪些原核蛋白纯化方式?如何选择不同的纯化方式? 答:我们公司的蛋白纯化方法大致分为亲和纯化、离子交换、切胶 回收三类。 1、常规情况下,一般携带融合标签(His标签,GST标签,sumo标签,Fc标签),我们可以通过Ni柱、GST柱、Protein A等进行亲和纯化 获得融合蛋白,用亲和纯化的方法一般可以获得85%以上纯度的蛋白, 亲和纯化的方便快捷。 2、如果需要目的蛋白不含有任何标签,怎么选择纯化方式?。 (1)可表达融合蛋白,用蛋白工具酶切割融合蛋白,再进行纯化除去 工具酶。此方法能快速得到蛋白。 (2)可表达不含标签的蛋白,进行离子、分子筛、疏水等纯化,通过AKATA纯化设备获得蛋白。 3、如果需要获得蛋白作为抗原,可以直接通过切胶回收的方式,此方 法获得蛋白纯度较高,进行免疫动物后得到的抗体进行WB反应,灵敏 度较高。 5、表达得到的蛋白是有活性的么? 答:需要让蛋白有活性的条件很复杂,合适的缓冲液体系、盐浓度、蛋白的折叠状态甚至检测活性的方法的细微差别都可能导致活性 的强弱有无,一般情况下,上清表达的蛋白要比包涵体经过变复性纯 化后得到的蛋白活性要好,我们尽量从上清中获得蛋白,期许蛋白形 成的折叠最接近活性状态,这也是我们擅长的。但是在实际实验条件下,我们无法承诺表达纯化的蛋白一定具有客户期望的生理活性。

大学生生物化学实验技能大赛初赛试题及答案

大学生生物化学实验技能大赛初赛试题及答案 一、选择题 1、下列实验仪器中,常用来取用块状固体药品的仪器是()。 A. 药匙 B. 试管夹 C. 镊子 D. 坩埚钳 2、托盘天平调零后,在左盘衬纸上置氧化铜粉末,右盘衬纸上置1个5g砝码,游码标尺示数如下,此时天平平衡。则被称量的氧化铜质量为()。 A. 8.3 g B. 7.7 g C. 3.3 g D. 2.7 g 3、用减量法从称量瓶中准确称取0.4000 g分析纯的NaOH固体,溶解后稀释到100.0 mL,所得NaOH溶液的浓度为()。 A. 小于0.1000 mol/L B. 等于0.1000 mol/L C. 大于0.1000 mol/L D. 三种情况都有可能 4、已知邻苯二甲酸氢钾(KHC8H4O4)的摩尔质量为204.2 g/mol,用作为基准物质标定0.1 mol/L NaOH溶液时,如果要消耗NaOH溶液为25 mL左右,每份应称取邻苯二甲酸氢钾()g左右。 A. 0.1 B. 0.2 C. 0.25 D. 0.5 5、NaHCO3纯度的技术指标为≥99.0%,下列测定结果哪个不符合标准要求?()。 A. 99.05% B. 99.01% C. 98.94% D. 98.95% 6、精密称取马来酸氯苯那敏对照品12 mg,应选取()的天平。 A. 千分之一 B. 万分之一 C. 十万分之一 D. 百万分之一 7、实验室标定KMnO4溶液,常用的基准物质是()。 A. Na2CO3 B. Na2S2O3 C. Na2C2O4 D. K2Cr2O7 8、标定氢氧化钠常用的基准物质是()。 A. EDTA B. K2Cr2O7 C. 草酸 D. 邻苯二甲酸氢钾 9、下列物质可以作为基准物质的是()。 A. KMnO4 B. Na2B4O7·7H2O C. NaOH D. Na2S2O3 10、下列物质中,可以用直接法配制标准溶液的是()。 A. 固体NaOH B. 浓HCl C. 固体K2Cr2O7 D. 固体Na2S2O3

