当前位置:文档之家› AC-13沥青混合料配合比设计模板_New

AC-13沥青混合料配合比设计模板_New

AC-13沥青混合料配合比设计模板_New
AC-13沥青混合料配合比设计模板_New

AC-13沥青混合料配合比设计模板_New

AC-13沥青混合料配合比设计模板

控制编号:TJSZ—512—02

报告编号:2016—LQ0752

委托协议编号:2016—LQ0752

报告总页数:12

省际通道至二道河AC—13型改性

沥青混合料目标配合比设计报告

(GTM配合比设计方法)

承包单位:商都县瑞舟公路工程有限责任公司

报告日期:2016年07月27日

1. 任务来源

商都县瑞舟公路工程有限责任公司,进行省际通道至二道河通村公路表面层AC-13型改性沥青混合料目标配合比设计。

2. 依据主要技术规范、试验规程

JTG F40-2004《公路沥青路面施工技术规范》

JTJ052—2000《公路工程沥青及沥青混合料试验规程》

JTJ058—2000《公路工程集料试验规程》

3. 原材料性质分析

省际通道至二道河表面层采用AC-13型改性沥青混合料。各原材料产地为:内蒙化德县石料厂产玄武岩粗集料,化德县砂料厂天然砂,盘锦中油辽河沥青有限公司产SBS 改性沥青。

3.1 沥青

对石油沥青按JTG F40-2004《公路沥青路面施工技术规范》要求进行了规定项目的试验检测。试验检测结果见表1。检测结果表明该SBS改性沥青样品符合I-C级沥青技术要求。

表1 SBS改性沥青检测结果

检测项目单

SBS

I-C级

沥青

要求

试验

结果

评价

结果

试验

方法

针入度(25℃,100g,5s 0.1

mm

60~

80

70 合格

T0604—

2000

延度(5℃,5cm/min)cm

不小

于30

43.0 合格

T0605—

1993

软化点(环球法) ℃不小

于55

86.0 合格

T0606—

2000

运动粘度(135℃)Pa.

s

不大

于3

1.42

5

合格

T0625—

2000

闪点(COC)℃

不小

于230

238 合格

T0611—

1993

密度(15℃)g/c

m3

实测

1.02

合格

T0603—

1993

溶解度(三氯乙烯) %

不小

于99

99.9

合格

T0607—

1993

离析(48h软化点差)℃

不大

于2.5

0.2 合格

T0661—

2000

弹性恢复(25℃)%不小

于65

100.

合格

T0662—

2000

RTFO T后残留物质量变化%

不大

于±

1.0

-0.5

合格

T0610—

1993 残留针入

度比

%

不小

于60

80.0 合格

T0604—

2000

延度

(5℃,5cm /min)cm

不小

于20

31.0 合格

T0605—

1993

3.2 矿料

沥青混合料中的矿料包括粗集料、细集料及矿粉和生石灰。

3.2.1 粗集料

粗集料规格为10mm~15mm、5mm~10mm、3mm~5mm,试验项目及试验结果见表2。试验结果表明,粗集料各项指标均符合JTG F40—2004《公路沥青路面施工技术规范》关于三级公路及其他公路沥青混合料用粗集料的技术要求。

表2 粗集料技术性质

检测项

目单

粗集料试验结果

试验方

10mm

15mm

5mm

10mm

3mm

5mm

集料压碎

值%

26

15.2 - -

T0316—

2000

洛杉矶磨耗损失%

28

16.5 -

T0317—

2000

表观相对密度—

2.6

2.72

2.71

9

2.72

1

T0304-2

000

毛体积相对密度—

2.66

8

2.65

5

2.61

4

吸水率%

2.0

0.7 0.9 1.5

对沥青的粘附性级≥4 5 - -

T0616—

1993

混合料针

片状颗粒含量%

15

14.6

T0312—

2000

粒径大于

9.5mm针片状颗粒含

量%

12

11.6

粒径小于

9.5mm针片状颗粒含

量%

18

15.7

水洗法<

0.075mm 颗粒含量% ≤1 0.2 0.2 0.5

T0310—

2000

软石含量% ≤3 0 0 - T0320—2000

3.2.2 细集料

细集料采用天然砂,试验项目及试验结果见表3。试验结果表明,细集料各项指标符合JTG F40—2004《公路沥青路面施工技术规范》关于三级公路及其他公路沥青混合料用细集料的技术要求。

表3细集料技术性质

检测项目单

要求

试验结果

试验方

机制

天然

表观密度t/

m3

2.68

2

2.59

4 T0328—

2000

表观相对密

度—

不小于

2.50

2.69

2.60

2

含泥量(小于

0.075mm的含

量)% 不大于3 --- 1.3

T0333—

2000

砂当量% 不小于

60

77.3 78.8

T0334—

1994

3.2.3 矿粉

矿粉为石灰岩矿粉,试验结果见表4。试验结果表明,矿粉的各项检测指标均符合JTG F40-2004《公路沥青路面施工技术规范》关于其他公路沥青混合料用矿粉的技术要求。

表4矿粉技术性质

检测项目单位标准要

试验

结果

试验方法

表观密度t/m3不小于

2.50

2.703

T0352—2

000

表观相对密度- - 2.708

含水量% 不大于1 0.0 T0103烘干法

粒度范围

<0.6mm

<0 .15mm

<0 .075 %

%

%

100

90~100

75~100

100

93.3

82.2

T0351—2

000

亲水系数- <1.0 0.8 T0353—2

000

4. AC—13型改性沥青混合料配合比设计

根据设计的要求,采用GTM方法进行AC-13型改性沥青混合料目标配合比设计。

4.1 矿料级配的确定

依据JTG F40-2004关于AC-13型沥青混合料的矿料级配范围要求对AC-13级配的优化设计研究成果,设计级配确定为AC-13型。级配组成见表5并如图1所示。

表5 矿料筛分及配合比计算结果

筛孔直径mm

料规格(mm)种类

矿料规格(mm)种类

(%)

(%)

(%)

10~

15

5~

10

3~5

矿料配合比例(%)

10~

15

5~

10

3~5

37.

13.

9

15.

9

18.

5

10.

3.4 1.3

各规格种类矿料通过百分率(配

合前)(%)

各规格种类矿料通过百分率(配

合后)(%)

16 100

.0

100

.0

100

.0

100

.0

100

.0

100

.0

100

.0

37.

13.

9

15.

9

18.

5

10.

3.4 1.3

100

.0

100

.0

100

13.92.10010010010010010034.13.15.18.10.3.4 1.3 97.97.95

第 7 页共 20 页

第 8 页 共 20 页

2 7 .0 .0 .0 .0 .0 .0

3 9 9 5 0 3 5 ~

100 9.5 32.6 99.7 100.0 100.0 100.0 100.0 100.0 12.0 13.9 15.9 18.5 10.0 3.4 1.3 75.0 75.0

70

80 4.7

5 0.1 4.0 89.3 100.0 95.4 100.0 100.0 0.0 0.

