当前位置:文档之家› 2.4GHz无线传输芯片

2.4GHz无线传输芯片

2.4GHz无线传输芯片
2.4GHz无线传输芯片

BK2411是由博通(BEKEN)推出的一款国产 2.4G无线收发芯片,和nRF24L01硬件引脚兼容,软件上和nRF24L01也是基本相同,可以说是nRF24L01的国产纺织品,针对工业控制、门禁、考勤、监控、安防等行业应用特点推出。BK2411采用QFN-20封装,其尺寸为4*4mm。2.4GHz全球开放ISM频段免许可证使用,其FSK调制使其灵敏度更好,GFSK调制使其频率更有效率,拥有1Mbps或者2Mbps的空中数据传送速率。BK2411的可编程输出功率有:-35,-25,-15,-5,0,5dBm。在0dBm的输出功率下,发送模式消耗14mA的功耗,在1Mbps的数据传送速率下,接受模式消耗21mA的功耗。它具有自动数据处理功能,适合于1:6星形网络的6数据通道,供应电压为 1.9V到 3.6V。在POWERDOWN模式下为3uA的直流电流,在standby-I模式下为410uA直流电流。

UM2455是一款低成本,高集成度的2.4GHz无线收发芯片,主要应用于低功耗的无线传输,针对ISM频段(2.405 – 2.4835GHz)的短距离通讯以及控制。芯片采用先进的0.18 RFCMOS工艺,内部集成接收机、发射机、频率合成器、DSSS

基带、MAC调制解调器。DSSS调制解调器支持O – QPSK调制方式,传输速率250Kbps 或625Kbps可选。UM2455底层硬件支持收发数据缓冲(TX/RX FIFO), 防碰撞机制(CSMA-CA), 加密机制(Security engine), MAC 功能, 空

闲信道评估(Clear Channel Assessment), 链路质量指示(link quality indication), 外部MCU或寄存器睡眠唤醒.。其灵敏度为-92dBm。MCU可通过SPI口控制UM2455工作参数以及128字节发送接收FIFOs。外围电路简单,只需搭配MCU

以及少数外围被动器件。

MC13213是基于飞思卡尔第二代ZigBee平台,它将一个低功耗的2.4GHz 收发器和一个8位的微处理器集成于一个9*9mm的LGA-71封装芯片中。MC13213既可以用于点对点的无线数据传输,又可以构成一个ZigBee网状网络。它将收发器和微处理器集成于一个极小封装中大大的降低了产品成本。MC13213中包含一个传输频率为2.4GHz的ISM频率的且符合IEEE802.15.4协议的RF收发器。这个收发器包含一个低噪声的放大器,1mW的输出电源,集成收发开关,内部压控振荡器,板上电源管理,调制器和解调器。MC13213还包含一个基于MCU中HCS08系列的微控制器,并能提供60KB的闪存和4KB的RAM。它的供电电压为2~3.4V,传输频率范围是2.4~2.5GHz,其灵敏度为-90dBm。

nRF24L01是由NORDIC生产的工作在2.4GHz~2.5GHz的ISM 频段的单片无线收发器芯片。无线收发器包括:频率发生器、增强型“SchockBurst”模式控制器、功率放大器、晶体振荡器、调制器和解调器。当工作在发射模式下发射功率为0dBm 时电流消耗为11.3mA ,接收模式时为12.3mA,掉电模式和待机模式下电流消耗更低。它采用QFN20 4*4mm封装,其供电电压为1.9V~3.6V,输入引脚可承受5V电压输入。它的工作频率范围为:2.400GHz~2.525GHz。在工作过程中,发射功率可选择为0dBm、-6dBm、-12dBm和-18dBm,数据传输速率支持1Mbps和2Mbps。它采用了低功耗设计,接受时工作电流为12.3mA,0dBm功率发射时11.3mA,掉电模式时仅为900nA。