表达蛋白的分离与纯化

表达蛋白的分离与纯化 大肠杆菌表达蛋白以可溶和不溶两种形式存在,需要不同的纯化策略。现在,许多蛋白质正在被发现而事先并不知道它们的功能,这些自然需要将蛋白质分离出来后,进行进一步的研究来获得。分析蛋白质的方法学现已极大的简化和改进。必须承认,蛋白质纯化比起DNA克隆和操作来是更具有艺术性的,尽管DNA序列具有异乎寻常的多样性(因而它是唯一适合遗传物质的),但它却有标准的物理化学性质,而每一种蛋白质则有它自己的由氨基酸序列决定的物理化学性质(因而它具有执行众多生物学功能的用途)。正是蛋白质间的这些物理性质上的差异使它们得以能进行纯化但这也意味着需要对每一种待纯化的蛋白质研发一套新的方法。所幸的是,尽管存在这种固有的困难,但现已有多种方法可以利用,蛋白质纯化策略也已实际可行。目前,待研究蛋白或酶的基因的获得已是相当普遍的事。可诱导表达系统特别是Studier等发展的以噬菌体T7RNA聚合酶为基础的表达系统的出现使人们能近乎常规地获得过表达(overexpression),表达水平可达细胞蛋白的2%以上,有些甚至高达50%。 一、可溶性产物的纯化(融合T7·Tag的表达蛋白) (一)试剂准备 采用T7· Tag Affinity Purification Kit 1.T7·Tag抗体琼脂。 2.B/W缓冲液:4.29mM Na2HPO4,1.47 mM KH2PO4,2.7 mM KCl,3.

0.137mM NaCl,1%吐温-20,pH7.3。 4. 洗脱缓冲液: 0.1M柠檬酸,pH2.2。 5. 中和缓冲液:2M Tris,pH10.4。 1.PEG 20000。 (二)操作步骤 1.100ml 含重组表达质粒的菌体诱导后,离心5000g×5min,弃上清,收获菌体,用10ml预冷的B/W缓冲液重悬。 2. 重悬液于冰上超声处理,直至样品不再粘稠,4℃离心14000g×30min,取上清液,0.45μm膜抽滤后作为样品液。 3. 将结合T7·Tag抗体的琼脂充分悬起,平衡至室温,装入层析柱中。 4. B/W缓冲液平衡后样品液过柱。 5. 10ml B/W缓冲液过柱,洗去未结合蛋白。 6. 用5ml洗脱缓冲液过柱,每次1ml,洗脱液用含150μl中和缓冲液的离心管收集,混匀后置于冰上,直接SDS-PAGE分析。 7. 将洗脱下来的蛋白放入透析袋中,双蒸水透析24hr,中间换液数次。 8.用PEG 20000浓缩蛋白。 (三)注意事项 蛋白在过层析柱前,要0.45μm膜抽滤,否则几次纯化后,柱子中会有不溶物。 二、包涵体的纯化

生物化学实验技能大赛活动方案

生物化学实验技能大赛活动方案 一、活动目的 通过举办生物化学实验技能大赛,使广大学生树立崇尚科学,勇于创新,开拓进取,敢于实践的精神风貌,增强专业素养。在深化教育改革,推进素质教育的要求下,不断提高学生实验设计及实验操作的能力,从而提高广大学生学习《生物化学》这门课程的兴趣,推动生物化学实践教学的改革;增加同学们的合作交流,促进相互间的学习与沟通,拓展知识的应用范围,培养创新意识及团队精神,提高综合实验设计、分析和生物化学实验操作技能,提高大学生动手能力和实践技能,促进我校良好学风的建设,营造浓厚的学习、学术氛围,特此举行此次生物化学实验技能大赛。矚慫润厲钐瘗睞枥庑赖賃軔。 二、组织机构 主办单位:韶关学院教务处 承办单位:英东生命科学学院团委 三、参赛对象 韶关学院全日制在校学生均可参加,自行组队(可跨专业),团队人数1至4人。 四、比赛流程: 1.初赛 各参赛队伍需上交报名表(附件1)并按照作品格式要求(附件2)独立完成实验设计,于2016年11月9日-11月20日将实验设计和报名表(放在同一文件夹压缩打包命名为:学院+实验课题+队长姓名+队长短号)发送至邮箱()参加初赛,纸质版需上交到英东楼B309生科院辅导员办公室处。评委老师对实验设计进行评定后,筛选出约20支参赛队伍进入复赛。 2.复赛 2016年11月26日09:00—17:00为预实验阶段,实验室开放,各参赛队伍可在当天熟悉比赛场地或对所需材料、仪器、试剂等作实验前的预处理。 2016年11月27日09:00—17:00为正式复赛阶段,进入实验室按照实验设计进行操作,并当场完成实验报告,复赛分数根据实验过程及实验报告进行评定。 复赛评选出8支队伍进入决赛,决赛名单当场公布。 复赛地点:英东实验室 决赛 2016年12月3日19:00—22:30为决赛阶段,进行实验报告答辩,决赛分为四个环节:报告陈述、现场答辩、观众提问、专家点评。获奖的实验报告将在英东大厅展示15天。 决赛地点:图书馆学术报告厅 五、参赛要求 1.作品内容 (1)物质提取类 如从柑橘皮中提取果胶;从果蔬中提取类胡萝卜素;从芦荟中提取碳水化合物;从鸡蛋清中提取某蛋白;从三七中提取三七皂等。 (2)物质检验类 如检验市面上某几种品牌牛奶是否掺假;检验市面上某几种食品是否含有防腐剂;检验某品牌的食用植物油是否含胆固醇等。 (3)物质含量测定类 如洗衣粉磷含量分析;测定某品牌奶粉的蛋白质含量是否达标;比较几种饲料中某物质的含量等。