6 14.2 18.5 9.5 3.4 1.3 47.5 47.

5

43

~52 2.3

6 0.1 0.1 1.3 87.2 79.3 100.0 100.0 0.0 0.0 0.2 16.2 7.9 3.4 1.3 29.0 31.

5

28

~35 1.1

8 0.1 0.1 0.3 63.8 61.6 100.0 100.0 0.0 0.0 0.0 11.8 6.2 3.4 1.3 22.8 20.

17

~23

0.6 0.1 0.1 0.3 42.0 33.3 100.0 99.9 0.0 0.0 0.0 7.8 3.3 3.4 1.3 15.9 14.

5

12

17 0.3 0.1 0.1 0.3 26.0 10.4 99.0 99.7 0.0 0.0 0.0 4.8 1.0 3.4 1.3

10.6 10.5 8~

13 0.15 0.1 0.1 0.3 15.2 2.6 93.3 92.8 0.0 0.0 0.0 2.8 0.3 3.2 1.2 7.5 8.0 6~

10

0.0

75 0.1 0.1 0.3 10.0 1.3 82.2 87.5 0.0 0.0 0.0 1.9 0.1 2.8 1.1 6.0 6.0 5~7

图1 矿料级配曲线

第 10 页共 20 页

4.2 油石比的确定

A C-13型改性沥青混合料配合比设计采用GTM法。试件成型条件为:垂直压力

0.7MPa;拌合温度170℃;成型温度160℃~165℃;控制方式为极限平衡状态。

选择油石比4.6%、4.9%、 5.2%、5.5%,按上述条件成型GTM试件。按T0705-2000(表干法)测定试件毛体积相对密度,根据沥青浸渍法实测合成集料的有效相对密度(见表6)计算沥青混合料最大理论相对密度。并据此计算试件体积参数。GTM试件体积参数及马歇尔试验结果见表7,GTM试验结果见表8及图2。

表6 合成集料有效相对密度试验结果

项目

盆勺

(g)

盆勺

水中

(g)

盆勺

料重

(g)

盆勺

油料

(g)

盆勺

料水

中重

(g)

有效

相对

密度

平均

有效

对密

合成集料117.5 90.1 778.8

1095.

3

507.3 2.662

2.667 124.4 95.3 786.0

1114.

513.8 2.672

改性

沥青

117.2 88.4 ---- 540.7 94.1 1.014 ---- 表7 AC—13型改性沥青混合料GTM试件体积参数及马歇尔稳定度试验结果

序号油石理论表干VV VMA VFA 稳定流值

比(%)最大

相对

密度

法毛

体积

相对

密度

(%)(%)(%)度

(kN

(0.

1mm)

1 4.6 2.48

9

2.40

8

3.3 13.7 76.2

16.4

1

35.5

2 4.9 2.47

9

2.41

8

2.4 1

3.6 82.1

19.6

6

37.6

3 5.2 2.46

8

2.43

2

1.5 13.3 88.9

16.0

6

38.6

4 5.

5 2.45

8

2.44

0.7 13.3 94.4

14.6

3

40.1

表8 AC—13型改性沥青混合料GTM试验结果

序号

油石

比(%)

表干法毛体

积相对密度

GSI GSF

1 4.6 2.408 0.98 1.32

2 4.9 2.418 1.00 1.34

3 5.2 2.432 1.0

4 1.31

4 5.

5 2.440 1.1

6 1.24

0.95

1.011.071.13

1.194.3

4.6

4.9

5.2 5.5 5.8

油石比(%)

G S I

1.22

1.261.30

1.34

1.384.3

4.6

4.9

5.2 5.5 5.8

油石比(%)

G S F

图2 GTM试验参数随油石比的变化曲线由表8及图2可见,判定沥青混合料这种粒状塑性材料是否会出现塑性变形过大现象的指标GSI(稳定系数)随油石比的增加而增加,当油石比等于4.9%时,GSI=1.0;当油石比大于4.9%后,GSI大幅度增大,曲线已呈急剧增加趋势,表明混合料中的沥青已过量,试件的塑性变形过大;从反映沥青混合料抗剪强度方面的参数GSF(安全系数)随油石比的变化情况来看,油石比等于4.9%时,GSF值最大,而当油石比大于4.9%时,随油石比的增加,GSF值减小。综合考虑GTM试验结果并参考体积参数的大小及变化趋势,将AC-13型改性沥青混合料最大油石比确定为4.9%。考虑到该工程所处的地区气候特点、公路渠化交通的特点以及便于施工控制,此沥青混合料的油石比范围为4.7%~5.0%。

目标配合比设计结果为:10mm~15mm: 5mm~10mm:3mm~5mm:机制砂:天然砂:矿粉:生石灰=37.0:13.9:15.9:18.5:10.0:3.4:1.3。最佳油石比为4.9%。

5. AC—13型改性沥青混合料配合比设计结果检验

5.1 水稳定性检验

水稳定性试验结果见表9。试验结果表明,用GTM方法优化出的AC-13型改性沥青混合料抗水损坏性能满足规范要求。

表9 AC—13型改性沥青混合料水稳定性检验结果

项目油石比

(%)

规范要求

混合料检

验结果

试验方法

残留稳定度(%)4.9

不小于

80

83.2

T0709-20

00

残留强度比(%)4.9

不小于

75

86.8

T0729-20

00

5.2车辙试验

车辙试验结果见表10。试验温度为60℃,轮压0.7MPa。结果表明,GTM法设计的AC-20型沥青混合料具有优良的抗车辙能力。

表10 AC—13型改性沥青混合料车辙试验结果

试验温度油石

(%)

试验

项目

规范

要求

试验

结果

试验

方法

60℃ 4.9 平均动稳定

度(次/mm)

不小于

2400

4924.5

T0719-

1993 变异系数

(%)

不大于

20

15.6

5.3 弯曲试验

弯曲试验结果见表11。试验温度为-10℃,控温精度为±0.1℃,加载速率50mm/min。试验设备为MTS-810(TESTSTAR-Ⅱ型)。

表11 AC—13型改性沥青混合料弯曲试验结果(油

石比4.9%)

项目单位检验结果试验方法

弯曲试验破坏应变(με)- 2687.4

T0715-199

3

抗弯拉强度MPa 11.83 弯曲劲度模量MPa 4402 应变能kJ/m2174.8

5.4 渗水试验

渗水试验结果见表12。结果表明用轮碾法成型的试件不透水,满足JTG F40—2004的技术要求。

表12 AC—13型改性沥青混合料试件渗水试验结果

项目油石比

(%)

渗水系

数要求

(ml/mi

n)

实测值试验方法

渗水系数(mL/min )4.9

不大于

120

不透水

T0730-200

6. GTM试件密度与马歇尔试件密度的对应关系

建议用GTM进行生产配合比设计,并以GTM试件密度作为评定压实度的标准密度。

当工地无GTM时,可按“密度等值”方法确定试件的密度。即GTM试件密度=双面击实75次的马歇尔试件密度×修正系数。对比试验结果见表13。

表13 两种成型方式对比试验结果

成型温度(℃)成型方法

油石比

(%)

表干法

毛体积相

对密度

修正系

160~165 GTM 4.9 2.418

1.020

160~165

马歇尔

(双面击

4.9 2.370

实75次)

7. 结论

目标配合比设计结果见表14。

表14 AC—13型改性沥青混合料目标配合比设计

结果

材料种类10

15

5

10

3

5

最佳

油石

(%)

油石

范围

(%)

比例(%)37

.0

13

.9

15

.9

18

.5

10

.0

3.

