步进电机正转正常反转异常
- 格式:pdf
- 大小:55.66 KB
- 文档页数:2
实训课题三PLC实现步进电机正反转和调速控制一、实验目的1、掌握步进电机的工作原理2、掌握带驱动电源的步进电机的控制方法3、掌握DECO指令实现步进电机正反转和调速控制的程序二、实训仪器和设备1、FX2-48MR PLC 一台2、两相四拍带驱动电源的步进电机一套3、正反切换开关、起停开关、增减速开关各一个三、步进电机工作原理步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。
从图中可以看出,它分成转子和定子两部分。
定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。
共有3对。
每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。
可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。
反应式步进电动机的动力来自于电磁力。
在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。
对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。
图3—1三相反应式步进电动机结构图把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。
错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。
本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。
因为中间连接的电磁铁的两根线不是直接连接的,是采用在转轴的位置用一根滑动的接触片。
这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了,所以电磁铁的N极S极就和以前相反了。
PLC实现步进电机的正反转及调整控制PLC是专门用于控制工程自动化系统的一种可编程逻辑控制器,其可以通过编程来实现对各种电气设备的控制。
在实际工程中,步进电机广泛应用于自动化设备中,如数控机床、包装机械、印刷设备等。
步进电机具有分辨率高、精度高、响应速度快等优点,因此被广泛应用于各种自动化控制系统中。
在PLC实现步进电机的正反转及调整控制中,需要考虑以下几个方面:1.步进电机驱动模块选型:步进电机需要配合驱动模块进行控制,通常采用的是脉冲信号驱动方式。
在PLC控制系统中,可以选择适合的驱动模块,如常见的2相、4相步进电机驱动模块。
2.步进电机控制程序设计:通过PLC软件编程,编写程序实现步进电机的正转、反转及调整控制功能。
在程序设计中,需要考虑步进电机的控制方式、驱动模块的接口信号、脉冲信号的频率等参数。
3.步进电机正反转控制:在程序设计中,通过PLC输出脉冲信号控制步进电机的正反转运动。
具体步骤包括设置脉冲信号的频率和方向,控制步进电机按设定的脉冲信号实现正反转运动。
4.步进电机调整控制:步进电机的位置调整控制通常通过调整脉冲信号的频率和数目来实现。
通过PLC编程,实现步进电机的位置调整功能,从而实现对步进电机位置的精准控制。
5.总体控制设计:在PLC控制系统中,可以将步进电机的正反转及调整控制与其它控制功能相结合,实现对整个自动化系统的精确控制。
通过PLC编程,可以灵活设计多种控制逻辑,满足不同工程项目的需求。
综上所述,通过PLC实现步进电机的正反转及调整控制主要涉及步进电机驱动模块选型、控制程序设计、正反转控制、调整控制和总体控制设计等方面。
通过精心设计和编程,可以实现对步进电机的精确控制,满足各种自动化控制系统的要求。
PLC技术的应用将有助于提高自动化生产设备的生产效率和稳定性,推动工业自动化技术的发展。
第1篇一、实验目的1. 了解步进电机的工作原理和驱动方式。
2. 掌握步进电机的控制方法,包括正反转、速度调节和方向控制。
3. 通过实验验证步进电机的性能和稳定性。
二、实验原理步进电机是一种将电脉冲信号转换为角位移的电动机,其特点是控制精度高、响应速度快、易于控制。
步进电机的工作原理基于电磁感应原理,通过控制电流的通断,使电机绕组产生磁场,从而驱动转子旋转。