基础生化实验-蛋白质纯化

蛋白质纯化

一、目的: 利用金属亲和性管柱(metal affinity column)来大量纯化带有affinity tag的基因重组蛋白。 二、原理: 由于六个Histidine 所组成的His Tag (metal affinity tag)可与Ni2+ bind,所以利用基因重组技术在表现的蛋白质加上His Tag,再以金属亲和性管柱 (Ni-NTA) (此His- tag序列可与带二价正电的阳离子相螯和)及liquid chromatography来大量纯化蛋白质。 三、试剂与器材: 1.loading(binding) buffer (10mM imidazole,0.3M NaCl,50Mm Tris-HCl Ph7) ?细菌回溶成为蛋白质的载体以保持活性 2.wash buffer (20mM imidazole,0.3M NaCl,50Mm Tris-HCl,Ph7) 3.elution buffer (20mM EDTA,0.3M NaCl,50Mm Tris-HCl,Ph7) 上课补充: ?蛋白质很脆弱,需要在特殊的buffer里。

四、仪器与设备: FPLC(速液相色谱仪) 五、步骤: 1.将管柱架在铁架上,把亲和性胶体悬浮装填于管柱内。 2.以2~3倍CV loading buffer清洗管柱后,注入蛋白质样本。 3.以wash buffer梳洗,2到3倍column体积。 4.用wash buffer和elution buffer进行线性梳洗,并收集流出液体,以 FPLC UV monitor上的OD280数据读取样品流出与否,并观察冲离液之 曲 线图。 上课补充: ?胞内型分泌需要用超音波破菌,因为会放热所以要放在冰中使用。 ?线性梳洗为加入elution buffer会有颜色变化会把镍离子跟imidazole冲 洗掉,剩下胶体溶液。 ?其中imidazole和Histidine类似也会和镍离子结合所以会竞争,可拿来 洗涤蛋白质。(可详见问题一及补充资料2) 六、问题:

蛋白体外表达与纯化

蛋白体外表达与纯化 随着后基因组时代的到来,蛋白质组成为科学研究的热点。蛋白质作为生命机体的主要活动的承担者,其体外表达与纯化在研究相应基因的功能上有重要意义。 蛋白体外表达系统按其表达宿主可分为原核表达系统,真核表达系统和哺乳动物细胞表达系统。 一:原核表达系统 原核表达系统的宿主菌主要以大肠杆菌为代表,大肠杆菌表达体系是目前应用最广泛的外源基因表达体系,这也是外源基因表达的首选体系。该表达体系的优点:遗传学和生理学背景清楚;容易培养;外源基因经常可以高效表达及操作简单、周期短、成本低等。其不足之处是不能进行典型真核细胞所具有的复杂的翻译后修饰;广泛的二硫键的形成及外源蛋白组装成蛋白复合体的能力也受到限制;另外外源基因产物在大肠杆菌中易形成不溶的包涵体;有时由于真核mRNA的结构特性及密码子使用频率与大肠杆菌的差异,而的不到足够的产物。二:真核表达系统 真核表达系统的宿主菌主要以酵母表达系统为代表,酵母基因表达系统的载体通常既能在酵母中进行复制也能在大肠杆菌中进行复制,形成所谓酵母菌――大肠杆菌穿梭载体。因以大肠制备质粒DNA较方便,通常利用大肠杆菌系统构建酵母载体以简化手续,缩短时间。作为基因表达系统的宿主应该具备以下条件:安全无毒,不致病;遗传背景较清楚,容易进行遗传操作;容易进行载体DNA的导入;培养条件简单;有良好的蛋白分泌能力;有类似高等真核生物的蛋白翻译后修饰功能。 三:哺乳动物细胞表达系统 由于本专业不涉及哺乳动物细胞表达系统的应用,故此不赘述。 表达载体的种类及相应的分离纯化方法 作为表达载体必须具备以下特征:稳定的遗传复制、传代能力,无选择压力下能存在于宿主细胞内;具有显性的筛选标记;启动子的转录是可调控的;启动子的转录的mRNA能够在适当的位置终止;具有外源基因插入的多克隆位点。 在原核表达系统中常用的表达载体有:PET-载体系列,用这类载体表达出的外源蛋白在N端或C端或两端均具有his tag。用该载体表达出的外源蛋白通过其末端组氨酸与Ni2+的结合以亲和层析的方法而纯化。PGEX-载体系列,用这类载体表达出的外源蛋白以GST融合蛋白的形式存在,以Glutathione Sepharose 4B 柱亲和层析得以纯化。 本实验将以PGEX4T—3为载体,在大肠杆菌BL21DE3菌株中表达外源蛋白OsWAK2为例介绍蛋白的表达与纯化。 实验方法与步骤: 一:目的蛋白的粗提 1.构建载体,转化BL21DE3宿主菌感受态细胞 2.挑单菌落于10ml 含有60ug/ ml的液体LB培养基中37℃200rpm摇培16—18小时3.取5 ml摇好的菌液加到250 ml备好的含有60ug/ ml的液体LB培养基中37℃200rpm 摇培,至对数生长中后期