4

1.

3

4.9

4.7~

5.0

混凝土配合比设计的基本原则

混凝土配合比设计的基本原则 1. 1 坚固性 坚固性是指混凝土的强度指标,因为混凝土的质量在目前是以抗压强度指标为主要依据的。影响混凝土抗压强度的因素很多,主要有水泥强度等级及水灰比、骨料种类及级配、施工条件等。 1) 水泥强度等级:水泥强度等级大致代表了水泥的活性,即在相同配合比的情况下,水泥强度等级越高,混凝土的强度等级也越高。在混凝土配合比设计中,主要从经济合理的角度来选择水泥强度等级,如果对水泥强度等级和品种没有选择的余地,那只能靠在配合比设计中调整比例,掺加外加剂等综合性措施加以解决。 2) 水灰比:混凝土单位体积中所用水的重量和水泥的重量比被称为水灰比。水灰比越大,混凝土的强度越低,为此,在满足和易性的前提下,混凝土用水量越少越好,这是混凝土配合比设计中的一条基本原则。 3) 骨料的种类及级配:砂子、石子在混凝土中起骨架作用,因此统称骨料。砂石由石材的品种、颗粒级配、含泥量、坚固性、有害物质等指标来表示它的质量。砂石质量越好,配制的混凝土质量越好。当骨料级配良好,砂率适中时,由于组成了密实骨架,可使混凝土获得较高的强度。 4) 施工条件:如果施工条件较好,并有一定的管理措施时,可适当降低混凝土的坍落度;反之,如现场施工条件较差时,应适当提高混凝土的坍落度。

1. 2 和易性 混凝土的和易性是指在一定施工条件下,确保混凝土拌合物成分均匀,在成型过程中满足振动密实的混凝土性能。常用坍落度和维勃稠度来表示。 不同类型的构件,对和易性的要求在施工验收规范中已有规定,但还要结合施工现场的设备条件和管理水平来确定。影响混凝土和易性的因素很多,但主要一条就是用水量。增加用水量,混凝土的坍落度是增加了,但是混凝土的强度也下降了。因此,采用使用减水剂的方法成了改善混凝土和易性最经济合理和最有效的方法。 1. 3 耐久性 混凝土的耐久性是它抵抗外来及内部被侵蚀破坏的能力,新疆(北疆) 地处严寒地带,夏季炎热干燥,冬季严寒多雪,混凝土受大气的侵蚀很严重,所以,施工验收规范对最大水灰比和最小泥用量都作了规定,但是仅仅执行这些规定还不能完全满足耐久性的要求。为了提高混凝土的耐久性,就必须在配合比设计中考虑采取相应的措施,如水泥品种和强度等级的选择,砂石级配和砂率的调整,但最主要的是用混凝土外加剂和掺合料来提高混凝土的耐久性。 1. 4 经济性 混凝土配合比的设计应在保证质量的前提下,省工省料才是最经济的。水泥是混凝土中价值最高的材料,节约水泥用量是混凝土配合比设计中的一个主要目标,但必须是采用合理的措施达到综合性的经济指标才是行之有效的。首先,使用混凝土外加剂和掺合料,使用减水剂既可以改善混凝土的和易性,也可以达到节约水泥的目的,掺加粉煤灰可以代替部分水泥,并改善混凝土的性能。其次,加强技术管理,提高混凝土的匀质性。最后,根据当地的砂石质量情况采用合理砂率和骨料级配。 2 混凝土配合比设计的步骤 2. 1 熟悉现行的规范和技术标准 普通混凝土配合比设计的方法和步骤,应该遵守国家建设部发布的行业标准J GJ 5522000 普混凝土配合比设计规程。该标准规定了配合比设计应分三个步骤。 1) 配合比的设计计算;2) 试配;3) 配合比的调整与确定。该标准给出了许多全国性统一用的技术参数,如混凝土试配强度计算公式、混凝土用水量选用表、混凝土砂率选用表等。此外,配合比设计还必须掌握GB 5020422002 混凝土结构工程施工及验收规范和GB J107287 混凝土强度检验评定标准。 2. 2 原材料的准备和检验混凝土由四种材料组成:水泥、砂子、石子和水。目

混凝土配合比设计要素

混凝土配合比设计要素 一、砼的工作性:又称和易性,是指混凝土具有流动性、可塑性、稳定性、易密性方面的一项综合性能。 1.工作性的测定方法:坍落度试验和维勃稠度试验 1.1坍落度试验适用于塑性混凝土(集料粒径不大于40mm、坍落度值不小于10mm)。 2.1维勃稠度试验适用于干硬性混凝土(集料粒径不大于40mm、坍落度值不大于10mm)。 二、影响工作性的因素:内因和外因两大类: 1.外因指施工环境条件: 1.1包括外界环境的气温、湿度、风力大小以及时间等。 2.内因: 2.1原材料特性:水泥品种和细度、粗集料的颗粒形状和表面特征 2.2单位用水量:水量过小浆量偏少,集料颗粒间缺少足够的粘结材料,粘聚性较差,易发生离析和崩坍现象,而且也不易密实;水量过大,的流动性随之增加,粘聚性和保水性却随之变差,会产生流浆、泌水、离析现象,用水量过大还会导致混凝土易产生收缩裂缝,影响到混凝土耐久性和造成水泥浪费等问题。 2.3水灰比:水灰比的大小则决定了水泥浆的稀稠程度。水灰比小,则水泥浆稠度大,混凝土拌和物流动性小。水灰比过大,水泥浆稠度较小,虽然混凝土拌和物的流动性增加,但可能引起混凝土拌和物粘聚性和保水性不良。当水灰比超过一定限度时,混凝土拌和物将产生严重的泌水、离析现象。 2.4砂率:水、水泥和砂的砂浆在混凝土中起着润滑作用,通过这种润滑作用来降低粗集料之间的摩阻力,以产生所需的流动性。砂率小不足以包裹所有的粗集料,无法发挥出润滑作用。固定的情况下,砂率的增大,总表面积也随之增大,水泥浆的数量相对减少,当超过一定的限度后又会导致混凝土拌和物流动性的降低。满足的工作性的前提下,水泥用量最少的砂率(合理砂率)。 三、影响混凝土强的因素的主要方面: 1.材料的组成:水泥的强度和水灰比、集料的特性、浆集比 2.制备的方法:有效时间工作性检测、成型、脱模 3.养生条件:湿度、温度、龄期 4.试验条件:检测精度、湿度、温度、人员操作技能 四、设计步骤的主要工作内容: 1.初步配合比设计阶段:熟悉配制强度和设计强度相互间关系,水灰比计算方法,用水量、砂率查表方法,以及砂石材料计算方法。 2.试验室配合比设计阶段:熟悉工作性检验方法,以及工作性的调整。 3.基准配合比设计阶段:熟悉强度验证原理和密度修正方法。 4.工地配合比设计阶段:熟悉根据工地现场砂石含水率进行配合比调整的方法。 5.控制混凝土耐久性的关键。

沥青混合料目标配合比设计(SMA-13).