A7105是一款低成本且适用于2.4GHz ISM频段的无线应用的射频芯片。内

置高灵敏的接收器(1Mbps@ -93dbm),所以在10米以内的应用产品,工作频率编程设置,最高速率500Kbps,支持4pin(SPI)或3pin控制。另外有2种数据传输模式选择:FIFO(利用内部的内存先储存要发射/接收的数据),Direct(直接发射/接收数据)。在FIFO模式下,支持CRC(CRC16),FEC(约可增加灵敏度2dbm),数据加密,Manchester code的编/解码。它的工作频段为2.4Ghz~2.483GHz ISM段。其供电电压为1.9V~3.6V,并且采用低功耗设计,发送模式下为16mA,接收模式下为19mA,当处于休眠状态下时电流小于1uA。其接收器灵敏度高达1Mbps@-93dBm。它使用了QFN-20的封装。

综合上述几款芯片,nRF24L01在2.4GHz频段市场的占有率较高,20片的均价为五元左右,相对其他芯片而言比较便宜。这款芯片在装上外置天线之后,能对其传输距离实现明显的提高。

常用无线通信协议

常用无线通信协议 目前使用较广泛的近距无线通信技术有蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外线数据传输(IrDA).此外,还有一些具有发展潜力的近距无线技术标准,分别是ZigBee,超宽频,短距通信,WiMedia,GPS,DECT,无线1394和专用无线系统等。 蓝牙(Bluetooth)技术 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。蓝牙技术的实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,提供1Mbps的传输速率和10m 的传输距离。 优势:⑴全性高。蓝牙设备在通信时,工作的频率是不停地同步变化的,也就是跳频通信。双方的信息很难被抓获,防止被破解或恶意插入欺骗信息。⑵于使用。蓝牙技术是一项即时技术,不要求固定的基础设施,且易于安装和设置。 不足:⑴通信速度不高。蓝牙设备的通信速度较慢,有很多的应用需求不能得到满足。⑵传输距离短。蓝牙规范最初为近距离通信而设计,所以他的通信距离比较短,一般不超过10m。 Wi-Fi(无线高保真)技术 无线宽带是Wi-Fi的俗称。所谓Wi-Fi就是IEEE 802.11b的别称,它是一种短程无线传输技术,能够在数百英尺范围内支持互联网接入的无线电信号。Wi-Fi速率最高可达11Mb/s,电波的覆盖范围可达200m左右。 优势:⑴覆盖广。其无线电波的覆盖范围广,穿透力强。可以方便地为整栋大楼提供无线的宽带互联网的接入。⑵速度高。Wi-Fi技术的传输速度非常快,通信速度可达300Mb/s,能满足用户接入互联网,浏览和下载各类信息的要求。 不足:安全性不好。由于Wi-Fi设备在通信中没有使用跳频等技术,虽然使用了加密协议,但还是存在被破解的隐患。 IrDA(红外线数据协会)技术 IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。 IrDA 的主要优点是无需申请频率的使用权,因而红外通信成本低廉。并且还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点。此外,红外线发射角度较小,传输上安全性高。IrDA的不足在于它是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而该技术只能用于 2 台(非多台)设备之间的连接。 优势:⑴无需申请频率的使用权,因此红外线通信成本低廉。⑵移动通信所需的体积小、功耗低、连接方便、简单易用。⑶外线发射角度较小,传输上安全性高。 不足:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而只用于两台设备之间连接。ZigBee(紫蜂)技术 ZigBee使用2.4 GHz 波段,采用跳频技术。它的基本速率是250kb/s,当降低到28kb/s 时,传输范围可扩大到134m,并获得更高的可靠性。另外,它可与254个节点联网。 优势:⑴功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。⑵成本低。因ZigBee数据传输速率低,协议简单,所以成本很低。⑶网络容量大。每个ZigBee网络最多可支持255个设备。⑷作频段灵活。使用的频段分别为2.4GHz、868MHz(欧)及915MHz(美),均为免执照频段。 不足:⑴数据传输速率低。只有10kb/s~250kb/s,专注于低传输应用。⑵有效范围小。有效覆盖范围为10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。 UWB(超宽带)技术 UWB(Ultra Wideband)是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB 有可能在10 m 范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。 特点:⑴系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,载货能力低。⑵定位精度高,相容性好,速度高。⑶成本低,功耗低,可穿透障碍物。近距离无线传输 NFC(近距离无线传输)技术 NFC采用了双向的识别和连接。在20cm 距离内工作于13.56MHz 频率范围。NFC现已发展成无线连接技术。它能快速自动地建立无线网络,为蜂窝设备、蓝牙设备、Wi-Fi 设备提供一个“虚拟连接”,使电子设备可以在短距离范围进行通讯。 特点:NFC的短距离交互大大简化了整个认证识别过程,使电子设备间互相访问更直接、更安全和更清楚,不用再听到各种电子杂音。NFC 通过在单一设备上组合所有的身份识别应用和服务,帮助解决记忆多个密码的麻烦,同时也保证了数据的安全保护。此外NFC 还可以将其它类型无线通讯(如Wi-Fi 和蓝牙)“加速”,实现更快和更远距离的数据传输。

