当前位置:文档之家› 08-09 非晶态、取向态与织态结构

08-09 非晶态、取向态与织态结构

高中化学选修三_晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元.即晶体中无限重复的部分 一个晶胞平均占有的原子数=1 8×晶胞顶角上的原子数+1 4×晶胞棱上的原子+1 2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图.其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中.分子内的原子间以共价键结合.相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体.熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇.冰醋酸.蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例.可说明氢键具有方向性 ④笼状化合物--天然气水合物

《聚合物的凝聚态结构》复习题

《聚合物的凝聚态结构》复习题 1. 解释并比较下列名词: 凝聚态与相态;单晶、多晶与液晶; 2. 聚乙烯在下列条件下缓慢结晶,各生成什么样的晶体? (1) 从极稀溶液中缓慢结晶; (2) 从熔体中结晶; (3) 极高压力下固体挤出; (4) 在溶液中强烈搅拌下结晶。 3. 由什么事实可证明结晶高聚物中有非晶态结构? 试举两种实验事实说明PS 本体符合Flory 无规线团模型。 4. 由文献查得涤纶树脂的密度ρc =1.50×103kg ·m -3,和ρa =1.335×103kg ·m -3,内聚能ΔΕ=66.67kJ ·mol -1(单元).今有一块1.42×2.96×0.51×10-6m 3的涤纶试样,重量为2.92×10-3kg ,试由以上数据计算: (1)涤纶树脂试样的密度和结晶度;(2)涤纶树脂的内聚能密度. 5. 由大量高聚物的a ρ和c ρ数据归纳得到13.1=a c ρρ,如果晶区与非晶区的密 度存在加和性,试证明可用来粗略估计高聚物结晶度的关系式V c a X 13.01+=ρρ 6. 将熔融态的聚乙烯(PE )、聚对苯二甲酸乙二醇酯(PET )和聚苯乙烯(PS )淬冷到室温,PE 是半透明的,而PET 和PS 是透明的。为什么? 将上述的PET 透明试样,在接近玻璃化温度Tg 下进行拉伸,发现试样外观由透明变为混浊,试从热力学观点来解释这一现象。 7. 聚合物晶体为什么会有结晶度?如何测量并简述测量原理。 8. 何谓高聚物的取向?为什么有的材料(如纤维)进行单轴取向,有的材料(如薄膜),则需要双轴取向?说明理由。 9.请比较聚合物晶态与取向态的异同。 10. 解释下列实验:将一个砝码系于聚乙烯醇纤维的一端,把砝码和部分纤维浸入盛有沸水的烧杯中.如果砝码悬浮在水中,则体系是稳定的;如果砝码挨着烧杯底部,则纤维被溶解了. 11. 在两个牵抻比相同的PP 的纺丝过程中,A 用冷水冷却,B 用60℃的热水冷却。成丝后将这两种PP 丝放在90℃的环境中,发现两者的收缩率有很大不同。哪一种丝的收缩率高?说明理由。

聚合物结构的三个层次

1.1 聚合物结构的三个层次 近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决 定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。 远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。 凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。分子链结构是决定聚合物性质最基本、最重要的结构层次。熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。 关于化学结构与物理结构的确切划分,普遍认同的是 H.G .Elias 提出的界定原则: 化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。 聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。 物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。 取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构 大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。 1.2.1 结构单元的化学组成 结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。 尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律: 1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。 PA-66、PET 、PBT ~PE 、PP 强调:聚合物的近程结构,即结构单元的化学组成和结构始终是决定聚合物及其制品几乎所有物理化学性能的最重要因素。 1.2.2 结构单元的结构异构 结构单元的结构异构是指单体由聚合反应转化成结构单元的过程中由于部分原子或原子团的空间位置发生变动,生成化学组成相同但结构完全不同的另一种结构单元的现象。即生成不同构型的结构单元的过程。 两个重要的概念:构型和构象 所谓构型,乃是分子内相邻原子或原子团之间所处的空间相对位置的表征。换言之,构型是分子内通过化学键连接 的原子或原子团之间空间几何排列的状态,构型的特点在空间上和时间上是确定而不变的。 由此区别于下一节将要讲述的另一个概念:“构象”—在空间上和时间上是不确定而可变的。阳离子聚合链增长反应中常常发生原子或原子团的重排过程,也称异构化过程。这是阳离子聚合反应的最大特点! 以在二氯乙烷溶剂中,用三氯化铝,引发3-甲基丁烯的阳离子聚合反应为例: —————— 分子链结构凝聚态结构(一级结构) (二级结构)近程结构 远程结构 结构单元的化学组成结构单元的键合方式结构单元的构型分子链的几何形态 分子链的长短及分布晶态结构 非晶态结构 取向态结构液晶态结构织态结构 常规固态 特殊固态熔体、溶液聚 合 物 结 构 溶液结构熔体结构第三章第一章 第九章第二章C CH 3 CH 3 _CH 2 = CH CH +HCl +AlCl 3C 3CH 3 ~ [ CH 2 CH]n _~H CH 2C ~ []n CH 2CH 33 _ _~