沥青SMA 混合料配合比设计(SMA-13) 一、基本情况 杭浦高速公路,拟采用改性沥青SMA-13作为面层。 原材料产地如下: 二、设计依据 1.《公路沥青路面施工技术规范》(JTG F40-2004) 2.《公路工程集料试验规程》(JTG E42-2005) 3.《公路工程沥青及沥青混合料试验规程》(JTJ052-2000) 4.《高速公路沥青路面规范化施工与质量管理指导意见》 5.《杭浦高速公路道路养护工程招标文件》 三、设计过程 1、原材料 本次室内目标配合比设计所用集料产地为湖州西园坞(辉绿岩)和闲林(石灰岩),沥青采用韩国SK 生产的SBS-改性沥青,外加剂为木质素纤维,密度为0.6g/cm 3表1 集料及沥青密度试验结果 ,掺量比例为沥青混合料总质量的0.3%,试验所用原材料均由委托方提供。各档集料、矿粉及SBS 改性沥青的密度试验结果见表1。

各档集料及矿粉的筛分结果见表2。 表2 各种矿料的筛分结果 2、混合料级配 根据委托要求,SMA-13型沥青混合料工程设计级配范围见表3。 表3 SMA-13沥青混合料工程设计级配范围 3、矿料配合比设计计算 根据各档集料的筛分结果,结合混合料级配要求,首先调试选出粗、中、细三个级配,根据工程经验确定三个级配的初始油石比为6.2%,然后用初始油石比成型试件。表4为三种级配的设计组成结果,表5为初试级配的体积分析结果。 表4 三种级配的设计组成结果 )的质量百分率(%) 1.18 0.6 0.3 0.15 0.075

表5 初试级配的沥青混合料性能指标分析结果 根据各组级配体积指标结果分析,结合以往工程经验选择级配3为设计级配,级配曲线见图1所示。 0.075 0.15 0.3 0.6 1.18 2.36 4.75 9.5 13.2 16 1.000 1.500 2.000 2.500 3.000 筛孔尺寸(mm) 图1 SMA-13设计级配曲线图 4、马歇尔稳定度试验 按设计的矿料比例配料,采用三种油石比,进行马歇尔稳定度试验,试验结果见表6,设计级配合成毛体积相对密度2.705,级配合成表观相对密度2.751。根据以下数据并确定最佳油石比为6.2%。

AC-13沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1.矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方法,选择适用的沥青混合料类型,并按照表8-22和表8-23(现行规范)或8-24和表8-25(新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm、2.36mm、4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人行道路等,合成级配宜偏向级配范围的上限。 2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到

的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件数量不少于4个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料总量1200g左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水率大于2%的沥青混合料、沥青碎石混合料等不能用表干法测定的试件应采用蜡封法测定;空隙率较大的沥青碎石混合料、开级配沥青混合料试件可采用体积法测定。 随后,在马歇尔试验仪上,按照标准方法测定沥青混合料试件的马歇尔稳定度和流值。 3.最佳沥青用量的确定

混凝土配合比设计的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其他性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C ) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o) 配制强度按下式计算: σ 645.1..+=k cu v cu f f (2)初步确定水灰比(W/C) 采用碎石时: ,0.46( 0.07)cu v ce C f f W =- 采用卵石时: ,0.48( 0.33)cu v ce C f f W =- (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a. 水灰比在0.40~0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20(P104)选取。 b. 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应通过试验确定。 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a. 以表4-22中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg ,计算出未掺外加剂时的混凝土的用水量; b. 掺外加剂时的混凝土的用水量可按下式计算: (1) w wo m m αβ=-

SMA13改性沥青混合料目标配合比设计报告

XXX路 SMA-13改性沥青混合料目标配合比设计报告

XXXX路 SMA-13改性沥青混合料目标配合比 设计报告 注意事项: 1.本报告未加盖检测单位报告专用章、缺页、添页或涂改均无效;无相关人员及签发人签字无效;未经检测单位许可复印无效; 2.对检测报告有异议者,请于收到报告之日起十五日向检测单位提出; 3.试验检测按国家标准、行业标准和企业标准执行,无标准的按双方协议执行。

XXXX检测中心设计报告

1.0 概述 受XXXX委托,XXXX检测中心承担了XXXX路工程上面层SMA-13型沥青混合料的目标配合比设计工作。本次改性沥青混合料SMA-13的目标配合比设计方法依据《公路沥青路面施工技术规》(JTG F40—2004)进行设计。 2.0 设计依据 上面层SMA-13改性沥青混合料目标配合比设计依据以下标准规、规程: 1、《公路沥青路面施工技术规》(JTG F40-2004); 2、《公路工程集料试验规程》(JTG E42-2005); 3、《公路工程沥青及沥青混合料试验规程》(JTG E20-2011); 3.0 原材料试验 本次试验所用集料、矿粉、沥青均为委托方送样,各原材料规格及产地如下: 1、沥青:XXX产SBS改性沥青; 2、集料:XXX产玄武岩(碎石1:9.5~13.2mm、碎石2:4.75~9.5mm) 3、细集料:XXX产石灰岩(碎石4:0-2.36mm) 4、矿粉:XXX矿粉厂; 5、木质素纤维:XXX(用量为混合料总质量的0.35%)。 4、抗剥落剂:XXX(用量为沥青质量的0.35%) 沥青、矿粉、粗集料、细集料、纤维试验结果如表3.0-1至表3.0-5。

普通混凝土配合比设计

普通混凝土配合比设计例题 设计C20泵送混凝土,材料:水泥P.O42.5,中砂(筛余量25-0%),碎石(5-30mm)连续级配,减水剂YAN(参量0.8%,减水率14%)。 普通混凝土配合比设计,一般应根据混凝土强度等级及施工所要求的混凝土拌合物坍落度(或工作度——维勃稠度)指标进行。如果混凝土还有其他技术性能要求,除在计算和试配过程中予以考虑外,尚应增添相应的试验项目,进行试验确认。 普通混凝土配合比设计应满足设计需要的强度和耐久性。水灰比的最大允许值,可参见表1 混凝土的最大水灰比和最小水泥用量表1 注:1.当采用活性掺合料取代部分水泥时,表中最大水灰比和最小水泥用量即为替代前的水灰比和水泥用量。 2.配制C15级及其以下等级的混凝土,可不受本表限制。 混凝土拌合料应具有良好的施工和易性和适宜的坍落度。混凝土的配合比要求有较适宜的技术经济性。 普通混凝土配合比设计步骤 普通混凝土配合比计算步骤如下: (1)计算出要求的试配强度f cu,0,并计算出所要求的水灰比值; (2)选取每立米混凝土的用水量,并由此计算出每立米混凝土的水泥用量;