芯片架构解释(带无线)

数据通信协议加速器(ProtocolAccelerator): 1、媒体访问控制(Media Access Control,MAC):在无线通信中,用户通过一个共享的无线物理链路联结起来,但多个用户与主机的通信不能同时进行,因此需要将用户“排队”进行服务,而排队需要一个协议,MAC就提供了这种排队协议。 2、基带处理器(Baseband Processor,BBP):首先明白什么是“基带信号”,基带信号即信源(BBP的上一层:MAC层)发出的没有经过调制的原始电信号,其频率较低,为数字信号(在本系统中),并不适合或不能进行传输。基带处理器可以将基带信号调制成可以稳定发射的信号,相反地,也可以将接收到的,经AD转换后的信号解调成目的信号,简单地理解,基带处理器是一个调制解调器(老师,理解得对不对?)。 3、数模转换器(Digital to Analog Converter,DAC):将BBP调制好的信号转换成模拟信号。 4、模数转换器(Analog to Digital Converter,ADC):接接收到的信号转换成数字信号供BBP 解调。 5、射频(Radio Frequency,RF):指可以辐射到空间的电磁频率。 6、功率放大器(Power Amplifier,PA):上一层的射频信号功率太小,需要功率放大器将信号放大获得足够的射频功率以后,才能馈送到天线上辐射出去。 7、低噪声放大器(Low Noise Amplifier,LNA):天线接收到的信号极其微弱,在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望采用低噪声放大器减小这种噪声,以提高输出的信噪比。 8、收发转换器(Switch):该芯片在信号的发射和接收极可能只能半双工工作,因此用收发转换器来协调信号的发射和接收。 保密子系统(Security Subsystem) 1、无线局域网鉴别和保密基础结构(Wireless LAN Authentication and Privacy Infrastructure,WAPI):是一种安全协议,同时也是中国无线局域网安全强制性标准,当前全球无线局域网领域仅有的两个标准,分别是美国行业标准组织提出的IEEE 802.11系列标准(俗称Wi-Fi,包括802.11a/b/g/n/ac等),以及中国提出的W API标准。W API是我国首个在计算机宽带无线网络通信领域自主创新并拥有知识产权的安全接入技术标准。早在2003年,我国批准W API标准发布,但为什么在市面上仍然很少见应用W API标准的产品呢?W API自发布之后,就遭到了美国的打击,在经过多年分奋战后,安全性虽然获得了包括美国在内的国际上的认可,但是一直受到WIFI联盟商业上的封锁,一是宣称技术被中国掌握不安全,所谓的中国威胁论;二是宣称与现有WIFI设备不兼容。由于美国的打击,WiFi已主导市场。实际上,W API和WIFI唯一不同的只在认证保密方面,虽然两者互不兼容,但应用W API 标准的终端设备,是可以自动切换并接收WIFI信号的。而想要使用W API标准,现有的设备并不需要更换网卡,只需要安装特定驱动或者应用补丁即可。 2、有线对等加密(Wired Equivalent Privacy,WEP):是一种设备间无线传输的数据的加密方式,防止非法用户窃听或侵入无线网络。不过密码分析学家已经找出WEP 好几个弱点,因此在2003年被Wi-Fi Protected Access (WPA) 淘汰。 3、计数模式CBC-MAC协议(Counter CBC-MAC Protocol,CCMP):一种加密算法,其核心算法为AES加密算法。CCMP被认为是目前无线网络比较安全和可靠的加密算法。 4、临时密钥完整性协议(Temporal Key Integrity Protocol,TKIP):一种加密算法,TKIP是包裹在已有WEP密码外围的一层“外壳”,这种加密方式在尽可能使用WEP算法的同时消除了已知的WEP缺点。该加密算法会令路由器的吞吐量会下降3成至5成,大大地影响了路由器的性能。