三、实验仪器与设备1. 步进电机实验平台2. 电脑3. 步进电机驱动器4. 步进电机5. 电源6. 接线端子四、实验内容1. 步进电机驱动电路搭建2. 步进电机正反转控制3. 步进电机速度调节4. 步进电机方向控制5. 步进电机性能测试五、实验步骤1. 步进电机驱动电路搭建(1)将步进电机驱动器与电脑连接,并确保电源连接正常。
(2)根据步进电机驱动器的说明书,将步进电机、电源和连接端子连接到相应的接口。
(3)检查电路连接是否正确,确保无误。
2. 步进电机正反转控制(1)编写程序实现步进电机正反转控制。
(2)在电脑上运行程序,观察步进电机正反转是否正常。
3. 步进电机速度调节(1)编写程序实现步进电机速度调节。
(2)在电脑上运行程序,调整速度参数,观察步进电机转速是否改变。
4. 步进电机方向控制(1)编写程序实现步进电机方向控制。
(2)在电脑上运行程序,观察步进电机旋转方向是否改变。
5. 步进电机性能测试(1)测试步进电机的空载转速和负载转速。
(2)测试步进电机的步距角和定位精度。
(3)测试步进电机的稳定性。
六、实验结果与分析1. 步进电机正反转控制实验结果显示,步进电机正反转控制正常,转速和方向可调。
2. 步进电机速度调节实验结果显示,步进电机速度调节正常,转速可调。
3. 步进电机方向控制实验结果显示,步进电机方向控制正常,旋转方向可调。
4. 步进电机性能测试(1)空载转速:步进电机空载转速为300转/分钟。
(2)负载转速:步进电机负载转速为200转/分钟。
步进电机失步(丢步)的原因和对策步进电机失步(丢步)是指步进电机在正常运行过程中,由于某种原因,使得电机的脉冲输入失去同步,导致电机的转动不能跟脉冲输入保持一致,从而出现运行停滞的现象,也就是所谓的“失步”。
步进电机失步的原因有很多,主要有以下几个:一、驱动电路驱动能力不足。
步进电机的驱动电路可以提供电机所需要的驱动能力,但是如果驱动电路的驱动能力不足,则电机会失步,从而影响电机的运行。
二、步进电机参数设置不当。
步进电机的参数设置不当会导致电机失步,比如速度过高或者脉冲信号不正确等。
三、电机电磁结构损坏。
电机的电磁结构损坏会导致电机的转动不能得到恒定的驱动力,从而导致电机的脉冲输入失去同步,从而出现失步的情况。
四、负载超载或者反转。
步进电机运行时,如果外加负载超载或者反转,都会导致电机失步,从而影响电机的正常运行。
步进电机失步的对策有很多,主要有以下几个:一、改善驱动电路的驱动能力。
如果驱动电路的驱动能力不足,应该改善其驱动能力,以确保电机的正常运行。
二、正确设置步进电机的参数。
步进电机的参数设置不当会导致电机失步,因此应该正确设置步进电机的参数,确保电机的正常运行。
三、检查电机的电磁结构。
电机的电磁结构损坏会导致电机失步,因此应该定期检查电机的电磁结构,确保电机的正常运行。
四、减少外加负载或者反转。
步进电机的外加负载或者反转过大会导致电机失步,因此应该尽量减少外加负载或者反转,以确保电机的正常运行。
总之,步进电机失步是一个很常见的现象,可能会严重影响电机的正常运行,因此应该注意驱动电路的驱动能力、步进电机的参数设置、电机的电磁结构以及外加负载或者反转等,以确保电机的正常运行。
PLC实现步进电机的正反转及调整控制
一、PLC实现步进电机的控制原理
拿步进电机举例,大家可以把它想象成一个隔著一定距离的圆盘,隔着每一环的距离形成齿轮的节点。
步进电机的正向或反向转动,就是将这一环索引和圆盘一起发动转动。
步进电机的转动,是靠每一步索引圆盘来完成的,每一步都有一个控制信号来告诉电机从哪一环节点开始转动,当接收到控制信号时,电机开始转动,并且每转一圈循环转动几个索引。
1、正向、反向控制
要实现步进电机的正向反向控制,就要在PLC程序中控制信号形式来实现,一般可以使用两个控制信号,一个是正反控制信号,一个是步进电机转动的速度,要求PLC程序根据正反控制信号来实现正向和反向控制。
正反控制信号就是设置一个开关量变量,当这个开关量为ON时,电机运行正转,当开关量为OFF时,电机运行反转,具体可以采用T函数来实现,T11=1,电机正转,T12=0,电机反转。
由于步进电机的转动是一布一射的过程,所以需要用一个电位器来控制步进电机的转动速度,当电位器的旋钮调整到一定位置时,就会给出一定频率的步进信号,PLC程序可以根据此步进信号,来控制步进电机的转动速度。
直流电机无法反转的原因
1.电机内部线圈接线错误:电机内部由定子和转子组成,定子上有两
组线圈,分别是直流电源接入线圈和电枢线圈,电源线圈产生一个磁场,
电枢线圈产生一个旋转力。