(3)选取合理的砂率值,计算出粗、细骨料的用量,提出供试配用的计算配合比。 以下依次列出计算公式: 1.计算混凝土试配强度f cu,0,并计算出所要求的水灰比值(W/C) (1)混凝土配制强度 混凝土的施工配制强度按下式计算: f cu,0≥f cu,k+1.645σ 式中f cu,0——混凝土的施工配制强度(MPa); f cu,k——设计的混凝土立方体抗压强度标准值(MPa); σ——施工单位的混凝土强度标准差(MPa)。 σ的取值,如施工单位具有近期混凝土强度的统计资料时,可按下式求得: 式中f cu,i——统计周期内同一品种混凝土第i组试件强度值(MPa); μfcu——统计周期内同一品种混凝土N组试件强度的平均值(MPa); N——统计周期内同一品种混凝土试件总组数,N≥250 当混凝土强度等级为C20或C25时,如计算得到的σ<2.5MPa,取σ=2.5MPa;当混凝土强度等级等于或高于C30时,如计算得到的σ<3.0MPa,取σ=3.0MPa。 对预拌混凝土厂和预制混凝土构件厂,其统计周期可取为一个月;对现场拌制混凝土的施工单位,其统计周期可根据实际情况确定,但不宜超过三个月。 施工单位如无近期混凝土强度统计资料时,可按表2取值。 σ取值表表2 查表取σ=5N/mm则f cuo≥20 N/mm+1.645×5 N/mm≈28 N/mm (2)计算出所要求的水灰比值(混凝土强度等级小于C60时)

混凝土施工技术要点分析

混凝土施工技术要点分析 【摘要】土建施工是多工种、多专业、多学科的一项复杂的工程,土建是以混凝土施工为主。切实控制施工质量和浇筑施工水平,本文通过运用一些简单的原理,不断总结工作经验,对土建工程施工要点---混凝土施工技术进行分析,同时展望混凝土施工新技术的要点和发展前景。以期对土建企业员工的工作技能有新的启发。 【关键词】土建混凝土,施工技术 【 abstract 】 the construction is more professional, more jobs, more of the discipline of a complex project, civil is mainly the concrete construction. to control construction quality and casting construction level, the article uses some simple principle, constantly sum up experience, the civil engineering construction points- -the concrete construction technology are analyzed, and the prospects of the concrete construction new technology key points and the development prospect. in order to enterprise staff work skills civil new inspiration. 【 key words 】 civil concrete, construction technology 中图分类号:tu74文献标识码:a 文章编号: 随着建筑要求的提高及新型建材的涌现,土建专业工程的施工技术水平的成熟度也提高了一个层次。由于混凝土本身的特性是耐

沥青混合料配合比设计方法

沥青混合料配合比设计 方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

嘉兴市春秋建设工程检测中心有限责任公司 CQ/Q040530-2003沥青混合料配合比设计方法 批准人: 状态: 持有人: 分发号: 2003年11月1日批准 2003年11月25日实施 地址:浙江省嘉兴市南湖经济开发区春园路 电话:、2600330 传真: 沥青混合料配合比设计方法 1.沥青混合料配合比设计基本原则 对于高速公路和一级公路沥青路面的上面和中面层的沥青混凝土混合料进行配合比设计时,应通过车辙试验机对抗车辙能力进行检验。在温度60℃、轮压条件下进行车辙试验的动稳定度,对高速公路不小于800次/㎜,对一级公路应不小于600次/㎜ 沥青碎石混合料的配合比设计应根据实践经验和马歇尔试验的结果,经过试拌试铺论证确定。 高速公路和一级公路的热拌沥青混合料的配合比设计应遵照下列步骤进行: ±%等三个沥青用量进行马歇尔试验,确定生产配合比的最佳沥青用量。 2.矿质混合料的配合组成设计

矿质混合料配合组成设计的目的,是选配一个具有足够密实度、并且有较高内摩阻力的矿质混合料。可以根据级配理论,计算出需要的矿质混合料的级配范围;但是为了应用已有的研究成果和实践经验,通常是采用规范推荐的矿质混合料级配范围来确定。按现行规范《沥青路面施工及验收规范》(GB500092—96)中规定,按下列步骤进行; 确定沥青混合料类型 沥青混合料的类型,根据道路等级、路面类型及所处的结构层位,按表2选定。确定矿质混合料的级配范围 根据已确定的沥青混合料类型,查阅规范推荐的矿质混合料级配范围表即可确定所需的级配范围。 矿质混合料配合比计算 沥青混合料类型表2

AC-20C沥青混凝土配合比计算书

双永高速公路B3合同段AC-20C下面层目标配合比报告 中交一公局厦门工程有限公司中心试验室 双永高速公路B3合同段工地试验室 二○一一年十月

沥青路面下面层AC-20C目标配合比报告 1、依据规范和要求 1.1、《双永高速路面设计图纸》; 1.2、《公路沥青路面施工技术规范》(JTG F40-2004); 1.3、《公路工程沥青及沥青混合料试验规程》(JTJ052-2000); 1.4、《公路工程集料试验规程》(JTG E42-2005); 2、混合料的类型及层位特点 2.1、沥青路面下面层混合料级配类型采用AC-20C型,属于中粒式密级配沥青混凝土。2.2、在路面结构温度分布中,下面层的温度最高,且下面层承受的剪应力最大,因此最容 易产生车辙病害;在兼顾水稳定性的同时,如何提高中面层抵抗车辙的能力,成为中面层配合比设计的重点。 3、原材料试验 优质的原材料是保证沥青混合料具有优良路用性能的先决条件,为了满足气候环境与交通对路用性能的要求,必须做好原材料的选择。该配合比通过测试沥青、粗集料、细集料和矿粉等材料的性能和技术指标来检测材料是否满足规范及设计图纸要求,从而完成原材料的选择。 3.1、沥青 采用上海春宇实业有限公司的SBS改性沥青(I-D级),所检各项指标均符合有关规范、规定要求,实测指标与技术要求见表1。 表1 SBS改性沥青(I-D级)试验指标与技术要求 3.2、集料 集料是沥青混合料的关键材料之一,其力学性能是决定混合料强度特性的最重要因素,它的颗粒形状不仅影响混合料的构架,也直接关系到混合料的抗车辙能力与抗疲劳性能等材