一文读懂无线通信技术分类

一文读懂无线通信技术分类 无线技术正在迅速发展,并在人们的生活中发挥越来越大的作用。而随着无线应用的增长,各种技术和设备也会越来越多,也越来越依赖于无线通信技术。本文盘点下物联网中无线通信主要的技术。 无线通信技术分类美国通信委员会(FCC)分类 2015年,美国通信委员会(FCC,Federal Communications Commission)技术咨询委员会(TAC,Technological Advisory Council)网络安全工作组在一份白皮书中提到了将物联网通信技术分成了以下四类: Mobile/WAN,Wide Area Network - 移动广域网络,覆盖范围大 WAN,Wide Area Network - 广域网,覆盖范围大,非移动技术 LAN,Local Area Network - 局域网,覆盖范围相对较小,如住宅、建筑或园区 PAN,Personal Area Network - 个域网,覆盖范围从几厘米到几米不等主要的无线技术及分类如下表所示: 不知为何,FCC TAC将Sigfox归入了LAN,而LoRaWAN归入了WAN。Sigfox与LoRaWAN 都同属于LPWAN领域中的窄带技术,都是可以广域覆盖。Weightless SIG在LPWAN领域中主推的将会是Weightless-P。NB-IoT也没有列入其中。新的技术在不断出现,也在不断地重塑物联网市场的格局。 KEYSIGHT分类 在KEYSIGHT的一份PPT中《Low Power Wide Area Networks,NB-IoT and the Internet of Things》,将IoT无线技术做了比较详细的划分,如下图所示: 相关术语如下: NFC,Near Field CommunicaTIon - 近场通信

