当前位置:文档之家› 超导限流器研究与开发的最新进展

超导限流器研究与开发的最新进展

超导限流器研究与开发的最新进展
超导限流器研究与开发的最新进展

探究高温超导电缆的研发现状和发展趋势 辛国骥

探究高温超导电缆的研发现状和发展趋势辛国骥 发表时间:2018-08-13T17:09:51.327Z 来源:《电力设备》2018年第12期作者:辛国骥 [导读] 摘要:在我国快速发展的过程中,高温超导技术的发展,高温超导电缆已经在输电系统中有了实际应用。 (国网大同供电公司检修公司山西大同 037008) 摘要:在我国快速发展的过程中,高温超导技术的发展,高温超导电缆已经在输电系统中有了实际应用。与传统电缆相比,高温超导电缆具有传输容量大、损耗低、体积小、重量轻、可靠性高、节约资源、环境友好等优势,有望在未来电网发展中发挥重要作用。本文介绍了高温超导电缆的结构及特点、基本设计原理、传输电流与导体层电流分布及交流损耗等技术问题,并对高温超导电缆在交流和直流输电系统中的应用以及目前世界各国对高温超导电缆的研究及成果做了介绍。 关键词:高温超导电缆;现状;发展 引言 随着我国经济的快速发展,用电量在不断增长,对电网传输容量需求也日益增长。高温超导材料在液氮温度的传输电流密度比铜导体高至少两个量级,且采用无污染和火灾隐患的液氮作为冷却介质,因此高温超导电缆在提升电网输电能力,在现有电力系统升级和新电力系统建设中都具有重要应用前景。目前,国际上对高温超导交流电缆的研究已取得了很大的进展,技术较成熟,相继建成多条超导电缆示范工程。高温超导直流电缆起步较晚,所以目前国内外的直流电缆工程不多,但由于新能源的大量引入,高温超导直流电缆得到了越来越多的重视,各国也纷纷开展了对高温超导直流电缆的研究。本文简要介绍近十几年来国内外有关高温超导电缆研究和开发的进展情况,并对其未来发展趋势和关键技术进行简单介绍。 1高温超导电缆的原理结构 高温超导电缆与传统的普通电缆相比有比较大的差异,其主要结构包括:内支撑芯、电缆导体、绝热层、电气绝缘层、电缆屏蔽层和保护层。1)内支撑芯:通常为罩有密致金属网的金属波纹管,或一束铜绞线。内支撑芯的功能是作为超导带材排绕的基准支撑物。2)电缆导体:由高温超导带材绕制而成,一般为多层。3)绝热层:通常由同轴双层金属波纹管套制,两层波纹管间抽成真空并嵌有多层防辐射金属箔。绝热层的主要功能是实现电缆超导导体与外部环境的绝热,保证超导导体在低温环境下能够安全运行。4)电气绝缘层:高温超导电缆按绝缘层类型的不同可以分成热绝缘和冷绝缘两种,热绝缘超导电缆的电气绝缘层的结构和材料与常规电缆的电气绝缘层相同,位于绝热层外部;冷绝缘超导电缆的电气绝缘层浸泡在液氮的低温环境下。5)电缆屏蔽层和保护层:电缆屏蔽层和保护层的功能是电磁屏蔽、短路保护及物理、化学、环境保护等。 2发展现状 目前国内开展的直流超导电缆工程相对较少,只在河南中孚电解铝厂建有一条示范工程。2009年起,中国科学院电工所与河南中孚电解铝厂股份有限公司合作研制直流超导电缆,该电缆380m长、单相、电压/电流为1.3kV/10kA。电缆一端连接变电站的整流器,另一端连接电解铝厂的母线。2015年开始进行中低压、大电流直流高温超导电缆关键技术的研究。提出了一种新型的自磁屏蔽型高温超导直流电缆结构,旨在消除各层超导带材临界电流的衰减,进而提高直流电缆的电流容量。第一种自屏蔽电缆结构如图24所示,在此种结构的直流电缆中,相邻层的电流方向相反,能有效降低各层带材的磁场。例如,由于第1层与第2层的电流方向相反,它们产生的磁场在第3层处将相互抵消,这样,第3层带材的临界电流将不会受到第1、2层的影响。应用此结构,电缆各层无磁场影响,临界电流几乎等于自场临界电流,超导线利用率高,临界电流几乎无退化,且可以获得任意大的运行电流结构,无电磁泄露。另外,为减少电缆端部带材与电流引线的各层连接数目,降低接触电阻,按照相同思路,同时提出了另外一种结构。两种自屏蔽型结构电缆将有效地提高电缆的载流容量,无电磁辐射、无信息泄露的自磁屏蔽型低压大电流高温超导直流电缆在高保密要求、高稳定性要求的互联网数据中心、军用舰船上等低压大电流输电场合有着重要的应用。 3发展趋势 经过近20年发展,国际上对高温超导交流电缆的研究已取得了很大的进展,技术相对较为成熟,相继建成多条示范工程,国际上几组典型实验运行的高温超导电缆参数情况如图所示),交流高温超导电缆和常规电缆输送容量和电压等级的比较如图所示。对于交流高温超导电缆,冷绝缘结构是其实用结构。但是,电压等级不宜超过340kV,原因之一是电压等级太高,绝缘占据空间大,不能充分体现超导电缆高载流密度特性;原因之二是介质损耗太高,冷却费用大幅度增加,运行不经济。未来交流高温超导电缆技术主要是在220kV及以下电压等级,其传输容量比常规345kV交联聚乙烯电缆还高。此外,虽然国内也有几组超导电缆试验运行,但是长度都在100m及以下,且未见开发具有中间连接装置的超导电缆研发报道。电缆终端、套管、中间连接装置等附件也是未来超导电缆实用化研发的重要部件。