料特性,此外,集料与沥青的粘附等级对混合料强度的形成也起关键作用,因此选择优质的集料是沥青混合料具有优良路用性能的重要保证。 3.2.1粗、细集料 采用顺发石料场反击式破碎机生产的碎石,规格为:一号料:9.5-19mm、二号料:4.75-9.5mm、三号料:0-4.75mm;粗、细集料所检各项指标与技术要求见表2。 表2 粗、细集料的试验指标与技术要求 3.3、填料 沥青混合料的填料宜采用石灰岩或岩浆岩中的强基性岩石等石料经磨细得到的矿粉,本项目采用龙岩市东元矿粉有限公司生产的矿粉,所检各项指标均符合规范及有关规定要求实测试验指标见表3: 表3 矿粉的试验指标与技术要求 3.4、抗剥落剂 用抗剥落剂可以增强沥青与集料的粘附性,从而保证沥青混合料具有较高的抗水损害性。本项目在矿粉中掺入20% 消石灰及0.3%重庆海木交通技术有限公司生产的AMR沥青抗剥落剂。并通过水煮法对其进行检验,粘附性有明显的改善。

AC-13沥青混合料目标配合比设计说明.

沥青混合料目标配合比设计说明 (AC-13 一.设计依据 1.《公路工程沥青路面施工技术规范》(JTG-F40-2004; 2.《公路工程沥青及沥青混合料试验规程》(JTJ-052-2000; 3.《公路工程集料试验规程》(JTGE42-2005; 4.郑开建管办相关技术文件。 二.原材料 1.沥青。采用中海36-1沥青公司生产的AH-70重交沥青,其质量技术指标见表1。 沥青的技术指标 表1 试验项目单位技术要求试验结果 针入度(25℃, 0. 1mm 60~80 70 100g,5s 延度(5cm/min, cm ≥100150 15℃

延度(5cm/min, cm ≥2050.8 10℃ 软化点(环球法℃>46 48 密度(15℃g/cm3实测 1.010 溶解度sb(三氯 %>99.-- 乙烯 RTFOT后残留物质量损失%≤±0.80.05 针入度比P(25℃%≥6170 软化点增值(环球 ℃—-- 法 延度(10℃, cm ≥611.4 5cm/min 2.集料。采用河南禹州碎石厂生产的碎石,其中分为四档:1#料(10~16mm、2#料(4.75~13.2mm、3#料(2.36~4.75mm、4#料(<2.36mm,其质量技术指标见表2、表3。粗集料质量指标 表2 试验项目单位标准试验结果 视密度1#料g/cm3≥2.60 2.755

2#料g/cm3≥2.60 2.796 3#料g/cm3≥2.60 2.722 石料压碎值%≤2617.2 细长扁平颗粒 1#料%<15 7.8 含量 2#料%<15 8.0 对沥青的粘附 ≥5级5级 性 水洗法 1#料%≤10.2 <0.075mm含 量 2#料%≤10.6 3#料%≤10.8 细集料质量指标 表3 试验项目单位标准试验结果视密度g/cm3≥2.60 2.710

混凝土配合比设计

第四节混凝土的配合比设计 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)用量之间的比例关系。常用的表示方法有两种:①以每立方米混凝土中各项材料的质量表示,如水泥300kg、水180kg、砂720kg、石子1200kg; ②以水泥质量为1的各项材料相互间的质量比及水灰比来表示,将上例换算成质量比为水泥∶砂∶石=1∶∶4,水灰比=。 一、混凝土配合比设计的基本要求 设计混凝土配合比的任务,就是要根据原材料的技术性能及施工条件,合理选择原材料,并确定出能满足工程所要求的技术经济指标的各项组成材料的用量。混凝土配合比设计的基本要求是:(1)满足混凝土结构设计所要求的强度等级。 (2)满足施工所要求的混凝土拌合物的和易性。 (3)满足混凝土的耐久性(如抗冻等级、抗渗等级和抗侵蚀性等)。 (4)在满足各项技术性质的前提下,使各组成材料经济合理,尽量做到节约水泥和降低混凝土成本。 二、混凝土配合比的三个参数 (一) 水灰比(W/C) 水灰比是单位体积混凝土中水与水泥质量的比值,是影响混凝土强度和耐久性的主要因素。其确定原则是在满足强度和耐久性的前提下,尽量选择较大值,以节约水泥。 (二)砂率(βS) 砂率是指砂子质量占砂石总质量的百分率。砂率是影响混凝土和易性的重要指标。砂率的确定原则是在保证混凝土拌和物粘聚性和保水性要求的前提下,尽量取小值。 (三)单位用水量 单位用水量是指1m3混凝土的用水量。单位用水量的多少反映了单位混凝土中水泥浆与集料之间的比例关系。在混凝土拌和物中,水泥浆的多少显著影响混凝土的和易性,同时也影响强度和耐久性。其确定原则是在达到流动性要求的前提下取较小值。 水灰比、砂率、单位用水量是混凝土配合比的三个重要参数,在配合比设计中正确地确定这三个参数,就能使混凝土满足上述设计要求。 三、混凝土配合比设计的方法步骤 (一)配合比设计的基本资料 (1)明确设计所要求的技术指标,如强度、和易性、耐久性等。 (2)合理选择原材料,并预先检验,明确所用原材料的品质及技术性能指标,如水泥品种及强度等级、密度等;砂的细度模数及级配;石子种类、最大粒径及级配;是否掺用外加剂及掺和料等。 (二)初步配合比的计算 1.确定混凝土试配强度() 在正常施工条件下,由于人、材、机、工艺、环境等的影响,混凝土的质量总是会产生波动,经验证

混凝土工程中英文(个人整理)

混凝土工程concrete works 一、材料 袋装水泥bagged cement 散装水泥bulk cement 砂sand 骨料aggregate 商品混凝土commercial concrete 现浇混凝土concrete-in-situ 预制混凝土precast concrete 预埋件embedment(fit 安装) 外加剂admixtures 抗渗混凝土waterproofing concrete 石场aggregate quarry 垫块spacer 二、施工机械及工具 搅拌机mixer 振动器vibrator 电动振动器electrical vibrator 振动棒vibrator bar 抹子(steel wood)trowel 磨光机glasser 混凝土泵送机concrete pump 橡胶圈rubber ring 夹子clip 混凝土运输车mixer truck 自动搅拌站auto-batching plant

输送机conveyor 塔吊tower crane 汽车式吊车motor crane 铲子shovel 水枪jetting water 橡胶轮胎rubber tires 布袋cloth-bags 塑料水管plastic tubes 喷水雾spray water fog 三、构件及其他专业名称 截面尺寸section size(section dimension)混凝土梁concrete girder 简支梁simple supported beam 挑梁cantilever beam 悬挑板cantilevered slab 檐板eaves board 封口梁joint girder 翻梁upstand beam 楼板floor slab 空调板AC board 飘窗bay window(suspending window) 振捣vibration 串筒 a chain of funnels 混凝土施工缝concrete joint 水灰比ratio of water and cement 砂率sand ratio