第四章非晶态结构与性质

第四章非晶态结构与性质 内容提要 熔体和玻璃体是物质另外两种聚集状态。相对于晶体而言,熔体和玻璃体中质点排列具有不规则性,至少在长距离范围结构具有无序性,因此,这类材料属于非晶态材料。从认识论角度看,本章将从晶体中质点的周期性规则形排列过渡到质点微观排列的非周期性、非规则性来认识非晶态材料的结构和性质。 熔体特指加热到较高温度才能液化的物质的液体,即较高熔点物质的液体。熔体快速冷却则变成玻璃体。因此,熔体和玻璃体是相互联系、性质相近的两种聚集状态,这两种聚集状态的研究对理解无机材料的形成和性质有着重要的作用。 传统玻璃的整个生产过程就是熔体和玻璃体的转化过程。在其他无机材料(如陶瓷、耐火材料、水泥等)的生产过程中一般也都会出现一定数量的高温熔融相,常温下以玻璃相存在于各晶相之间,其含量及性质对这些材料的形成过程及制品性能都有重要影响。如水泥行业,高温液相的性质(如粘度、表面张力)常常决定水泥烧成的难易程度和质量好坏。陶瓷和耐火材料行业,它通常是强度和美观的有机结合,有时希望有较多的熔融相,而有时又希望熔融相含量较少,而更重要的是希望能控制熔体的粘度及表面张力等性质。所有这些愿望,都必须在充分认识熔体结构和性质及其结构与性质之间的关系之后才能实现。本章主要介绍熔体的结构及性质,玻璃的通性、玻璃的形成、玻璃的结构理论以及典型玻璃类型等内容,这些基本知识对控制无机材料的制造过程和改善无机材料性能具有重要的意义。 4.1 熔体的结构 一、对熔体的一般认识 自然界中,物质通常以气态、液态和固态三种聚集状态存在。这些物质状态在空间的有限部分则称为气体、液体和固体。固体又分为晶体和非晶体两种形式。晶体的结构特点是质点在三维空间作规则排列,即远程有序;非晶体包括用熔体过冷而得到的传统玻璃和用非熔融法(如气相沉积、真空蒸发和溅射、离子注入等)所获得的新型玻璃,也称无定形体,其结构特点是近程有序,远程无序。 习惯上把高熔点物质的液体称为熔体(指熔点温度以上,具有一定流动性的液体),所以对于硅酸盐来说,它的液体一般称之为熔体。 熔体或液体介于气体和晶体之间,高温时其结构状态接近气体,在低温时接近晶体。可从以下几个方面来说明通常所接触到的熔体,其结构更接近于晶体。 (一)通常的熔体是处于离熔点不远的状态 以H2O为例,其冰的熔点为0℃,水的汽化点为100℃,所以通常所研究的水(常温液态H2O)是处于离熔点不远的状态。 硅酸盐物质的熔点一般都很高,多数处于1000℃以上,而所研究的熔体都只比熔点高几百度,即远离气化点,处于靠近熔点的温度,这时的熔体状态更接近于晶体。 (二)固体熔融时体积变化不大 晶体转化为液体时,体积变化ΔV<10%; SiO2转化为液体时,体积变化ΔV<3%。 说明:固体和液体中的质点之间距离变化不大。 (三)固体熔化热比液体气化热小得多 冰的熔化热为6.02 kJ/mol,而水的气化热为40.40 kJ/mol 熔化热Na:2.51 k J/mol Zn:6.69 kJ/mol 说明:固体和液体的内能差别不大,即内部质点之间作用力差别不大。 (四)固液态热容相近 表4-1 几种金属固、液态时的热容值 物质名称Pb Cu Sb Mn 固体热容(J/mol)27.30 31.11 29.81 46.47 液体热容(J/mol)28.47 31.40 29.94 46.06 说明:液体中质点的热运动状态与固体中相类似,即基本上仍是在平衡位置作谐振动。 (五)X射线衍射图相似