移动(无线)通信施工安全操作规程

移动(无线)通信施工安全操作规程移动(无线)通信专业是一个综合性很强的专业,他包括电源、交换、基站等多个专业。所以,移动(无线)通信施工除遵循以上各专业安全操作规范外,还应注意以下安全事项: 1、施工人员必须经过专业技术培训并考试合格,身体检查健康,持证上岗。 2、施工用安全标志、工具、仪表、电器设施和各种设备,必须在施工前加以检查,确认其完好,方能进入施工现场。 3、登高作业时,如发现安全设施有缺陷或隐患,必须解决后方可作业。 4、施工人员要统一着装工作服,佩戴相应的劳动保护用品;天线吊装现场(包括室内楼房吊装)要设置醒目的安全作业警示区域,确保行人和车辆的安全。 5、吊装天线前应先勘查现场,制定吊装方案;天线施工人员必须明确分工和职责,由专人统一指挥,吊装现场必须避开电力线等障碍物。 6、吊装前应检查吊装工具的可靠性,起吊天线时,应使天线与铁塔或楼房保持安全距离,不可大幅度摆动;向建筑物的楼顶吊装时,起吊的钢丝绳不得摩擦楼体。 7、天线挂架强度、水平支撑杆的安装角度应符合设计要求;固定用的包箍必须安装双螺母,加固螺栓必须由上往下穿;如需另加镀锌角钢固定时,不得在天线塔角钢上钻孔或电焊。 8、馈线弯曲时应圆滑,其曲率半径应符合设计要求;馈线进入机房内时应略高于室外或做滴水弯,不得使雨水延馈线流进机房;馈线进洞口处必须密封和做好防水处理。 9、馈线进入机房前,必须至少有三处以上的防雷接地点;馈线进入机房后必须安装避雷器。 10、上塔作业时,应根据场地、设备条件以及施工人员、施工季节编制登高施工安全技术措施。 11、铁塔施工人员必须佩带好符合国家标准、质量合格的安全带和安全帽;攀登铁塔时,

短距离无线通讯(芯片)技术概述

短距离无线通讯(芯片)技术概述 一、各种短距离无线通信使用范围与特性比较 无线化是控制领域发展的趋势,尤其是工作于ISM频段的短距离无线通信得到了广泛的应用,各种短距离无线通信都有各自合适的使用范围,本文简介几种常见的无线通讯技术。 关键字:短距离无线通信,红外技术,蓝牙技术,802.11b,无线收发 工业应用中,现阶段基本上都是以有线的方式进行连接,实现各种控制功能。各种总线技术,局域网技术等有线网络的使用的确给人们的生产和生活带来了便利,改变了我们的生活,对社会的发展起到了极大的推动作用。有线网络速度快,数据流量大,可靠性强,对于基本固定的设备来说无疑是比较理想的选择,的确在实际应用中也达到了比较满意的效果。但随着射频技术、集成电路技术的发展,无线通信功能的实现越来越容易,数据传输速度也越来越快,并且逐渐达到可以和有线网络相媲美的水平。而同时有线网络布线麻烦,线路故障难以检查,设备重新布局就要重新布线,且不能随意移动等缺点越发突出。在向往自由和希望随时随地进行通信的今天,人们把目光转向了无线通信方式,尤其是一些机动性要求较强的设备,或人们不方便随时到达现场的条件下。因此出现一些典型的无线应用,如:无线智能家居,无线抄表,无线点菜,无线数据

采集,无线设备管理和监控,汽车仪表数据的无线读取等等。1.几种无线通信方式的简介 生产和生活中的控制应用往往是限定到一定地域范围内,比如:主机设备和周边设备的互联互通,智能家居房间内的电器控制,餐厅或饭店内的无线点菜系统,厂房内生产设备的管理和监控等0~200米的范围内,本文着重探讨短距离无线通信实用技术,主要有:红外技术,蓝牙技术,802.11b无线局域网标准技术,微功率短距离无线通信技术,现简介如下: 1.1 红外技术 红外通信技术采用人眼看不到的红外光传输信息,是使用最广泛的无线技术,它利用红外光的通断表示计算机中的0-1逻辑,通常有效作用半径2米,发射角一般不超过20度,传统速度可达4 Mbit/s,1995年IrDA(InfraRed Data Association)将通信速率扩展到的高达16Mbit/s ,红外技术采用点到点的连接方式,具有方向性,数据传输干扰少,速度快,保密性强,价格便宜,因此广泛应用于各种遥控器,笔记本电脑,PDA,移动电话等移动设备,但红外技术只限于两台设备通讯,无法灵活构成网络,而且红外技术只是一种视距传输技术,传输数据时两个设备之间不能有阻挡物,有效距离小,且无法用于边移动边使用的设备。 1.2 蓝牙技术 蓝牙技术是一种短距离无线通信技术,它采用无线电射频技术实现设备之间的无线互连,有穿透能力,能够全方位传送,主要面对