高温超导体及其研究近况

高温超导体及其研究近况 姓名:高卓班级:材料化学09-1 学号:200901130805 所谓超导,是指在一定温度、压力下,一些金属合金和化合物的电阻突然为零的性质.利用此次性质做成的材料称为超导材料. 超导材料按其化学组成可分为:元素超导体,合金超导体,化合物超导体。近年来,由于具有较高临界温度的氧化物超导体的出现,有人把临界温度Tc达到液氮温度(77K)以上的超导材料称为高温超导体,上述元素超导体,合金超导体,化合物超导体均属低温超导体。以下就高温超导体作一个简要介绍。 一材料特点 自1964年发现第一个超导体氧化物SrTiO3以来,至今已发现数十种氧化物超导体。这些氧化物超导体具有如下共同的特征:(1)超导温度相对而言比较高,但载流子浓度低;(2)临界温度Tc随组分成单调变化,且在某一组分时会过渡到绝缘态;(3)在Tc以上温度区,往往呈现类似半导体的电阻-温度关系;(4)Tc和其他超导参量对无需程度敏感。 高温超导体在结构和物性方面具有以下特征;(1)晶体结构具有很强的地维特点,三个晶格常数往往相差3-4倍;(2)输运系数(电导率、热导率等)具有明显的各向异性;(3)磁场穿透深度远大于相干长度,是第二类超导体;(4)载流子浓度低,且多为空穴型导电;(5)同位素效应不显著;(6)迈斯纳效应不完全;(7)隧道实验表明能隙存在,且为库柏型配对。氧化物超导体的这些特征,引起人们的兴趣和关注。 二发展趋势 目前,在高温超导研究领域中,各国科学家正着重进行三个方面的探索,一是继续提高Tc,争取获得室温超导体;二是寻找适合高温超导的微观机理;三是加紧进行高温超导材料与器件的研制,进一步提高材料的Jc和Tc,改善各种性能,降低成本,以适用实用化的要求。 三国内外发展现状 超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE 在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方