高三化学复习有机化学--结构与性质的关系

高三化学复习有机化学----结构与性质 一、掌握各类有机物的官能团及性质 ㈠烃类有机物的性质 1.烷烃: ⑴饱和烃---特征反应为与X2发生取代反应,条件光照,得到各种卤代烃的混合物。 ⑵氧化反应---燃烧(单不能被高锰酸钾酸性溶液氧化)。 ⑶高温分解(如甲烷高温分解得到碳黑和氢气,其它烷烃可以发生裂解反应)。 2.烯烃:官能团为 --- C═C ⑴不饱和烃---特征反应是与(H2、X2、HX、H2O)等的加成反应。 ⑵氧化反应---燃烧、被高锰酸钾酸性溶液氧化。 ⑶聚合反应---加成聚合反应。 3.炔烃:官能团为 --- C≡C ⑴不饱和烃---特征反应是与(H2、X2、HX、H2O)等的加成反应。注意加成时与烯烃比较。 ⑵氧化反应---燃烧(与乙烯燃烧的比较)、被高锰酸钾酸性溶液氧化。 4.芳香烃:以苯为例。 ⑴取代反应---卤代反应、硝化反应、磺化反应。 ⑵加成反应---与氢气在催化剂、加热的条件下加成得到环己烷。 ⑶氧化反应---燃烧。 ㈡烃的衍生物的性质 1.卤代烃:以一溴乙烷为例(CH3CH2Br)官能团为 ---卤原子─X。 ⑴水解反应---与NaOH的水溶液共热,是取代反应。 ⑵消去反应---与NaOH的醇溶液共热,是消去反应。规律略。 2.醇:以乙醇为例(C2H5OH)官能团为---羟基─OH ⑴与活泼金属的反应(如K、Na、Ca等)⑵与氢卤酸的反应---取代反应 ⑶催化氧化反应---条件、反应规律、断键位置等 ⑷分子间脱水反应---条件、取代反应、断键位置 ⑸分子内脱水反应---条件、消去反应、断键位置、反应规律 ⑹酯化反应---条件、取代反应、断键位置、酯的种类、书写、名称等 3.酚:以苯酚为例,官能团---酚羟基─OH ⑴酸性(与氢氧化钠溶液、碳酸钠溶液的反应)俗名石炭酸 ⑵苯环上的取代反应(比苯容易,由于羟基的影响)与浓溴水反应产生白色沉淀(应用) ⑶与铁盐的显色反应—用于检验苯酚 (─CHO) 4.醛和酮:官能团:羰基、醛基 ⑴醛、酮与氢气的加成反应 ⑵银镜反应(检验醛基的反应、氧化反应、银氨溶液的制备方法) ⑶与新制的氢氧化铜悬浊液的反应 5.羧酸和酯:羧酸的官能团是羧基─COOH ⑴酸性(有酸的通性,弱酸,比碳酸的酸性强

聚合物的取向结构

聚合物的取向结构 1.简述 取向是指在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿外力方向的择优排列。未取向的聚合物材料是各向同性的,即各个方向上的性能相同。而取向后的聚合物材料,在取向方向上的力学性能得到加强,而与取向垂直的方向上,力学性能可能被减弱。取向聚合物材料是各向异性的,即方向不同,性能不同。 聚合物的取向一般有单轴取向和双轴取向两种方式。单轴取向指在一个轴向上施以外力,使分子链沿一个方向取向。如纤维纺丝、薄膜的单轴拉伸。双轴取向一般在两个垂直方向施加外力。如薄膜双轴拉伸,使分子链取向平行薄膜平面的任意方向。在薄膜平面的各方向的性能相近,但薄膜平面与平面之间易剥离。 2.实例 2.1聚丙烯薄膜 水蒸汽透过系数是评价包装材料阻水性能的重要参数之一。分子取向程度不同,材料的水蒸汽透过系数也不相同。聚丙烯是半结晶性材料,存在结晶区与无定形区。结晶区结构比较紧密,通常情况小分子物质从结构松散的无定形区中通过,而经过取向拉伸后聚丙烯的结晶度将提高,结构松散的无定形区将减少,因此小分子物质通过PP的有效途径就减少了。BOPP薄膜的结晶度要高于OPP薄膜的结晶度,因此在一定的温湿度条件下,双向拉伸聚丙烯(BOPP)、单向拉伸聚丙烯(OPP) 和未拉伸聚丙烯(CPP)三种薄膜的透湿系数值依次增加。说明拉伸取向操作可提高PP 薄膜的阻湿性能。 薄膜单轴拉伸时,与拉伸方向平行的强度随着拉伸比的增加而增加,但垂直于拉伸方向的强度则随之下降。例如,把聚丙烯(PP)薄膜高度拉伸,那么在拉伸方向上薄膜的强度非常高,但在垂直拉伸方向上,薄膜就非常容易被撕裂,从而形成“裂膜纤维”。目前市场上大量使用的包扎带就是拉伸成纤化的PP裂膜纤维。 在一定的温度条件下,拉伸比越大,则PP分子链的取向度越大,即薄膜的断裂伸长率减小,冲击强度、耐折性增大,力学强度提高、模量增大、透气、光泽性变好。纵向拉伸使高分子链呈单轴纵向取向,大大提高了铸片的纵向力学性能,而横向性能恶化。在进一步横向拉伸之后,高分子链于是呈双轴取向状态。随着取向度的不断提高,伸直链段数目相应增多,折叠链段数目减少,BOPP的密度和强度都相应提高,断裂伸长率却降低了。