无线通信技术应用及发展

龙源期刊网 https://www.doczj.com/doc/eb9650402.html, 无线通信技术应用及发展 作者:郭永刚路彬 来源:《电子技术与软件工程》2018年第19期 摘要 无线通信技术作为推动我国经济不断向前发展的重要力量,不仅促使我国生产力水平不断得到提升,而且还有效改善了人民的日常生活质量,并在电力系统之中得到了广泛的应用与发展,特别是在电力通信方面起着关键的作用,为我国电网建设提供了全面的技术保障。安全有效的电力系统可以在各个方面合理地分配电能,遇到电力系统事故可以予以及时的解决。电力通信系统作为电力系统的重要组成成分,能够促使电网调度工作达到自动化以及现代化的目的,并且从根本上保证电网的安全性以及经济性。 【关键词】无线通信技术应用发展 随着我国经济发展水平的不断提升,科学技术的不断进步,促使现代通信技术变得更加科学化以及数字化。由于当前信息知识更新速度较快,而且经济发展速度呈现高度上升趋势,使得人们在信息获取方面提出了更高的要求。为有效解决无线通信技术在使用过程中出现的问题与矛盾,必须要全面秉持创新理念,综合运用与之相关的技术手段来予以解决,从而在最大程度上满足人们在信息获取方面所提出的各项需求,并为其不断提供多方面的信息资源,为科学规划工作的顺利开展奠定良好基础,推动无线通信技术蓬勃发展。 1 无线通信技术的发展 1.1 无线通信技术的联合化与集成化 全面结合我国当前资金状况、技术水平以及市场需求等相关方面的内容,将会采用融合方式来对目前的无线网络开展异构网络的联合工作,从而促使通信网络的形成,并成为无线通信技术发展内容之一。现阶段,我国网络融合形式包括:接入网、核心网融合以及业务融合等,对于选择不同的网络来实现接入工作时,需要先对其开展协同工作,从而促使无线网络的使用者达到无线漫游的目的。在构建未来通信终端时,需要为其添加配置能力,并不断提升该项能力,便于计算机与通信技术进行全面的融合,而且在该种技术下通信终端便不会接收到用户的干预内容,同时还可以为用户提供丰富多样的网络接入方式,便于其随时展开网络监控工作,及时更新升级与之相关的软件。除此之外,由于时代不断进步,人们需求水平不断提升,因此未来无线通信技术的构建要全面符合时代发展特征以及全方位满足用户提出的各项需求,而且无线通信技术要保证能够实现多种功能集成的目的,例如语音、数据以及图像业务的综合、无线传输模块的综合等。 1.2 无线网络通信技术的有效融合

物联网中的几种短距离无线传输技术电子教案

短距离无线通信场指的是100m 以内的通信,主要技术包括Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(Ultra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。各国也相应地制定短距离通信技术标准,特别是RFID 和NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的RFID 相关规范有欧美的EPC 规范、日本的UID(Ubiquitous ID)规范和ISO 18000 系列标准。中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。例如科技部、工信部联合14 部委制订的《中国RFID 发展策略白皮书》等。此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。 1、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(IEEE802.11b),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。 最初的IEEE802.11规范是在1997年提出的,称为802.11b,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率是2.4GHz,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如802.11a和802.11g的先后推出,Wi-Fi的应用将越来越广泛。速度更快的802.11g使用与802.11b相同的正交频分多路复用调制技术,它也工作在2.4GHz频段,速率达54Mb/s。根据最新的发展趋势判断,802.11g 将有可能被大多数无线网络产品制造商选择作为产品标准。微软推出的桌面操作系统Windows XP和嵌入式操作系统Windows CE,都包含了对Wi-Fi的支持。 2、UWB技术 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复