电阻型超导限流器原理及优缺点

一、基本概念 理想的限流器应具备如下特征: (1)在电网正常输电时低阻抗或零阻抗; (2)在电网发生短路故障时迅速转为高阻抗和有效限制短路电流; (3)限流后能够自动、及时恢复到低阻抗或零阻抗状态; (4)能够与电网的保护系统匹配。 超导限流器是多年以来人们在超导电力技术领域的研究焦点之一,也是被认为最有可能率先实现工业化应用的超导电力设备。现在很多电网的短路故障电流水平已经超出或即将超出现有线路断路器能够应对的范围,电网运行安全存在着很大隐患。短路故障电流过大已经成为目前世界上很多国家输、配电网面临的迫切需要解决的问题。另外,高压直流输电,尤其是多端高压直流输电近些年发展迅速。与交流线路断路器相比,直流线路断路器的遮断容量与实际需要的差距更大,无法满足直流电网建设的需要。因此,无论是交流电网还是直流电网,目前都需求能够有效抑制故障短路电流水平的装置。 超导限流器有若干不同的分类方法,若以通流 /限流元件的阻抗特性划分,可以分为电阻型超导限流器和电感型超导限流器。 电阻型超导限流器最直接地利用了超导材料在超导态时电阻为零,而在失超后具有一定电阻的特性。将一个超导元件(一般为绕组

形式或多个模块组合形式) 串联在输电线路中就构成了一个最简单的限流器。在电路正常输电时,超导元件处于超导态,电阻为零,这时限流器的整体阻抗主要来源于非超导接头电阻和元件的交流损耗(直流输电不存在)量值很小。当线路发生短路故障时,超过超导元件临界电流的故障电流会使其失超,产生一定的电阻,起到抑制短路电流的作用。(主要通过在故障电流的激励下,超导材料瞬间从超导态转变为非超导态,产生大电阻串入故障线路,从而对故障电流起到限制作用) 二、优、缺点 电阻型超导限流器原理简单,所以其限流单元的设计和制作也比较简单,设备重量比较小。但由于限流功能要通过超导元件的失超来实现,限流后超导元件完全恢复到超导状态需要较长的时间,难以满足大多数电网保护系统自动重合闸的时间要求。另外由于在限流状态下超导元件的失超要产生大量的热,需要有一个可靠的在短时间内移除热量的机制和较大容量的冷却系统。也因为超导元件失超的原因,为了避免损坏,电阻型超导限流器不适宜较长的持续限流时间。一般地讲,电网电压越高,所需的限流阻抗越大。对于电阻型超导限流器,增加限流阻抗就要增加超导导体的长度,这就需要更大的绝热恒温器和冷却系统。当超导元件的体积很大时,很难实现其整体的温度和电磁条件的均匀性,其结果就是超导元件失超的时间和空间分布的不均匀性,导致限流能力的降低和损坏风险的增加。所以目前电阻

超导限流器

《电工技术杂志》2002年第7期?产品介绍? 超 导 限 流 器 李建基(西安高压电器研究所 710077) 摘 要 用超导限流器限制短路电流,是国际上大力研究的课题。超导限流器利用导体由超导态向正常态的转变,因此它的作用像非线性电阻。由于这种独特的物理特性。超导限流器成为一种比较理想的限流装置。 关键词 故障电流 超导体 限流器 1 前言 电网的短路会引起高达百倍于额定电流I N的短路电流I SC。电网中的元件设计必须使之在短路期间(典型时间为30~300ms)能承受由短路电流I SC引起的很高的机械负荷和热负荷。 在世界范围内,由于电力需求的增加,现有电网增加了新的馈电点,由此而使联网数量增加。由于短路电流的增加,短路裕度逐渐被用尽。 如果预期短路电流I pt超过电网元件的设计极限,或完全更新变电站设备,或采取措施减小短路电流。为此一般使用限流电抗器或使用具有高电抗的变压器,可以通过这些措施提高电网的阻抗;或者相应地减小预期短路电流I pt。这样做必须以增加运行损失特别是以加大电压降为代价。减小I pt 的另一种可能方法是将电网分成许多支网。所有这些措施都与提高电网稳定性的要求相矛盾。 理想的限流器应对电网的正常运行无影响,而在故障情况下能够限制短路电流使其接近额定电流值,这样就可以解决既要求电网阻抗小又要求短路电流小的矛盾。实现这种功能的电气装置基于快速开断电路(开断时间t<1ms,如用爆炸式熔断器或电力电子器件)、谐振频率失调的L R振荡回路和具有极大非线性电流2电压特性的元件,如半导体、带铁心的线圈和超导体等。 超导体的特点是从无阻态即超导态向电阻态的转变。超导限流器可分为电阻型和电感型。在电阻型超导限流器中,被保护电网的电流直接流过超导体,而在电感型超导限流器中,超导体被电感接入电路。 2 超导技术的优势 超导技术被公认的优势是它的零电阻特性。用它可减少输电损失,同时超导材料的电流密度大,已知的超导材料的电流密度约为100A/mm2,至少为普通铝和铜导体的十倍。由于超导体的零电阻特性,使之输电损失小且电流密度大,故超导技术可用于电缆、变压器、磁储能等方面。超导技术另一个被公认的优势是超导2正常态转换特性,如图1所示。这种转换在临界电流I C处进行。可利用这一特性制成超导限流器 。 图1 超导2正常态转换特性 3 超导限流器的作用原理 图2所示为超导体的相位图,可将其划分为三个区域:真正的超导区(ρ=0)、电阻与电流的特别关系区(ρ=ρ(I))、正常导通区(ρ=ρ(t)) 。 图2 高温超导体的简化相位图 实现超导限流器的捷径是采用电阻型器件。在电阻型原理中,超导体直接串联于被保护电路。在 — 4 5 —