液晶高分子材料的现状及发展前景

液晶高分子材料的现状及发展前景 1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。 一、液晶主要分类: 1、主链型液晶高分子,主要包括 (1)溶液型主链高分子液晶 (2)热熔型主链高分子液晶 2、侧链型高分子液晶,主要包括 (1)溶液型侧链高分子液晶 (2)热熔型侧链高分子液晶 二、液晶高分子的研究进展 关于液晶高分子几年来的主要进展可概括为以下几个方面: (1)合成出一系列含有各种新型介晶基元的液晶高分子,如柱状(或碟状)液晶分子、复合型液晶高分子以及刚性链侧链型液晶高分子. (2)部分液晶高分子品种已实现了工业化生产.基础研究和应用基础研究取得了显著进展,如液晶高分子结构与性能关系;液晶高分子相变动力学和热力学;液晶高分子的固态结构和结晶行为;溶致液晶高分子相图;热致液晶高分子加工流变学及其共混改性理论等,都取得了显著进展.在此基础上开发了复合材料和原位复合材料. (3)新型功能液晶高分子的合成以及液晶高分子在外场作用下的液晶行为研究也取得发显著进展. 三、液晶高分子研究趋势 液晶高分子虽然近年来有了迅速的发展,但总体上还只是处于发展的初期.预计今后将会更蓬勃的发展.其发展趋势主要有以下几方面: (1)努力降低液晶高分子产品成本.主要途径是扩大生产规模、寻找和选用更廉价的单体、改进合成工艺和采用共混方法等. (2)研究解决制品的各向异性如“焊缝”等问题.主要途径有:改进模具设计和成型条件、玻纤增强和填料填充以及共混技术. (3)大力发展分子复合材料和原位复合材料. (4)发展功能液晶高分子,这主要是侧链型液晶高分子,主要集中于聚硅氧烷类、聚丙烯酸

第四章 非晶态结构与性质

第四章非晶态结构与性质 【例4-1】一种用于制造灯泡的苏打-石灰-石英玻璃的退火点是514℃,软化点是696℃,计算这种玻璃的熔融范围和工作范围。 【解】按公式 退火点:514+273=787K时粘度η=1012Pa·s 软化点:696+273=969K时粘度η=4.5×106Pa·s , 则: 解之:△E=429 kJ/mol,得:Pa·s 工作温度范围粘度一般为103~107 Pa·s,由于 当η=103Pa·s时,℃ 当η=107Pa·s时,℃ 所以工作温度范围是682~877℃ 熔融范围粘度一般是10~100Pa·s 当η=10Pa·s时,℃

当η=50Pa·s时,4℃ 所以熔融温度范围是940~1009℃ 【例4-2】已知石英玻璃的密度为2.3g/cm’,假定玻璃中原子尺寸与晶体SiO2相同。试计算玻璃原子堆积系数(APC)是多少? 【解】设在体积为1nm3内SiO2原子数为n,则密度 按题意ρ=2. 3g/cm3=2.3×10-21g/nm3,SiO2相对分子质量M=60.02g代入上式求得n: 个/nm3 在1nm中SiO2所占体积 则: 【例4-3】正硅酸铅玻璃密度为7.36g/cm3,求这个玻璃中氧的密度为若干?试把它与熔融石英(密度为2.2g/cm3)中的氧密度比较,试指出铅离子所在位置。 【解】正硅酸铅PbSiO3的相对分子质量为GM=207.2+28+16×3=283.2 在1cm3中PbSiO3的个数为:个/cm3 在PbSiO3玻璃中氧的密度为:g/cm3 同样求得石英玻璃中SiO2的个数n2和氧的密度为ρ2: 个/cm3,g/cm3显然ρ1>ρ2,即PbSiO3玻璃中氧的密度高于石英玻璃SiO2中氧的密度。因而PbSiO3玻璃中Pb2+作