常用无线网络通信技术解析

常用无线网络通信技术解析 发表时间:2017-10-19T10:33:32.157Z 来源:《基层建设》2017年第17期作者:陶庆东 [导读] 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 广东省电信工程有限公司广东东莞 523000 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 关键词:无线网络;通信技术;分析 无线网络随着局域网的发展而不断发展,无线网络不需要进行布线,就可以实现信息传输,为人们的通信提供了较大的便利。无线网络不仅具有质量高的优点,同时还可以降低通信成本,所以在许多的领域中,都可以应用无线网络通信,以此提高各领域的工作效率,充分发挥无限网络的的应用优势。目前我国无线网络通信技术有很多种,与人们的生活也息息相关,所以应常用网线网络技术的深入的分析,以此不断提高无线网络通信技术水平。 1 无线广域网 无线广域网不仅可以实现与私人网络进行无线连接,同时还可以与遥远的观众进行无限连接。在无限广域网中,常使用的通信技术,主要有以下几种,GPS、GSM、以及3G,下面就针对这三种技术进行探讨。 1.1 GPS GPS是一项重要的定位技术,其主要基础为子午仪卫星导航系统,它可以在海陆空进行三维导航,同时还具有较强的定位能力,美国在1994年全面建成。GPS系统主要由GPS卫星星座、地面监控系统以及GPS信号接收机三部分组成,GPS系统的卫星共有24颗,它们在轨道平面上均匀分布,其主要负责两方面工作,其一是对卫星进行监控,其二计算卫星星历;对于GPS用户设备主要由两部分组成,一部分为GPS信号接收机硬件,另一部分为GPS信号接收机处理软件。GPS在工作过程中,通常利用GPS信号接收机,对GPS卫星信号进行接收,并对信号进行相应的处理,进行确定相关的信息,包括用户位置以及速度等等,以此实现GPS定位以及导航的目的。GPS系统具有一定的特点,包括操作简便、高效率以及多功能等,最初,在军事领域中应用GPS,随着GPS系统的不断发展,GPS应用范围越来越广,在民用领域中应用力度逐渐加大,特别是在工程测量中,可以实现全天候的准确监测,大大提高了工程测量的精度,促进工程测量的行业的不断发展。 1.2 GSM GSM是全球移动通信系统的简称,是蜂窝系统之一。GSM发展的较为迅速,在欧洲和亚洲,已经将GSM作为标准,目前在世界上许多的国家,都建立的GSM系统,这主要是因为GSM系统具有一定的优势,如稳定性强、通话质量高、以及网络容量等等,这主要是因为GSM系统在工作中,可以实现多组通话在同一射频进行,GSM系统一般主要有包括三个频段,即1800MHZ、900MHz以及1900MHz。 1.3 GPRS GPRS是指通用分组无线业务,它是一种新的分组传输技术,在应用过程中,GPRS具有较多的优点,包括广域的无线IP连接、接口传输速率块等等。在GPRS系统运行过程中,通过分组交换技术,一方面可以实现多个无线信号共一个移动用户使用,另一方面可以实现一个无线信道共多个移动用户使用。信道资源会在移动用户进行无数据传输过程中让出来,这样可以实现无线频带资源利用率的提升。 2 无线局域网 无线局域网主要指的网络传输主要通过无线媒介,包括无线电波以及红外线等。对于无线局域网通信技术覆盖范围,一般情况下,在半径100m左右,目前IEEE制订的无线局域网标准,主要采用的是IEEE802.11系列标准,对于网络的物理层,作出的主要规定,同时还规定了媒质访问控制层。该系列的标准有很多种,包括IEEE802.11、IEEE802.11a、IEEE802.11b等等,对此进行简单的介绍。 2.1 IEEE802.11 对于无线局域网络,最早的网络规定为IEEE802.11,2.4GHZ的ISM工作频段是其工作的主要频段,物理层主要采用技术主要有两项,即红外线技术、跳频扩频技术等等,主要能够解决两项问题,一种为办公室局域网问题,另一种为校园网络用户终端无线接入问题。IEEE802.11数据传输速率可以达到2Mbps,随着我国网络技术的发展,IEEE802.11也得到了研究和发展,陆续推出了IEEE802.11b和IEEE802.11a,其中陆续推出了IEEE802.11b的数据传输速率可以达到11Mbps,IEEE802.11a的数据传输速率可以达到54Mbps,以此满足不断发展的高带宽带网络应用的需要、 2.2 IEEE802.11b 在现实生活使用中,我们可以将IEEE802.11b称作为Wi-Fi,2.4GHz频带是IEEE802.11b工作主要的频带之一,物理层主要由支持两个速率,即5.5Mbps和11Mbps,IEEE802.11b传输速率会受许多因素的影响,包括环境干扰和传输距离等,传输速率可以进行相应的切换。直接序列扩频DSSS技术是IEEE802.11b主要采用的技术。对于IEEE802.11b,可以将其工作模式可以分为两种,一种为点对点模式,另一种为基本模式,其中点对点模式是指两个无线网卡计算机之间的相互通信;基本模式还包括两种通信方式,一种为无线网络的扩充的时的通信方式,另一种指的是有线网络并存时的通信方式。 2.3IEEE802.11a 在美国,IEEE802.11a主要有三个频段范围,即5.15-5.25GHz、5.725-5.825GHz,物理层和传输层的速率可以达到54Mbps和 25Mbps,正交频分复用的独特扩频技术是IEEE802.11a主要采用的技术,通过该技术,可以实现传输范围的扩大,同时对于数据加密,可以达到152位的WEP。 3 无线个域网 在网络架构的底层,设置无线个域网WPAN,一般点对点的短距离连接使用无线个域网。对于无线个域网,使用的通信技术包括红外、蓝牙以及UWB等等,对此下面进行详细的介绍和分析。 3.1 蓝牙 蓝牙作为一种短距离无线通信技术,主要应用小范围的无线连接。蓝牙技术的传输速率为1Mbps,有效的通信范围在10m-100m范围,2.4GHz频段是蓝牙运行的频段,传输速率可以通过GFSK调制技术来实现,同时通过FHSS扩频技术还可以将信道分成若个的时隙,