如果这两组线圈的接线错误,那么电机就不能
正常工作,也就无法反转。
2.电机供电问题:直流电机需要接通正负极相反的直流电源才能正常
工作。
如果电源接错极性,那么电机无法正常工作。
3.电机损坏:电机内的一些零部件也可能会损坏,比如线圈开路、断
线等,这些损坏都会导致电机无法反转。
4.电机机械部件问题:电机的转子与定子之间的接触不良、轴承损坏
等机械问题也会导致电机无法反转。
为了解决这些问题,首先要检查电机的内部连接情况,确保电源线圈
和电枢线圈接线正确。
同时也要检查供电是否正确,保证正负极极性正确。
如果以上都没有问题,那么可能是电机本身出现了损坏,需要更换新的电机。
若是机械问题,需要检查转子与定子的接触情况,修复或更换轴承等
机械部件。
此外,还需要注意一些日常操作中的问题,比如电机过热、电源电压
波动等也可能导致电机无法正常反转。
要避免这些问题发生,需要定期检
查电机的工作状态,保持电机通风良好,避免工作时间过长导致过热,以
及使用稳定的电源供电。
总之,直流电机无法反转的原因可能是由于内部接线错误、供电问题、电机损坏或者机械部件故障等引起的。
要解决这些问题,需要仔细检查和
诊断,确保各个方面的工作正常,以确保电机能够正常反转。
步进电机发热发烫不转原因分析1.电机内部故障:步进电机内部的绕组存在短路、开路或接触不良等问题时,会导致电流异常,从而引起电机发热。
同时,可能会出现引线接触不良、插座松动等情况,也会导致电机无法正常转动。
2.供电电源问题:步进电机需要稳定的电源供给以保证其正常运行。
如果电源电压过高或过低,电流不稳定或波动较大,都有可能导致电机过热或无法正常转动。
此外,电源的质量也会直接影响到电机的运行稳定性。
3.过载或过载保护:步进电机一旦超过其额定负载能力,就有可能出现发热发烫不转的情况。
此时,电流会急剧升高,导致电机内部温度升高,从而引起电机过热并无法正常转动。
有些步进电机还会配备过载保护装置,当负载超出限制时,电机将自动停止运转以避免损坏。
4.环境温度过高:步进电机在高温环境下长时间运行会导致电机内部温度升高,从而引起发热和无法转动的问题。
为了保证电机正常工作,应尽量将电机放置在通风良好、温度适宜的环境中。
5.驱动器设置错误:步进电机的驱动器通常需要根据具体的步进电机参数进行设置,如最大电流、电压、步数等。
如果驱动器设置错误,电机无法获得正确的电流和脉冲信号,就会导致电机无法转动或发热。
6.机械部分故障:步进电机的机械部分包括电机轴、传动装置等。
如果这些部分出现故障,如卡住、损坏、润滑不良等,都会导致电机无法正常转动,并且会增大电机的摩擦力,从而产生发热现象。
综上所述,步进电机发热发烫不转的原因可能是由于电机内部故障、供电电源问题、过载或过载保护、环境温度过高、驱动器设置错误、机械部分故障等多种因素的综合作用。
针对具体情况,可以通过检查电机内部绕组、驱动器设置、供电电源、负载情况等进行逐一排查,并采取相应的修理或更换措施,以解决发热发烫不转的问题。
步进电机正反转及调速设计陈超渭南师范学院物理与电气工程系2008级电气(1)班摘要:本系统用52系列单片机和LY-36电机驱动芯片并加入了按钮来控制步进电机实现转向、转速等。
系统中使用的四相步进电机,相应的驱动和控制电路对于其整体性能起着非常重要的作用。
经系统调试,能够很好的控制步进电机的正反转、加减速,从而达到预期目的。
整个系统具有结构简单、可靠性高、成本低和实用性强等特点,具有较高的通用性和应用推广价值。
关键词:四相步进电机 52单片机控制 YL-36驱动电路正反转1 绪论1.1 概述步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化系统中,与其他类型的电机相比具有易于精确控制,无累积误差等优点。
步进电机是一种将电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,就驱动步进电机按设定的方向转一个固定的角度,它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机可以作为一种控制用的特种电机,利用其没有累积误差的特点,广泛应用于各种开环控制。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上,用它来做一些控制电器一类不是很复杂的工作[1]。