什么叫做高温超导电缆

什么叫做高温超导电缆 发布日期:[2008-3-26] 高温超导电缆按传输的电力形式,可分为交流和直流两种;按其结构特点来划分,根据电气绝缘材料运行温度的不同,分为热绝缘或室温绝缘超导电缆(WD)和冷绝缘超导电缆(CD)。热绝缘超导电缆的电气绝缘层与常规电力电缆的绝缘层类似,工作在常温下;冷绝缘超导电缆的电气绝缘层工作在液氮的低温环境下,对绝缘材料的要求更高。当然,也可依照常规电力电缆的分类,分为单相电缆和多相电缆。 热绝缘超导电缆的基本结构,从内到外,依次为:管状支撑物(一般为波纹管,内通液氮);超导导体层(为超导带材分层绕制);热绝缘层(为真空隔热套件);常规电气绝缘层(工作在常温下);电缆屏蔽层和护层(与常规电力电缆类似)。 冷绝缘超导电缆的基本结构,从内到外,依次为:管状支撑物(内通液氮);超导导体层(为电缆载流导体);电气绝缘层(工作在液氮低温环境下);超导屏蔽层(为超导带材绕制);液氮回流层(与管状支撑物内的液氮构成液氮回流循环);热绝缘层(为真空隔热套件);常规电缆屏蔽层和护层。 终端(Termination)是高温超导电缆结构中的重要组成部分,是HTS电缆和外部其他电器设备之间相互连接的端口,也是电缆冷却介质和制冷设备的连接端口,担负着温度和电势的过渡。终端的结构是和电缆的结构相配套的,冷绝缘结构的电缆,由于多了一层超导屏蔽层和液氮回流层,结构较复杂。 电缆本体的超导导体层和常规金属在液氮环境下连接(SC-NC接头),再由常规金属(电流头)从液氮温度引出过渡到常温,电流头的尺寸经过专门设计,以求温度过渡均匀和整体导热最小。终端的热绝缘结构将尽量降低热漏;电气绝缘保证了电流头的绝缘强度和液氮从地电位(制冷系统)到高电位(电缆终端)的过渡。 德国著名学府和研究院近期发表的一篇文章<1>,共70页,全面从详介绍了当前超导材料的科研和应用现状。加拿大皇后大学发表了一篇文章<2>,系统的总结了元素和简单化合物的超导行为。现试将其部分主要内容,结合一些相关资料,简要归纳如下,供参考A/,引言。 超导现象,自从1911年被发现后,始终是引起人们强烈兴趣的主题。没有电阻的电流意味著在节能,高效和环保等多方面难以想象的巨大经济利益。同时他又不是一个简单的完全导体,还具有在1933年发现的超导体排斥磁场的麦斯纳(M e is s n e r)效应。这是完全导体所无法解释的现象。因此应该把它看作是一种物质的全新热力学状态。<1,2> 随着制冷技术和高压实验技术的发展,特别是1968年时,实验装置所允许的最高压力为25G Pa,而今已达260G Pa.(1G Pa=10197.16k g/c m2~10000k g/c m2).于是越来越多的元素和化合物,都已观察到超导现象。超导已不再是稀有罕见的奇迹,而是相对普偏现象。 1960年后,从有机物中寻找超导体的工作已经开始。1980年第一个有机超导体,te t ra m e t hy l-tet r as e le n a f u lva l e n e-p h o s p h o r u s h exa f lo r id e <(T M T S F)2P F6>出现<13>,Tc 4.2 K.随后又有Tc值提高到10 K的报导.于是研究论文大量涌现。F u l le re n e虽属单体,但结构庞大,近似于有机物。其C60的Tc竟高达33,明显超过了1986年前的最高记录23 K<1>.近期有机超导体的研究,也有很大发展<14>。2001年M g B2超导性能的发现,引起了人们极大的注意。一方面是由于它的Tc值达到了40K,另一方面是因为他的结构简单,制造成本低。在2001年时,已能成吨生产。在此基础之上<1,16>,目前正在寻找进一步提高Tc值的新化合物。B/,应用寻找工业应用永远是推动研究的推动力。从应用角度看,初期的超导材料很容易被外界磁场所抑制。实际应用困难较多。被称为I型超导材料。能在强磁场下保留其超导特性的材料,被称为I I型超导材料,或称硬超导材料。这些材料不像I型超导材料那样临界温度转变很突然,而是有一个过度区。在此区内,Tc值随外加磁场的加大而下降,故有两个临界磁场值,H c1和H c2.<17>。I I型超导由于H c2值较大,其应用领域十分广阔。如N b T i,N b3S n已形成了数十亿欧元的市场分额,作成超导线圈,制成电磁铁,用于M R I或高能物理所用粒子加速器。这些都是常规线圈无法达成的。虽然I I型超导应用潜力很大,但深度冷冻则需要相应的资金,装备和能量。特别是大型设备所需投入很大。在成本上的竞争力还嫌不足。因此许多大型电力系统的设备或部件,尽管作了很多精心设计,都还停留在试运行或示范阶段<17-20>.随着冷冻技术的发展和小型化<21>,许多微型超导电路结合了微型冷冻装置的开发,却已领先进入了市场,如S Q UI D在医疗器械,计算机芯片制造方面的应用等。高温超导滤波器正在向手机渗透