聚合物的取向态

聚合物的取向态 什么是取向? 当线型高分子充分伸展的时候,其长度为其宽度的几百几千甚至几万倍,这种悬殊的几何不对称性,使它们在外力场的作用下很容易沿外力场方向作占优势的平行排列,这就是取向。 简单来说,取向就是在外力作用下,分子链沿外力方向择优排列。聚合物的取向现象包括分子链、链段的取向,以及聚合物的晶片、晶带沿特定方向的择优排列。 取向与结晶的异同 相同:都与高分子有序性相关,是熵减小的过程 不同:取向态是一维或二维有序,结晶是三维有序 取向是相对稳定的非热力学平衡态,结晶为 热力学平衡态; 取向为非自发过程,结晶为自发过程 取向机理

取向过程是分子在外力作用下的有序化过程。外力除去后,分子热运动使分子趋向于无序化,即称为解取向过程。 取向的过程是在外力作用下运动单元运动的过程。必须克服高聚物内部的粘滞阻力,因而完成取向过程要一定的时间。 对于无定型高聚物,只有分子取向的问题,通常是通过在Tg温度以上使之变形,然后在Tg以下使得分子链和链段的运动处于冻结状态来达到。 1、各取向单元的取相机理 (1)链段取向:通过单键的内旋转引起的链段运动来完成,这种取向在玻璃化温度以上就可以进行。 (2)分子链取向:通过各链段的协同运动来完成,只有在粘流态下才能实现。(3)晶粒的取向:通过晶区的破坏和重新排列来完成,一般需在外力作用下进行。即伴随晶片的倾斜、滑移过程,原有的折叠链晶片被拉伸破坏,重新为新的折叠链晶片、伸直链微晶或由球晶转变为微纤结构。 2、非晶态聚合物的取向 对于非晶态聚合物,有链段取向和分子取向两种可能,在高弹态下只发生链段取向,不发生分子取向。 在粘流态下,两种都发生,但首先发生链段的取向,然后才发生整个分子的取向。 3、晶态聚合物的取向 非晶区中可能发生链段取向和分子链的取向;晶区中还可能发生晶粒的取向。通常分为四个阶段: (1)无定型部分随着外力的方向取向,晶片以整体的形式产生相对位移;(2)晶片中分子链发生倾斜滑移,同时,晶片中的分子链被拉直并产生变形;(3)晶片被拉碎成若干个片段,并沿外力方向取向; (4)所有的晶片和无定型区的分子链都沿着外力的方向单轴取向。 取向的特点 1、各向异性 未取向时,大分子链和链段的排列是随机的,因而呈现各向同性。

简述高分子液晶材料的结构特点

简述高分子液晶材料的结构特点 0808010229 金俊 摘要:液晶相是不同于固相和液相的一种中介相态。本文系统地阐述了液晶高分子的分类及其结构特点,并用具体例子或者相应结构示意图形象说明。 关键词:液晶高分子、分类、结构 引言: 液晶高分子(简称LCP)是近几十年年迅速发展起来的新型高性能高分子材料,因具有独特的结构和优异的性能而引起世界各国的高度重视【1】。与普通高分子材料不同,其最大特点是在一定条件下能形成液晶态,此时分子排列存在位置上的无序性,但在取向上仍有某种程度的长程有序性。高分子液晶的研究已成为高分子学科发展的一个重要方向。随着高分子液晶材料合成研究的迅速发展,人们对高分子液晶的结构和性能研究产生了极大兴趣,并取得了很大的成就。 1 液晶高分子的分类 液晶是一类具有特殊性质的液体,既有液体的流动性又有晶体的各向异性特征。现在研究及应用的液晶主要为有机高分子材料。一般聚合物晶体中原子或分子的取向和平移都有序,将晶体加热,它可沿着2 个途径转变为各向异性液体。一是先失去取向有序而成为塑晶, 只有球状分子才可能有此表现, 另一途径是先失去平移有序而保留取向有序,成为液晶。研究表明, 形成液晶的物质通常具有刚性的分子结构,同时还具有在液态下维持分子的某种有序排列所必需的结构因素,这种结构特征常常与分子中含有对位次苯基、强极性基团和高度可极化基团或氢键相联系【2】。 1.1 根据液晶分子结构特征 根据刚性部分在分子中的相对位置和连接次序,可将其分成主链型高分子液晶和侧链型高分子液晶。在高分子液晶中,刚性部分如果处于聚合物主链上,即为主链型液晶;刚性部分如果是由一段柔性链与聚合物主链相连.成梳状,即为侧链型液晶。在物理化学性质上方面,主链型液晶与侧链型液晶表现出相当大的差异。 1.2 根据液晶形态【3】 根据刚性分子链堆砌所形成的物理结构,可分为三种织态结构:即向列型液晶、近晶型液晶和胆甾型液晶(图1)。 在近晶型液晶中,棒状分子形成层状结构,每个分子都垂直于层面或与层面成一定角度排列。无论取何种排列状态,分子之间都是互相平行排列的。这种排列的分子层之间的作用力比较弱,相互之间易于滑动,因而近晶型液晶呈现二维