混凝土配合比设计

水泥配合比混凝土 (一)、混凝土的组成:水泥、集料、水。 1、水泥起黏结作用 2、集料(粗集料、细集料)起骨架作用(填充作用) 粗集料:(1)、力学性质 (2)、粒径、颗粒形状和级配 (3)、有害物质 细集料:(1)、力学性质 (2)、分类、等级和规格 (3)、颗粒级配 (4)、有害物质 3、水,一般饮用水赋予新拌混凝土流动性作用,(二)、水泥混凝土的工作性和强度的影响因素 一,混凝土工作性的影响因素 影响混凝土拌合物工作性的因素概括为内因和外因两类。(外因:指施工环境条件,包括外界环境的气温、湿度、时间等;内因:包括原材特性、用水量、水灰比和砂率等)(1)、水泥浆的数量和稠度 新拌混凝土中,水泥浆填充集料间的空隙,包裹集料赋予新拌混凝土一定的流动性。(1、水泥浆数量过多,将出现流浆现象,容易发生离析;2、水泥浆数量过少,集料间缺少黏结物质,粘聚性变差,易出现崩坍;3、水泥浆干稠,

新拌混凝土的流动性差,施工困难;4、水泥浆过稀,造成粘聚性和保水性不良,产生流浆和离稀现象。) 对新拌混凝土流动性起决定作用的是用水量的多少。(提高水灰比或增加水泥浆都表现为用水量的增加)不能单纯改变用水量调整新拌混凝土的流动性。单纯加大用水量会降低混凝土的强度和耐久性。 (2)砂率 砂率是指混凝土中砂的质量占砂、石总质量的百分率。(砂率的变动,会影响新拌混凝土中集料的级配,使集料的空隙率和总表面积有很大的变化,对新拌混凝土的和易性产生显著影响)(在水泥浆数量一定时:1、砂率过大,集料的总表面积和空隙率都会增大、起润滑作用的水泥浆相对减少,新版混凝土的流动性减小;2、砂率过小,集料的空隙率显著增加,不能保证粗集料之间的有足够的砂浆层,降低新拌混凝土的流动性,并会严重影响粘聚性和保水性,容易造成离析、流浆等现象。) 所以,砂率有个合理范围,处于这一范围的砂率称为合理砂率。当采用合理砂率时咋爱用水量和水泥用量一定的情况下能使混凝土拌合物获得最大的流动性且能保持良好的粘聚性和保水性。 合理砂率随着集料种类、最大粒径和级配、砂子的粗细程度和级配、混凝土的水灰比和施工要求的流动性而变化,需

大掺量粉煤灰高性能混凝土配合比设计与性能

大掺量粉煤灰高性能混凝土配合比设计与性能 张晓喜,刘成松 (武汉供电设计院有限公司,武汉430070) 摘 要: 将大掺量粉煤灰高性能混凝土作为一种新材料,对其配合比设计进行了介绍,同时对比了大掺量粉煤灰高性能混凝土同普通混凝土在性能方面的差异,包括工作性、强度、变形性能和耐久性。 关键词: 粉煤灰; 混凝土; 配制; 性能 Mixing and Properties of Large Dosage Fly Ash High Performance Concrete ZHA N G Xiao2xi,L IU Cheng2song (Wuhan Power Supply Design Institute Ltd,Wuhan430070,China) Abstract: In this paper,the specialties and mixing method of large dosage fly ash high performance concrete as a new kind of concrete are summarized.The differences in properties between large dosage fly ash high performance concrete and OPC are compared,including the workability、strength and durability. K ey w ords: fly ash; concrete; mixing; properties 开发低水泥用量、高耐久性的混凝土是混凝土21世纪发展的方向和未来。1990年美国首先正式提出“高性能混凝土”是一种新型高技术混凝土,其胶凝材料中要求掺加活性矿物掺合料。20世纪80年代,人们认识到粉煤灰作为混凝土活性掺合料,具有3大有利效应:即形态减水效应,火山灰活性效应及微集料效应。此后,研究粉煤灰作为活性掺合料以生产高性能混凝土便成为混凝土技术研究的一大热点。1985年加拿大首先研究了粉煤灰占胶凝材料总体积55%~60%的高性能混凝土,从而掀起了大掺量粉煤灰高性能混凝土研究的高潮。 我国拥有丰富的粉煤灰资源,但长期以来我国粉煤灰在混凝土中利用率很低,东部地区粉煤灰取代水泥率不超过25%,中部地区粉煤灰取代水泥率不超过15%,西部混凝土技术落后的地区,粉煤灰取代水泥率甚至为零,与国外大掺量的差距甚远,究其原因,我国粉煤灰质量变异性大是一方面,更主要原因在于工作人员对大掺量粉煤灰高性能混凝土的配制及性能认识不足,因而有必要加强对大掺量粉煤灰高性能混凝土的认识。1 大掺量粉煤灰高性能混凝土配合比设计 正确的混凝土配合比设计是混凝土质量保证的前提。以往粉煤灰混凝土配合比设计都是在一个已经确定不掺粉煤灰混凝土配合比基础上,采用一定量的粉煤灰等量或超量取代水泥,这样的配合比设计将粉煤灰和水泥等同看待,而没有充分考虑到两者之间的差异。大量研究资料表明:粉煤灰对不同龄期混凝土强度的贡献同水泥是不一致的,此外,粉煤灰对混凝土强度的贡献还同水胶比密切相关(一般随着水胶比的减小,粉煤灰对不同龄期混凝土强度的贡献随之增加)。因而采用以往的配合比设计方法对大掺量粉煤灰高性能混凝土配合比进行设计时显然已经不再合适。关于大掺量粉煤灰高性能混凝土配合比的设计,英国Dunstan[4]提出了一种新的理念,他将粉煤灰做为一种单独的组分,将混凝土的水胶比、灰胶比(粉煤灰2胶结料比,FΠC+F)和强度建立了一个三维模型(见图1)。这样进行大掺量粉煤灰高性能混凝土配合比设计时就充分考虑了 62