高温超导体发展趋势

超导材料具有的高载流能力和低能耗特性,使其可广泛用于能源、 交通、医疗、重大科技工程和现代国防等领域。超导技术是具有巨大 发展潜力的高技术。以铌钛和铌三锡为主的实用低温超导体的研究和 开发起始于20世纪60年代,到70年代开始广泛用于磁体技术。目前已在两方面形成了较大规模的应用。一是重大科技工程方面,主要是高 能物理研究所需的大型粒子加速器,如正在欧洲建造的周长为27km的 大型质子碰撞机LHC,以及热核聚变反应装置,如ITER和LHD等;二是在医疗诊断方面正在广泛应用的核磁共振成像系统MRI和具有较高科学 与应用价值的核磁共振谱仪NMR。 高温超导体自1986年被发现以来,在材料的各个方面,尤其是成 材技术和超导性能方面取得了很大的进展。与此同时,各种应用开发 研究也已广泛展开,并且取得了可喜的成果。HTS材料具有较高的临界 温度(Tc)和上临界磁场(Hc2),从而使超导技术的应用在材料方面 有了更广泛的选择。首先高温超导材料可以使超导技术在液氮温区实 现应用,高Hc2值使高温超导材料成为制造高场磁体(>20T)的理想 选择。近年来,千米长线(带)材的成功制造,已使高温超导材料在 电力能源方面的应用成为现实。这些应用包括:磁体、输电电缆、电 动机、发电机、变压器、故障电流限制器等。用高温超导材料制成的 不同量级(1~20kA)的电流引线已于90年代初实现商品化,并广泛应 用于各种超导磁体系统,使得低温超导磁体可由G-M致冷机冷却,无 需液氦,实现了超导磁体可长时间稳定运行的目标。从目前的发展现 状和趋势,可以清楚地预见,在今后20年内,高温超导技术将在广泛 的领域走向实用化和商品化。 目前已发现的高温超导材料都属于氧化物陶瓷材料,不易加工成 材。同时,很强的各异性和极短的相干长度使得高临界电流密度( Jc)只能在使晶体高度取向的情况下才能实现。在众多的高温超导材 料中,铋锶钙铜氧体系和钇钡铜氧体系最具有实用价值,所以线(带) 材的研究开发主要集中在这两类超导体。超导体的实际应用除了需要 高Jc之外,还需要材料有相当的长度(>1km)和良好的机械性能及热 稳定性。所以同金属材料复合是必由之路。银(银)及其合金由于其 良好的稳定性和塑性,成为合适的高温超导线材基体材料。经过十余 年的研究和开发,高温超导线(带)材已取得重大进展。 铋-2223线(带)材铋-2223超导体具有较高的超导转变温度(Tc~110K)和上临界磁场(Hc2,0~100T)。特别是其层状的晶体 结构导致的片状晶体很容易在应力的作用下沿铜-氧面方向滑移。所 以,利用把铋-2223先驱粉装入银管加工的方法(PIT法),经过拉拔 和轧制加工,就能得到很好的织构。另外,在铋-2223相成相热处理 时,伴随产生的微量液相能够很好地弥合冷加工过程中产生的微裂纹, 从而在很大程度上克服了弱连接的影响。正由于这两个基本特性,使 人们通过控制先驱粉末、加工工艺及热处理技术,成功地制备出了高 Jc(>104A/cm2,77K)长带。 目前世界上已有多家公司在开发和生产铋-2223带材。处于前列

桥式故障限流器的研究

电工电气 (2010 No.5) 作者简介:姚成(1985- ),男,硕士研究生,研究方向为超导故障限流器。 桥式故障限流器的研究 摘 要:针对现有断路器开断容量不能满足超高压系统故障短路电流要求的现状,介绍了两类桥式故障限流器的结构和基本工作原理;提出了两类桥式故障限流器结构的改进方案。分析了限流器的参数变化对限流特性的影响。仿真结果表明该类型限流器具有良好的限流作用。 