高分子液晶的物理性质及其应用-高分子物理化学(高聚物结构和性能)论文

高分子液晶的物理性质及其应用 PB02206287 丁蕾禹川 物质的液晶态 物质通常分为气态、液态和固态三态。它们在一定条件下可以相互转化。自然界的固体多为晶态。在晶态下,原子或分子紧密排列成晶格,其物理性质多为各向异性,有固定熔点,晶面间夹角相等。晶体熔化时由于晶格解体,出现流动性,此时的液体不再具有规则外形和各向异性特征。 一些物质的结晶结构熔融或溶解之后虽然变为了具有流动性的液态物质,但结构上仍保存一维或二维有序排列,在物理性质上呈现各向异性,形成兼有部分晶体和液体性质的过渡状态,称为液晶态,而这种状态下的物质称为液晶。 形成液晶的物质通常具有刚性分子结构,分子呈棒状,同时还具有在液态下维持分子的某种有序排列所必须的结构因素。这种结构特征常与分子中含对位苯撑、强极性基团和高度可极化基团或氢键相联系。如4,4’-二甲氧基氧化偶氮苯: 分子上两极性基团间相互作用有利于形成线性结构,从而有利于液晶有序态结构的稳定。由固态到液晶态和液晶态到液态的过程都是热力学一级转变过程。 液晶分近晶型、向列型、胆甾型三种结构类型。 近晶型:棒状分子互相平行排列为层状结构,长轴垂直于层平面。层间可相对滑动,而垂直层面方向的流动困难。这是最接近结晶结构的一类液晶。其粘性较大。 向列型:棒状分子互相平行排列,但其重心排列是无序的,只保存一维有序性。分子易沿流动方向取向和互相穿越。故向列型液晶流动性较大。 胆甾型:扁平的长形分子靠端基相互作用彼此平行排列为层状结构,长轴在平面内。相邻层间分子长轴取向由于伸出面外的光学活性基团相互作用,依次规则扭转一定角度,而成螺旋面结构。两取向相同的分子层之间的距离称胆甾液晶的螺距。这类液晶有极高的旋光特性。 液晶高分子 高分子液晶按其液晶原所处位置不同而分为主链型和侧链型液晶。主链液晶的主链即由液晶原和柔性链节相间组成。侧链液晶的主链为柔性,刚性的液晶原接在侧链上。 主链类溶致型高分子液晶中,刚性基团为一些环状单元,其分解温度往往低于其熔点,故不能成为热致型液晶。主链类热致型液晶所含刚性基团为链状与环状结构相间的单元,称作介晶基团。降低热致型液晶熔点的方法有:将带有介晶基团的单体与其它单体共聚;在刚性基团上加不对称取代基使结构有序度降低;将带有上述刚性基团基团的链段与适当长度的柔性链段共聚。 含介晶基团的单体也可作为侧链接到主链上,形成侧链液晶。若介晶基团通过某种柔性链衔接到主链,更有利于中介相的形成。侧链高分子液晶的介晶基团行为与单体介晶基团

3.聚合物的取向态结构

聚合物的取向态结构 1.取向:大分子链、链段或微晶在某些外力作用下,可以沿着外力方向有序排列,这种有 序排列叫做取向(一维或二维有序)<非平衡状态> 2.取向对材料性能的影响 (1)沿取向方向上的力学性能提高,与取向垂直的方向上则降低 (2)产生光学双折射现象 (3)使用温度提高,密度、Tg、结晶度都会提高 3.取向的类型 (1)单轴取向:分子链或链段沿拉伸方向择优取向(纤维) (2)双轴取向:分子链或链段倾向于与拉伸平面平行排列,但在x、y平面内分子的排列是无序的(薄膜) 4.取向机理 (1)链段取向:通过单键的内旋转引起的链段运动来完成(>Tg) (2)分子链取向:通过各链段的协调运动来完成(Tf) (3)晶粒取向:通过晶区的破坏和重新排列来完成(外力作用) ①非晶态聚合物的取向:高弹态:链段取向;粘流态:分子链取向 ②晶态聚合物的取向:微晶取向;非晶区中发生链段和分子链取向(外力作用下) 5.解取向:外力场除去,分子热运动将使有序结构自发地趋向无序化(熵增) (1)解取向:链段解取向、分子链解取向:取向越快,解取向越快,故链段解取向优先发生 (2)取向后降温至Tg以下,“冻结”获取向材料 (3)晶态取向比非晶态取向稳定;晶态取向在晶格破坏之前是无法解取向的 6.解取向的表征 (1)取向函数物理意义:定量表示取向程度 (2)取向单元完全平行于参考方向:φ=0,f=1(理想取向) 取向单元完全垂直于参考方向:φ=90°,f=﹣1/2 完全不取向:f=0 7.取向度的测定 实验原理: (1)双折射法:分别测定平行和垂直于纤维轴的折光指数,其差值的最大值可以用来计算取向度 (2)声速法:声速在高聚物中的传播速度与高分子链的取向有关,可以用平行和垂直于分子链方向上的声速来计算取向度(取向方向上的传播速度比垂直于取向方向上的传播速度快)(3)XRD:测定衍射圆弧强度来计算取向函数或测定cos2φ来计算f (4)红外二色法:聚合物试样中某基团的吸光强度与振动偶极距M有关,未取向高聚物M 的变化方向呈均匀分布,而取向聚合物M也发生取向