生物化学实验技能大赛实验设计书

邻二氮菲法测定蔬菜中铁的含量 摘要 用邻二氮菲分光光度法直接测定蔬菜中的铁含量,方法简便、快速、准确,为指导人们合理食用蔬菜进行补铁及进一步开发蔬菜产品提供了可靠的理论依据[1 2]。 关键词蔬菜铁含量邻二氮菲 1.前言 铁作为必需的微量金属元素,对于人体的健康十分重要。铁是血红蛋白、肌红蛋白、细胞色素及其它酶系统的主要组分,可协助氧的运输,还能促进脂肪的氧化。蔬菜是人们摄取微量铁的主要途径之一,缺铁可造成贫血并容易疲劳,而过多则会导致急性中毒。所以,蔬菜中铁含量的测定具有重要的营养学意义,可为指导人们合理食用蔬菜进行补铁以防治缺铁性贫血,提供可靠的理论依据。 2.实验目的 综合运用所学知识,用仪器分析法测定金属元素含量;练习灵活运用各种基本操作和查阅资料的能力。 3.实验原理 蔬菜中金属元素常与有机物结合成难溶或难于解离的物质,常采用有机物破坏法是被测的金属元素以氧化物或无机盐的形式残留下来,以便测定。本实验采用有机物破坏法(干法),即在高温下加入氧化剂,使有机物质分解。根据不同浓度的物质具有不同的吸光度,采用分光光度法来测定蔬菜中的铁含量。在pH值4~6的条件下,以盐酸羟胺将三价铁还原为二价铁,二价铁再与邻二氮菲(phen)生成桔红色络合物[3],用分光光度计在510nm测定蔬菜中铁的含量。 盐酸羟胺还原三价铁的反应如下: 2 Fe3++2NH2OH·HCl→2 Fe2++N2+2H2O+4H++2Cl- 邻二氮菲与二价铁的反应式如下: Fe2+ + 3(phen) =Fe(phen)3 4.实验器材 722型分光光度计(1台),电子天平(1台)蒸发皿(4个),100mL容量瓶(4个),

血清清蛋白、γ-球蛋白的分离、纯化与鉴定实验报告

血清清蛋白、γ-球蛋白的分离、纯化与鉴 定实验报告 生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心 实验名称实验日期合作者评分 XX 血清清蛋白、γ-球蛋白的分离、纯化与鉴定实验地点指导老师教师签名李某某批改日期 20XX-06-03 格式要求:正文请统一用:小四号,宋体,倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出 现多行、多页空白现象。一、实验目的 1、掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法。 2、掌握醋酸纤维素薄膜电泳法的原理和基本方法。 3、了解柱层析技术。 二、实验原理 1、粗提: 蛋白质分子能稳定存在于水溶液中是因为有两个稳定