关键词:桥式故障限流器;超导;仿真中图分类号:TM501 文献标识码:A 文章编号:1007-3175(2010)05-0013-04 姚成,梅军,姚磊,朱吉吉华 (东南大学 电气工程学院,江苏 南京 210096) Abstract: In allusion to the actuality that the breaking capacity of existing circuit-breakers can not satisfy the requirements of fault short circuit current in ultra-high voltage power transmission system. The schematic diagram and basic theory of two kinds of bridge-type fault current limiters were introduced. Two improved bridge-type fault current limiters were presented. The impact of parameters variation of the fault current limiter on current limiting characteristic was analyzed. The good effect of fault current limiter is verified by simulation. Key words: bridge-type fault current limiter; superconducting; simulation YAO Cheng, MEI Jun, YAO Lei, ZHU Zhe-hua (School of Electrical Engineering, Southeast University, Nanjing 210096, China ) Study on Bridge-Type Fault Current Limiter 0 引言 近几年,随着我国经济的飞速发展,社会对电力的需求不断增加,带动了电网的装机容量快速增长。此外,为了安全可靠地输送电能,使电网向超大规模发展,电网容量逐渐扩大,最终导致其短路电流水平急剧增加,因此电网的安全稳定问题越来越重要。根据国网公司的规划,2010年以后,三峡机组全部投运时,预计的最大短路电流周期分量将达300kA,如对此不加以限制,电网内的各种电气设备就必须更新以满足更苛刻的高短路电流水平要求,不但会使变电所的设备投资大幅增加,而且会对系统原有通信线路等产生严重的干扰危害。因此限制电网剧增的短路电流已成为电力系统研究领域所面临的一个重大课题,正在受到越来越多的关注。 1982年美国的洛斯阿拉莫斯国家实验室(LANL)和西屋电力公司(Westinghouse Electric Corpor - ation)首先提出了桥式超导限流器(Superconducting Fault Current Limiter,SFCL)的概念[1-2]。近几年来,有关桥式限流器的性能以及结构的改进成为限流器研究的热点。一方面,研究者用常规限流电感代替桥式超导限流器中超导材料,从而不需要复杂的超导技术,可靠性高、经济性好。另一方面,研究者以可控开关器件代替整流桥中的二极管,使限流器具有限流和断流的功能。就以上两方面,本文介绍了几种桥路型超导及非超导限流器,并对其限流原理、仿真分析及结构改进做了部分说明。 1 桥式超导故障限流器 1.1 桥式超导故障限流器的结构和工作原理 图1为桥式SFCL的单相电路图,它由4个二极管D 1到D 4、直流偏压源V b 、超导线圈L 组成,断路器CB 与限流器串联,用以切断被限制了的故障电流,偏压源V b 给L 提供偏流i L ,其电压调到足以克服二极管对(D 1和D 4或D 2和D 3)的正向电压降,并使偏流调至 桥式故障限流器的研究