高聚物的液晶态结构

高聚物的液晶态结构 发现历史 1950年A.埃利奥特和E.J.安布罗斯发现了聚L-谷氨酸γ苄酯的氯仿溶液的双折射现象,从而开创了高聚物液晶领域的科学研究。高聚物形成液晶态的重要条件是高分子链的刚性。在能够形成液晶的刚性或半刚性链高聚物中,有的是溶于溶剂中在其浓度达到某一临界值时才呈现出液晶行为者,称溶致性液晶,这类高聚物有聚肽和芳香族聚酰胺等;有的是加热熔化后形成液晶的,称热致性液晶,这类高聚物有芳香族聚酯等。根据有序微区中分子链排列的不同,高聚物液晶又有三种可能的中介相:①向列相,刚性分子链之间的取向排列倾向平行于一个共同的纤维轴,而分子链的质量中心是无序的,在正交偏振片下呈现出线状的图形。芳香族聚酰胺是溶致性向列相液晶。而芳香族聚酯为热致性向列相液晶。②胆甾相,刚性分子链分层排列,在每层中分子链互相平行排列成向列相,而相邻的层中分子链的取向方向依次扭转了一定角度而形成了螺旋形结构,并具有一定的螺距,在正交偏振片下呈现出指纹状的图形。聚肽类高聚物和脱氧核糖核酸等生物高分子为溶致性胆甾相液晶。③近晶相,刚性分子链整齐地排列成分层叠合的层状结构,形成近似于晶体的有序结构。许多具有能形成液晶的侧链聚丙烯酸酯和聚硅氧烷类的高聚物为热致性 近晶相液晶。

这些不同的中介相结构在外界条件(温度、电场、磁场等)的影响下可以发生转变。如在电场和磁场作用下,胆甾相液晶可以转变为向列相,而在向列相液晶中加入旋光性物质时则可呈现出胆甾相特性。 60年代末,人们利用向列相高聚物液晶态的结构特性进行纺丝,制取了超高模量、高强度的高聚物纤维。 一、高分子液晶的分子结构 (1)、分子链必须是相当刚性或者是半刚性的,在溶液中分子链近乎呈棒状; (2)、分子链大多有苯环,而且要是对位相连,同时分子中要含有极性基团具有可极化性,以形成永久偶极; (3)、对于形成胆甾型的液晶,除了上述两点外,还必须具有光学活性因素。 二、高分子液晶的结构类型 高分子液晶态按其液晶原所处的位置不同,可以分为两大类:一类是主链由液晶原和柔性的链节相间组成,称为主链液晶;另一类分子主链是柔性的,刚性的液晶原连接在侧链上,称为侧链液晶。 根据分子排列的形式和有序性的不同,液晶有三种不同的结构类型: 1、近晶型(Semectic)

高聚物结构与性能的关系

高聚物结构与性能的关系;1.高聚物的结构;按研究单元的不同分类,高聚物结构可分为两大类:一;1.1高聚物链结构;高聚物的链结构包括近程结构和远程结构;高聚物链结构是决定高聚物基本性质的主要因素,各种;1.2高聚物的聚集态结构;高聚物的分子聚集态结构包括晶态、非晶态、液晶态、;因此对高聚物材料来说,链结构只是间接影响其性能,;2.高聚物结构与力学性能的关系; 2高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 1.1 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 1.2 高聚物的聚集态结构