因素:表面的电荷和水化膜。当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出。盐在水溶液中电离所形成的正负离子可吸引水分子,从而夺取蛋白质分子上的水化膜,还可中和部分电荷使蛋白质分子聚集而沉淀,从而达到盐析沉淀蛋白质的目的。于血清中各种蛋白质颗粒大小、所带电荷多少及亲水程度不同,因此,利用不同浓度的硫酸铵溶液分段盐析,便可将血清中清蛋白和球蛋白从溶液中沉淀出来,达到初步分离清蛋白、球蛋白的目的。 2、脱盐 凝胶层析法利用蛋白质与无机盐类之间分子量的差异。当溶液通过凝胶柱时,溶液中分子量较大的蛋白质因为不能通过网孔进入凝胶颗粒,沿着凝胶颗粒间的间隙流动。 所以流程较短,向前移动速度较快,最先流出层析柱。而盐的分子量较小,可通过网孔进入凝胶颗粒,所以流程长,向前移动速度较慢,较晚流出层析柱。从而可达到去盐的目的。 3、纯化 离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的离子则不能,这样便可达到分离纯化

1-大肠杆菌重组蛋白表达提取及纯化实验(最新整理)

第一天 1、配置LB培养基: 酵母粉15g、胰蛋白胨30g、氯化钠30g,定容至3000ml。调节PH至 7.4(2M NaOH),高压蒸汽灭菌20分钟,37℃保存。分装成15瓶(每瓶200ml)。 2、接种(超净台要提前杀菌通风) 取4瓶上述培养基,每瓶加200μlAMP(1:1000)、60μl菌液。37℃过夜。 第二天 1、扩大培养(超净台) 4瓶扩至16瓶,每瓶培养基加200μlAMP,摇床培养1小时左右。 2、诱导(超净台) 加40μlIPTG,加完后去除封口的除牛皮纸,扎口较松。25℃摇床培养4小时。 3、离心获取菌体 4℃,8000rpm离心25分钟。注意配平。 4、超声波破碎菌体 离心后去上清,向沉淀加入(600mlPB裂解液、300μl溶菌酶、3mlPMSF)。将菌液转入2个烧杯中,冰浴超声波破菌,400W,75次,每次6秒,间隔2秒。离心收集上清液。 600mlPB裂解液:20mM/L PB,10mM/L EDTA,5%甘油,1mM/L DTT,调节PH至7.4。 超声波破碎:首先用去离子水清洗探头,再将盛有菌液的小烧杯置于有冰 水混合物的大烧杯中,冰水界面略高于菌液面即可。探头浸没于菌液中,不可伸入过长。注意破菌过程中由于冰的融化导致的液面变化。 5、抽滤(双层滤纸) 洗胶(GST)。将上述上清液抽滤,滤液与GST胶混合,磁力搅拌过夜。 第三天

1、抽滤蛋白-胶混合液,滤液取样20μl,留电泳。 2、洗杂蛋白,用1×PBS+PMSF(1000:1)约400ml,洗脱若干次,用移液枪吸去上层泡沫(杂蛋白),至胶上无泡沫为止。 3、洗脱目的蛋白,洗脱液加50ml,分3次进行(15+15+15),每次加入后间歇搅拌,自然静置洗脱15分钟,抽滤,勿使胶干,合并洗脱液,取样20μl,留电泳。用洗脱液调零,测OD280。(OD值达到1.5为佳) 4、将洗脱液置于透析袋中(透析袋应提前煮好),将透析袋置于2L透析液1中,加入磁珠置于4℃冰箱内磁力搅拌器上,4小时后换为透析液2。胶的回收:用3M氯化钠溶液(用1×PBS溶液溶解)、1×PBS(无沉淀)洗涤,20%乙醇洗脱,装瓶。 洗脱液:50mM/LTRIS-HCL 、10mM/LGSH 透析液1:20mM/L TRIS-HCL、1mM/L EDTA 、0.15mM/L DTT 透析液2::0.5mM/L EDTA、1×PBS

大学生生物化学实验技能大竞赛

生命科学学院 关于举办首届大学生生物化学实验技能竞赛的通知 一、竞赛目的 激励大学生自主学习,培养大学生创新意识和团队精神,增强综合实验设计能力,提高生化实验操作技能,营造浓厚学术创新氛围,促进良好学风的建设,选拔优秀项目和选手参加山东省第五届生物化学实验技能大赛。 二、竞赛组委会 组长:王宝山、魏成武 成员:戴美学、杨桂文、谭效忠、苗明升、张鸿雁、杜希华、王珂、原永洁三、参赛对象 生命科学学院在校本科生,不限年级和专业。参赛队伍2-3人为一队,每队一名指导教师。每个参赛队限提交一份实验设计书,每个指导教师指导的项目数一般不超过6项。 四、参赛作品内容及要求 (一)作品内容 1、物质提取类 如从柑橘皮中提取果胶;从果蔬中提取类胡萝卜素;从芦荟中提取碳水化合物;从鸡蛋清中提取某蛋白;从三七中提取三七皂等。 2、物质检验类 如检验市面上某几种品牌牛奶是否掺假;检验市面上某几种食品是否含有防腐剂;检验某品牌的食用植物油是否含胆固醇等。 3、物质含量测定类