高温超导材料论文 最新

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 自卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年, 发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge 超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1

超导输电的现状与发展

超导输电的现状与发展 电气1312 汤利文 9号 摘要:超导是一项尖端的技术,有所突破之后,对于人们来说会有非同一般的意义。而电的运输更是与我们的生活息息相关,有了超导技术的运用,输电将会变得极致高效。超导输电技术已逐步从实验走向生活,卓越的性能已被认可,具有良好的前景。 关键词:高温超导电缆;原理;节能;发展 引言:随着经济和社会的发展,人们对电能的需求量日益增长,使得电力系统各部分电气紧密连接,电力系统向更大规模方向发展,对电能品质和供电可靠性提出更高要求,对电气设备的环保要求和节能要求更严格。由于中国电力资源和负荷分布不均,使得长距离输电成为必然。而电能在传输中的损耗成为急需解决的突出问题。据统计,传统电线或电缆受铜、铝等基本导电材料电导率限制,2007 年中国在输变电过程中的损耗大约为7.5%(其中线路损耗约占70%左右)。为减少电能输变电过程中的损失,也需采用新型输电方式来实现资源节约型电能输送。作为智能电网基础技术之一,高温超导电缆采用具有很高传输电流密度的高温超导材料作为导体,其诸多优点已在电力工业中引起了越来越多的关注。使用了超导输电之后,那么就可以完全没有电能损失了,这样甚至可以取消目前普遍的高压传输。使用

了超导输电之后,那节省的电能相当于新建数十个大型发电厂。 原理: 在很低的温度下,物体的所有的电子速率降低,价电子运转在固定的平面上,达到临界温度,价和电子运转速率越来越低。核心习惯于常温下的核外电子快速运转,价和电子运转缓慢,造成了原子暂时缺失价电子的现象。核心就挪用相邻核心的价电子,相邻核心又挪用,所有的核心都向某一方向近邻挪用,于是就形成外层电子公用。这种核外层电子公用的状态就是物质的超导态,核外层电子处于公用的状态的物体就是超导体。通俗的讲,超导电缆的电阻非常小,而电缆在传输电能过程中主要的损耗就是电阻造成的。精确的讲,超导电缆还有特殊的结构,因为在交流系统中的阻抗不仅仅是电阻,总的来说,超导电缆有极小的导体电阻和系统阻抗,以大大降低电能传输过程中的损耗。 高温超导电缆: 英语全称High-Temperature Superconducting Power Cable,它由电缆芯、低温容器、终端和冷却系统四个部分组成。其中电缆芯是高温超导电缆的核心部分,包括骨架层、导体层、绝缘层和屏蔽层等主要部件。