高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 2.1链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯、聚碳酸酯、聚丙烯腈、环氧树脂和聚二甲基硅氧烷(硅橡胶)等等都是不同分子结构的高聚物,它们或是晶态高聚物,或是非晶态高聚物,或是橡胶,或是不溶不熔的热固性树脂,这些都是一般人都知道的常识。交联能使本来可溶可熔的热塑性塑料成为既不能溶解也不会熔融的热固性树脂,物理力学性能有了大幅提高;普通的支化会使高聚物的性能变坏;单官能团的封端能大大改善聚碳酸酯的热稳定性,以及具有离子键的高聚物玻璃化温度会提高很多等等,这样的例子俯首可拾。在我们的高分子物理教材中都详细的介绍高聚物结构单元的化学组成、端基、结构单元的键接方式、结构单元的空间立构、结构单元的键接序列以及支化和交联导致的不

高聚物的聚集态结构

第二章高聚物的聚集态结构 第一部分内容简介 一般材料存在三态――固、液、气态 而高聚物存在二态 固—晶态 液—玻璃态(无序)、高弹态、粘流态(熔化态) (过冷液体)液晶 分子链的确定(分子间力) 近程结构的确定 分子链间距(规整性) §2.1大分子间作用力与性能的关系 内聚能密度CED:1mol凝聚态变成1mol气态所需的能量。 (1)若均为无定形(玻璃态)CED越大,聚集态材料E越高(硬)。 (2)PE不结晶时――E小;PE结晶时――有序度提高,分子间力增大,E大(塑)。(3)EPDM不结晶――E小(橡胶)。

§2.2高聚物结晶形态 一、结晶形态——与结晶条件有密切关系 (1)单晶—极稀溶液中缓慢生成(0.01%) 1957、A.keller. 电镜照片 厚10nm 1953 电子衍射照片 (2)球镜—浓溶液或熔体中生成 (直径 0.5~100μm ,有黑十字消光现象) 偏光显微镜 观测方法 电镜—染色(氯磺酸刻蚀) 分离晶区.非晶区 (3)其它 树枝晶,如高分子量聚乙烯 柱晶、串晶,如拉伸时PP 结晶 伸直链晶—高拉伸性,且ρ=0.99.(理想晶) T m 无穷大 二、结晶度的计算 完全结晶高聚物(每晶胞为单位)密度可计算 以聚乙烯为例密度趋近于1.00 实际高聚物密度可测ρ 无定形高聚物可测ρa=0.85 %100100?--?=a c a v c f ρρρρ%=高聚物的总量晶区的量α ρ????==c b a c 单元重量晶胞中结构单元的个数每个晶胞的体积每个晶胞的重量

k t n 2ln 21= §2.3 聚合物的结晶过程 一、结晶动力学 Avrami 方程 n 为Avrami 指数与成核机理及生长方式有关,k 为结晶速率常数 半结晶期 t 1/2 二、结晶热力学 (1)结晶高聚物的熔融 熔点:(Tm) 晶态高聚物熔融结束所对应的温度。 熔限:晶态高聚物,从开始熔融到熔融结束所对应的温度范围 (2)影响T m 的因素(Mark 耐温三角原理)》 T m = △H m /△S m △H m 为熔融前后的焓变 △S m 为熔融前后的熵变 结构因素:分子间作用力大,△H m 增大,T m 高 分子链刚性增加或取向先结晶,△S m 减小,T m 高 结晶完善、晶片厚度增加,△H m 增大,T m 高 外因: 结晶温度高时,晶体的完善程度增大,T m 高 (主要通过影响聚合物结构来体现) n kt t e v v v v -∞ ∞=--=0θ

聚合物结构三个层次

聚合物结构的三个层次 近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决 定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。 远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。 凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。分子链结构是决定聚合物性质最基本、最重要的结构层次。熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。 关于化学结构与物理结构的确切划分,普遍认同的是 提出的界定原则: 化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。 聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。 物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。 取向、结晶和分子链的构象则属于物理结构 大分子链的近程结构 大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。 1.2.1 结构单元的化学组成 结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。 尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律: 1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。 PA-66、PET 、PBT ~PE 、PP 强调:聚合物的近程结构,即结构单元的化学组成和结构始终是决定聚合物及其制品几乎所有物理化学性能的最重要因素。 1.2.2 结构单元的结构异构 结构单元的结构异构是指单体由聚合反应转化成结构单元的过程中由于部分原子或原子团的空间位置发生变动,生成化学组成相同但结构完全不同的另一种结构单元的现象。即生成不同构型的结构单元的过程。 分子链结构凝聚态结构(一级结构)(二级结构)近程结构远程结构结构单元的化学组成结构单元的键合方式结构单元的构型分子链的几何形态分子链的长短及分布晶态结构 非晶态结构取向态结构液晶态结构织态结构常规固态特殊固态熔体、溶液聚合物结构 溶液结构熔体结构第三章第一章 第九章第二章

相关主题
文本预览
相关文档 最新文档