如洗衣粉磷含量的分析;测定某品牌奶粉的蛋白质含量是否达标;比较几种饲料中某物质的含量等。 4、探索物质在某一方面的应用类 如探索蛋白酶对草菇保鲜的影响机理;探索木瓜蛋白酶在食物色氨酸测定上的应用等。 5、比较不同品牌物质的营养价值 如对不同品牌螺旋藻片营养成分测定和营养价值的评价测定;对不同品牌饲料中营养价值比较等。 6、其他参赛者感兴趣的方面 (二)作品要求 1、作品要求在保证安全性的前提下,具有一定的科学性、实用性、创造性,具有较强的实际意义,以创新及紧密联系生产生活实际为佳,同时在实验室内的可操作性强。 2、每组参赛队严格按照实验设计书设计格式要求撰写实验设计书,并提交至大赛邮箱,一经提交不得修改,违者则取消决赛资格。 3、参赛作品原则上不能与山东省大学生生物化学实验技能大赛前四届作品相同(前几届作品请参考大赛相关网站:http://202.194.131.160/G2S/ Template/View.aspx?action=view&courseType=0&courseId=282),亦不可抄袭外省比赛作品,否则取消参赛资格。 4、实验设计书设计的项目最好进行过预实验(可利用寒假在指导教师指导下利用实验室条件进行预实验),并在“生科院首届大学生生物化学实验技能竞赛报名表”中如实注明是否做过预实验。 5、实验设计内容应能在8小时内完成,便于决赛时在限定的时间内进行实验操作。

实验报告血红蛋白doc

实验报告血红蛋白 篇一:生化实验报告实验5 血红蛋白凝胶过滤 实验报告 课程名称:生化实验B实验日期: 班级:姓名学号: 血红蛋白凝胶过滤 一、背景及目的 血红蛋白是高等生物体内负责运载氧的一种蛋白质。存在于脊椎动物、某些无脊椎动物血液和豆科植物根瘤中。人体内的血红蛋白由两个α亚基和两个β亚基组成。每个亚基均成球状,内部有一个血红素。血红素上的亚铁离子可以可逆的与氧分子结合,起到运输氧气的作用。当携带氧气时,血红蛋白呈鲜红色,无氧时为暗红色。 凝胶过滤法又称凝胶排阻层析或分子筛层析,主要是根据蛋白质的大小和形状,即蛋白质的质量进行分离和纯化。层析柱中的填料是某些惰性的多孔网状结构物质,多是交联的聚糖(如葡聚糖或琼脂糖)类物质,使蛋白质混合物中的物质按分子大小的不同进行分离。一般是大分子先流出来,小分子后流出来。凝胶过滤的突出优点是层析所用的凝胶属于惰性载体,不带电荷,吸附力弱,操作条件比较温和,可在相当广的温度范围下进行,不需要有机溶剂,并且对分离成分理化性质的保持有独到之处。对于高分子物质有很好的

分离效果。 影响分离效果的因素主要有以下几点:1.基质的(本文来自:小草范文网:实验报告血红蛋白)颗粒大小、均匀度 2.筛孔直径和床体积的大小 3.洗脱液的流速 4.样品的种类等, 5.缓冲液的pH 6.而最直接的影响是 Kav 值的差异性, Kav 值差异性大,分离效果好; Kav 值差异性小,则分离效果很差,或根本不能分开。 影响凝胶过滤的因素主要有: 1、层析柱的选择:长的层析柱分辨率要比短的高,但层析柱长度不能过长。 2、加样量:加样过多,会造成洗脱峰的重叠;加样过少,提纯后各组分量少、浓度较低。 3、凝胶柱的鉴定:凝胶柱填装后用肉眼观察应均匀、无纹路、无气泡。 4、洗脱速度:洗脱速度应保持适中。 目前凝胶过滤技术的应用主要是以下几点: 1、脱盐 2、用于分离提纯 3、测定高分子物质的分子量 4、高分子溶液的浓缩 5、蛋白质的复性 二、实验原理 层析法是基于不同物质在流动相和固定相之间的分配系数不同而将混合组分分离的技术。当流动相(液体或气体)