沥青混合料配合比设计三阶段

沥青混合料配合比设计 沥青混合料配合比设计包括目标配合比设计、生产配合比设计和生产配合比验证三个阶段。 第一阶段——目标配比设计阶段:目的是确定已有矿料的配合比,并通过试验确定最佳沥青用量;第二阶段——生产配比设计阶段:目地是确定各热料仓矿料进入拌和室的比例.并检验确定最佳沥青用量; 第三阶段——生产配比验证阶段:目的是为随后的正式生产提供经验和数据。 1、目标配合比 目标配合比设计基本上是在试验室内完成的,是混合料组成设计的基础性工作,包括原材料试验、混合料组成设计试验和验证试验,在此基础上提出的配合比例称为目标配合比。具体设计步骤:(1)混合料类型与级配范围的确定 (2)原材料的选择与确定 (3)矿料级配选用 (4)进行马歇尔试验 (6)路用性能检验 (5)最佳沥青用量确定 2、生产配合比 生产配合比调整要结合拌和楼进行,目前生产中使用的拌和楼有两种类型,一类是连续式拌和楼,对于连续式拌和楼生产配合比调整只要调整到冷料仓的流量满足目标配合比要求,就可以加热拌料了,不需要进行生产配合比设计;另一类是间歇式拌和楼,要对集料进行加热、筛分,而后在各热料仓称重、回配,回配的比例,就是生产配合比。由于各热料仓矿料的配合比例,与目标配合比各矿料的配合比例会有所不同,就需要通过试验确定各热料仓矿料的配合比例,现场称二次级配。生产配合比调整的目的是在目标配合比的基础上,通过调整各冷料仓的流量使之符合设计合成级配要求,对间歇式拌和楼则还要确定出各热料仓矿料的配合比例。具体设计步骤: (1)冷料仓流量的调整 (2)确定各热料仓矿料配合比例 (3)确定沥青用量 3、生产配合比验证 目标配合比是在试验室完成的,生产配合比虽然启动了拌和楼,但没有正式拌料,生产标准配合比设计阶段需要正式拌料,并铺筑试验路。同时对配合比作进一步的调整,并最终将配合比确定下来,作为生产控制和质量检验的依据,此配合比称为生产标准配合比。生产标准配合比是主要解决两方 面的问题:确定拌和温度和进行混合料材料、性能分析。

Ac10沥青混凝土目标配合比

沥青混凝土(AC-10)目标配合比设计说明 一、概述 1、依据 (1)《公路工程沥青路面施工技术规范》(JTG F40-2004) (2)《公路工程沥青及沥青混合料试验规程》(JTJ052—2000) (3)《公路工程集料试验规程》(JTG E42—2005) 2、粗集料:碎石经试验其表观相对密度、吸水率、针片状含量、<0.075颗粒含量、磨耗值各项指标均符合规范要求。 3、细集料:粗石粉、石屑,经试验其各项指标均符合规范要求。 4、矿粉:经检验其表观密度、亲水系数等各项指标均符合规范要求。 5、沥青,沥青为齐鲁石化70#道路石油沥青。经检验其针入度、延度、软化点、沥青与粗集料的粘附性等各项指标均规范要求。 二、目标配合比设计 1、级配设计:对碎石、粗石粉、石屑、矿粉分别进行了筛分,最终确定各矿料掺配比例为:5-10mm碎石:粗石粉:石屑:矿粉=30:25:40:5 2、最佳油石比的确定 参照试验规程沥青参考用量,结合实际经验,按油石比0.5%变化,制作五组试件,即油石比分别为5.0%、5.5%、6.0%、6.5%、6.10%,每组试件四至五块,冷却12个小时后,测其密度、饱和度、空隙率等指标,然后经马歇尔试验测的稳定度、流值结果汇总下表: 沥青混合料试验结果汇总表

根据以上各项试验结果及计算结果,分别绘制饱和度、矿料间隙率、空隙率、密度、与油石比的关系曲线,最后确定最佳沥青用量为5.75%。 三、室内配合比结论 根据上述试验,实验室建议的沥青目标配合比为: 矿料级配:5-10mm碎石:粗石粉:石屑:矿粉=30:25:40:5 最佳油石比:6.10%,最佳沥青用量5.75%。 本次目标配合比设计可作为工地生产配合比设计依据。

AC-20沥青混合料目标配合比设计说明

AC-20沥青混合料目标配合比设计说明 该配合比是根据原材料的性能及混合料的技术要求进行计算,并经试验室试配、调整后确定,满足设计和施工要求。配合比设计中沥青采用韩国SK株式会生产的SK牌AH-70道路石油沥青,现将试验成果报告如下: 一、试验内容 1、原材料试验 对平度市黑羊山碎石场提供的石灰岩集料和大沽河砂进行筛分试验及表观密度、毛体积密度和吸水率等试验;对莱西望城谭格庄石粉加工厂的矿粉进行了亲水系数、筛分和表观相对密度试验;对韩国SK株式会生产的SK牌AH-70道路石油沥青进行了针入度、延度及软化点三大指标试验. 2、AC-20型沥青混合料组成设计试验 在规范要求AC-20型级配范围基础上,对设计级配曲线进行优化设计,通过马歇尔试验,确定最佳沥青用量。并对AC-20型沥青混凝土混合料目标配合比水稳定性检验。 二、试验说明 1、本次试验严格按照交通部颁发的《公路沥青路面施工技术规范》(JTG F40-2004)、《公路工程沥青及沥青混合料试验规程》(JTJ052-2000)和《公路集料试验规程》(JTJ E42-2005); 2、在沥青混合料时间的成型过程中,沥青加热温度为158℃、矿料加热温度为180℃,沥青混合料拌和温度为160℃、击实温度为145℃。 3、沥青混合料最大相对密度采用真空法实测,沥青混合料马歇尔试件

毛体积密度采用表干法测定。 三、计算说明 1、合成矿料的有效相对密度γse γse=(100-P b)/(100/γt-P b/γb) 式中:γse——合成矿料的有效相对密度;本次试验矿料有效相对密度根 据真空法实测最大相对密度进行反算。 P b——试验采用的沥青用量(占混合料总量的百分数),%; γt——试验沥青用量条件下实测得到的最大相对密度,无量纲; γb——沥青的相对密度(25℃/25℃),无量纲。 2、矿料全体的合成毛体积相对密度r sb r sb=100/(P1/γ1+P2/γ2+…+P n/γn) 式中:P1、P2、…、P n——各种矿料成分的配合比,其和为100; γ1、γ2、…、γn——各种矿料相应的毛体积相对密度,矿粉以 表观相对密度代替。 3、试件的最大理论相对密度γt 本次试验该指标采用了理论密度仪实测。 4、矿料间隙率(VMA)(%) VMA=(1-γf / γsb×p s)×100 式中:γf——试件的毛体积相对密度,无量纲; p s——各种矿料占沥青混合料总质量的百分率之和,即 P S=100-P b,%; 5、试件的空隙率VV(%) VV=(1-r f /γt)×100 式中:γt——沥青混合料的最大理论相对密度,无量纲。 6、沥青饱和度VFA(%) VFA={(VMA-VV)/VMA}×100 7、集料吸收沥青含量P ba(%)

混凝土配合比设计的步骤范本

混凝土配合比设计 的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其它性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o)

配制强度按下式计算: σ 645.1..+=k cu v cu f f (2)初步确定水灰比(W/C) 采用碎石时: ,0.46(0.07) cu v ce C f f W =- 采用卵石时: ,0.48( 0.33)cu v ce C f f W =- (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a. 水灰比在0.40~0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20(P104)选取。 b. 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应经过试验确定。 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a. 以表4-22中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg ,计算出未掺外加剂时的混凝土的用水量; b. 掺外加剂时的混凝土的用水量可按下式计算: (1) w wo m m αβ=- β为减水率

相关主题
文本预览
相关文档 最新文档