单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件。
本文设计一种用STC89C52作为核心部件进行逻辑控制及信号产生的步进电机控制系统。
为使步进电机系统的可靠性、通用性、可维护性以及性价比最优,根据系统的功能要求,通过单片机存储器、I/O口、中断、键盘、LED显示器的扩展来实现步进电机的启停、正反转、加减速等功能。
1.2 步进电机及单片机的发展趋势步进电机的发展,将依赖于新型材料的应用、设计手段,以及与驱动技术的最佳匹配。
随着自动控制技术、计算机网络通信技术在众多领域中的快速发展,以及进一步数字化、智能化,步进电机将会在更深入广泛的领域中得意应用。
PLC实现步进电机的正反转和调整控制PLC(可编程逻辑控制器)是一种用于自动化控制系统的可编程电子设备。
在工业领域,PLC被广泛应用于各种自动化设备和机器的控制。
步进电机是一种非塔式电机,其运动是以固定的步长进行的,适用于需要精确定位的应用,如印刷机、数控机床等。
本文将介绍如何使用PLC实现步进电机的正反转和调整控制。
步进电机的正反转控制可以通过改变电机的运行顺序来实现。
一种常见的方法是使用四相步进电机,通过改变电机的相序来实现正反转。
一般来说,步进电机有两种驱动方式:全步进和半步进。
全步进驱动方式是指每次脉冲信号到达时,电机转动一个步进角度。
全步进驱动方式可以通过控制PLC输出的脉冲信号来实现。
例如,当需要电机正转时,在PLC程序中输出连续的脉冲信号,电机将按照一定的步进角度顺时针旋转。
当需要反转时,输出连续的反向脉冲信号,电机将逆时针旋转。
半步进驱动方式是指每次脉冲信号到达时,电机转动半个步进角度。
半步进驱动方式可以通过改变输出的脉冲信号序列来实现。
例如,正转时输出连续的脉冲信号序列:1000、1100、0100、0110、0010、0011、0001、1001,电机将按照半个步进角度顺时针旋转;反转时输出反向脉冲信号序列:1001、0001、0011、0010、0110、0100、1100、1000,电机将逆时针旋转。
调整控制是指通过PLC来调整步进电机的运行速度和位置。
调速控制可以通过改变输出脉冲信号的频率来实现。
例如,可以定义一个计时器来控制输出脉冲信号的频率,通过改变计时器的时间参数来改变电机的速度。
较小的时间参数将导致更快的脉冲频率,从而使电机加快转速。
位置控制可以通过记录步进电机当前的位置来实现。
可以使用PLC的存储和控制功能来记录和更新电机的位置信息。
例如,可以使用一个变量来保存电机当前的位置,并在转动过程中不断更新该变量的值。
通过读取该变量的值,可以获得电机当前的位置信息。
总结起来,使用PLC实现步进电机的正反转和调整控制可以通过控制输出的脉冲信号序列和频率来实现。
步进电机正转正常
步进电机正转正常,,反转不正常分析
在步进电机应用时,有部分客户反馈步进电机运行时出现正转正常,
但反转不正常的现象,其原因如下:
1、用户所采用的控制器输出的脉冲控制指令为双脉冲模式,而驱动器
采用的接收控制脉冲指令模式为单脉冲模式,解决办法:1、用户控制器的
脉冲输出模式改为单脉冲输出模式,即控制脉冲+方向模式;2、选用可以接
收双脉冲控制模式的步进驱动器,即CW+CCW模式。市面上大多数的步进
驱动器采用单脉冲接收模式。
2、用户控制器输出的控制信号为12~24VDC,而步进驱动器的控制信
号接口的设计工作电压一般为+5VDC,为了防止控制信号接口损坏,用户在
使用时需要在控制信号线上增加限流电阻,而当控制信号上的限流电阻所加
的位置不对时,将会导致出现正转正常,而反转异常的现象,如下图所示,
上图为错误接线示意图,下图为正确接线示意图。
限流电阻的接线不对示意图
限流电阻准确接线示意图
针对用户采用PLC等控制器的控制信号为12~24VDC场合,为了简化
接线,提高接线的可靠性,英纳仕的EZM系列数字式步进驱动器推出了针
对12~24VDC控制信号的专用接线接口,用户在使用中无需再接限流电阻,
只需将对应控制信号线直接连接到相应接口就可以,如下图所示:
步进驱动器与PLC接口示意图
3、要确认方向信号线是否有效接好,大多数步进驱动器在未接方向信
号时,默认为正转信号有效,如果方向信号没有有效接线,会出现只能单方
向转。用户如果人为给一个方向信号给驱动器时,如果此时电机仍然不反转,
可以判断可能是驱动器的方向信号接口可能损坏或控制器给的控制信号为
双脉冲控制信号。
如有其他步进驱动器应用问题,欢迎加入“步进驱动系统应用”讨论。