蛋白表达、分离和纯化

蛋白质的表达、分离、纯化和鉴定 来源:易生物实验浏览次数:2704网友评论 0 条第一部分蛋白质的表达、分离、纯化克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作 结构与功能的研究。 第二部分蛋白质的鉴定电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。 关键词:蛋白质蛋白质表达克隆基因聚丙烯酰胺凝胶电泳氯霉素酰基转移酶十二烷基硫酸钠SDS聚丙烯酰 胺凝胶 第一部分蛋白质的表达、分离、纯化 目的要求 (1)了解克隆基因表达的方法和意义。 (2)了解重组蛋白亲和层析分离纯化的方法。 实验原理 克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在 37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。 试剂和器材

一、试剂 [1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL. [2] 氨苄青霉素:100mg/mL [3] 上样 缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 10 mM2-ME, pH8.0 [4] Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3 [5] Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH8.0 [6] IPTG 易生物仪器库:.ebioe./yp/product-list-42.html 易生物试剂库:.ebioe./yp/product-list-43.html 二、器材 摇床,离心机,层析柱(1′10 cm) 操作方法 一、氯霉素酰基转移酶重组蛋白的诱导 1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。 2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。取10ul 样品用于SDS-PAGE 分析。 3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h. 4. 12,000rpm 离心10 min, 弃上清,菌体沉淀保存于-20℃或-70℃冰箱中。

生化血清蛋白分离提纯实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称血清清蛋白、γ蛋白分离提纯与纯度鉴定 实验日期2018-12-27实验地点 合作者指导老师 评分教师签名批改日期 格式要求:正文请统一用:小四号,宋体,1.5倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出现多行、多页空白现象。 一、实验目的 1.掌握盐析法分离蛋白质的原理和基本方法 2.掌握凝胶层析法分离蛋白质的原理和基本方法 3.掌握离子交换层析法分离蛋白质的原理和基本方法 4.掌握醋酸纤维素薄膜电泳法的原理和基本方法 5.了解柱层析技术 二、实验原理 蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。 不同蛋白质的分子量、溶解度及等电点等都有所不同。利用这些性质的差别,可分离纯化各种蛋白质。 三、材料与方法:以流程图示意 材料:人混合血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)、纤维素离子交换层析柱、饱和硫酸铵溶液、各不同浓度的醋酸铵缓冲溶液、20%磺基水杨酸溶液、1%BaCl2溶液 器材:层析柱、电泳仪、电泳槽等

操作方法:

取浓度最高的一管做纯度鉴定。 2管均作纯度鉴定 最后DEAE-纤维柱先用6ml 1.5mol/L NaCl-0.3mol/LNH4AC溶液流洗,再用10ml 0.02mol/L NH4AC 缓冲液流洗再生平衡。 醋酸纤维素薄膜电泳:

点样(粗面)→电泳→染色和漂洗 注意: ①点样线尽量点得细窄而均匀 ②电泳时薄膜粗面朝下、点样端置阴极端、两端紧贴在滤纸盐桥上,膜应轻轻拉平,切勿使点样处与电泳槽接触 ③电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。取出膜,尽量沥净染色液,移入漂洗液中浸洗脱色(一般更换2次),至背景颜色脱净为止。取出膜,用滤纸吸干即可。 四、结果与讨论:①结果:实验数据、现象、图谱;②讨论:以结果为基础的逻辑推论,并得出结论。 从上到下分别为血清、清蛋白一、清蛋白二、球蛋白。 从上图可以看出,此次实验结果不太理想,血清电泳结果只有两条带,推测原因有 ①血清点样时量不足 ②点样时手法不恰当

蛋白的纯化

第二部分:蛋白的纯化 如何区分蛋白表达在上清还是包涵体? 破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。 根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。 对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。 沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。 取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。 无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。 包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。 电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。 包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体; 建议: 还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。不过,一般情况下,应该是第一者的可能性大。