高温超导体国内外现状

国外超导材料技术研发概况 新材料产业网作者:管理员 2010-9-10 15:17:03 来源: 新材料产业网 超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方面高温超导的发展目标(表1),其中在2020年前希望在HTS发电机、变压器和电缆方面具有显著改善,并完成长距离超导传输电缆;2030年前建成国家超导主干输电网络。 表1 美国DOE电力方面高温超导的发展目标

高温超导电缆技术概述

高温超导电缆技术概述 高温超导电缆是高温超导技术的重要应用之一,它集成了超导材料、低温制冷、电力工程、电缆等多学科技术于一身,是21世纪电力传输的新材料,并以其特有的优势,开始在世界范围内应用。 一、概述 超导材料的零电阻特性使其成为电流传输的理想导体。使用超导材料作为导体的电力传输电缆被称为超导电缆。低温超导体应用时以液氦作为冷却剂,液氦的价格很高,这就使低温超导电缆失去了工业化应用的可行性。使用高温超导材料制作超导电缆,可以在液氮的冷却下无电阻地传送电能,由于液氮的价格低廉,使高温超导技术的大规模应用成为可能。(一)高温超导电缆使用的导体材料 目前市场上可以用来制造高温超导电缆的材料主要是银包套的铋系高温超导材料(Bi,Pb)2Sr2Ca2Cu3O10的多芯带材,它的超导临界转变温度为105K~110K,临界工程电流密度为8000~12000A/cm2 。目前世界上最大的生产厂家是美国超导公司(American Superconductor,Co.),其生产能力和产品技术指标都处于领先地位。我国的北京云电英纳超导电缆有限公司的生产能力和产品技术指标也处于世界前列。 (二)高温超导电缆的基本结构 (1)内支撑管:通常为罩有密致金属网的金属波纹管,作为超导带材排绕的基准支撑物,同时用于液氮冷却流通管道;(2)电缆导体:铋系高温超导带材绕制而成,一般为多层;(3)热绝缘层:通常由同轴双层金属波纹管套制,两层波纹管间抽真空并嵌有多层防辐射金属箔,其功能是使电缆超导导体与外部环境实现热绝缘,保证超导导体安全运行的低温环境;(4)电绝缘层:电绝缘层置于热绝缘层外面,因其处于环境温度下,故习惯上被称为常温绝缘超导电缆(或热绝缘超导电缆)。电绝缘层置于热绝缘层里面,电缆运行时处于低温环境,故被称为冷绝缘超导电缆;(5)电缆屏蔽层的护层:电缆屏蔽层和护层的功能与常规电力电缆类似,即电磁屏蔽层,短路保护及物理、化学、环境防护等。 此外,高温超导电缆的结构中还可能包括一些辅助部件,例如电缆导体层间绝缘膜、约束电缆各部份相对位置的包层和调距压条等。 (三)高温超导电缆的附件 (1)制冷系统:高温超导电缆需要低温的工作环境(一般为液氮温区)。制冷系统通常由制冷机组、液氮泵和液氮储罐等部份组成。 (2)电缆终端:是超导电缆和外部其他电气设备之间相互连接的端口,也是电缆冷却介质和制冷设备的连接端口。终端的结构是和电缆的结构相配套的,常温绝缘超导电缆与冷绝缘超导电缆的终端在结构上有很大区别。 (四)高温超导电缆的运行损耗 因导体的电阻为零,所以高温超导电缆在运行时基本没有焦耳热产生。这与常规电缆有很大的差异,常规电缆运行时的主要损耗是产生焦耳热所带来的能量损耗。但交流输电时的磁滞损耗(简称交流损耗)及绝缘材料的介质损耗仍然存在。在计算超导电缆的运行损耗时,还必须考虑为其配套的制冷系统所消耗的能量。一般地说,在传输相同的容量的电能时,高温超导电缆的运行损耗约为常规电缆的50%~60%。 (五)高温超导电缆的分类 (1)按传输电流种类分为直流和交流电缆;(2)按电气绝缘结构分为常温绝缘电缆与冷绝缘电缆;(3)按电缆导体结构分为单芯电缆、三芯平行轴电缆和三芯同轴电缆。

相关主题
文本预览
相关文档 最新文档