大规模可溶性蛋白原核表达与纯化步骤

大规模可溶性蛋白纯化实验操作 Hao Lab in SII 1. 取20 μL E.coli BL21目的菌种加入装有10 ml LB培养基的50 ml离心管中,加入氨苄青霉素(Biobasic inc, #AB0028) 至终浓度为100 μg/ml或硫酸卡那霉素(生工,#0408) 至终浓度为50 μg/ml,37°C, 250 rpm, 摇菌过夜。 2. 取过夜培养的菌液8 ml加入400 ml (1:50) 含有相同浓度抗生素的LB中培养,间断检测菌液OD600值,37°C, 250 rpm, 摇菌大约60~120 min,待其OD600值达到0.6~0.8之间,加入0.4 mM IPTG (碧云天,#ST098), 30°C, 220 rpm, 诱导表达3 h。 3. 收集菌液至50 ml离心管中,7,000 × g, 4°C离心3 min, 弃上清收集沉淀,进行下步实验或置于-80°C冰箱保存。 摇菌用的锥形瓶用84消毒液浸泡或高压灭菌。 4. 将收集到的菌体重悬于20 ml 冰冷的Lysis buffer中,震荡混匀。以下步骤均置于冰上。 5. 向菌体重悬液加入甘油至终浓度为10%,加入EDTA 至终浓度为0.5 mM,充分混匀。 6. 冰上超声:功率为仪器最大功率的60%,脉冲时间为1 s,间隔时间为1 s,总时间7~15 min。 7. 超声后的蛋白溶液于8,000 × g,4°C离心30 min。 15,000 × g, 4°C离心15 min可省略步骤10。 8. 在步骤7离心的同时。取下20 ml新层析柱(Qiagen, #34964)的帽子并剪掉底部尖端再盖上帽子,加入混匀的50% NI-NTA beads (Qiagen, #S13-26-36-46; GST beads, GE, #17-0756-01) 悬液2 ml。 9. 取下层析柱的帽子使NI-NTA beads重悬液体流净再盖上帽子,加入PBS至总体积约20 ml,用5 ml 移液器轻柔吹打混匀(避免气泡产生),静置5 min之后取下层析柱的帽子将液体放空并盖上帽子,重复二次。 10. 取步骤7,离心后的上清用0.45 μm滤器(Millipore, #SLGP033RS) 过滤,滤液置于50 ml离心管中。 11. 取适量蛋白溶液将NI-NTA beads重悬并转移到装有蛋白溶液的50 ml离心管中。4°C摇荡过夜。空的层析柱加入约10 ml PBS,4°C保存。 12. 将摇荡过夜的beads和蛋白混合液以50 × g, 4°C离心1 min使beads沉淀。 保留上清于4°C冰箱,可以考虑用旧的beads做二次结合。 13. 用10 ml PBS重悬beads, 50 × g, 4°C离心1 min, 弃上清,重复一次。再以20 ml wash buffer 重悬,装入层析柱中,静置5 min, 取下层析柱的帽子,收集0.5 ml流出的液体并保存于2ml离心管中待检测,标记为20W-1,剩余液体流空再盖上帽子。 14. 用20 ml wash buffer重悬NI-NTA beads,静置5 min,取下层析柱的帽子,流空液体,盖上帽子。 15. 用20 ml wash buffer重悬NI-NTA beads,静置5 min,取下层析柱的帽子收集0.5ml流出的液体并保存于2ml离心管中待检测,标记为20W-3,剩余液体液体流空,盖上帽子。 16. 加入5 ml Elution buffer重悬NI-NTA beads,静置5 min,取下层析柱的帽子,收集液体,于15 ml新离心管中并留样品20 μl, 标记为E-1。为盖上帽子。用Nanodrop2000粗测蛋白浓度。再以3 ml Elution buffer 重复三次上述步骤,收集至另一新15 ml离心管中。 17. 回收beads: 洗脱后的NI-NTA beads以20 ml PBS重悬,静置5 min,取下层析柱的帽子,流空液体,盖上帽子。再以20 ml PBS重复两次上述步骤。再用20 ml 0.5 M NaOH重复一次,加入约10 ml 30%乙醇置于4°C保存。 19. 将16步得到的蛋白溶液加入3 KDa的15 ml超滤管(Millpore, #UFC900396)中, 4,000 × g, 4°C离心45 min进行超滤。倒掉超滤管底的废液,将约为15 ml PBS加入超滤管中,轻轻颠倒混匀,4,000 ×g, 4°C离心45 min,倒掉超滤管底的废液。重复超滤四次,最后一次离心1 h。 如果16步第一次收集的蛋白溶液粗测浓度大于0.5 mg/ml,可以先超滤第一次洗脱得到的5ml蛋白溶液,其它的再用同一个超滤管进行第二次超滤。 纯化后的蛋白溶液留样20 μl标为EC,加入终浓度为40%的甘油,每管100 μl分装,-80°C保存。 SDS-PAGE检测各样品的蛋白浓度及纯度。

相关主题
文本预览
相关文档 最新文档