无线通信技术的安全性

浅谈无线通信技术的安全性 摘要:近年来,无线通信技术飞速发展,各种无线技术的应用已经融入我们的生活,给我们生活带来许多的便捷。但它也面临着一些不可避免的安全威胁。本文从分析无线通信网络的安全威胁出发,讨论了无线通信网络的几种安全保密技术,可以更好的保证用户和网络的安全性。 关键词:无线通信;安全性;lte 安全技术 abstract: in recent years, the rapid development of wireless communication technology, wireless technology has come into our life, brings a lot of convenience to our life. but it also faces some inevitable security threats. based on the analysis of wireless communication network security threat sets out, discussed several kinds of wireless communication network security technology, can better guarantee the safety of users and network. key words: wireless communication; security; lte security technology 中图分类号:e96文献标识码:文章编号: 引言 随着我国经济社会的飞速发展和科技上的进步。在无线通讯技术的方面也得到了一个飞速的发展,已经进入了全新的一个时代。

主流无线芯片汇总及特点解析

主流无线芯片汇总及特点解析时代需要速度更快、互操作更方便以及更安全可靠的无线网络,Nordic VLSIASA、Freascale、Atmel等具有国际影响力的IC生厂商都相继推出了新一代短距离无线数据通信收发芯片,以nRF905、CC1100 为主流的无线芯片性能得到了很大提高,最新的无线收发芯片将全部无线通信需要的调制/解调芯片、高/低频放大器等全部集成在芯片中,使外围器件大幅度减少,很容易与各种型号微控制器连接实现高可靠性无线通信,使开发无线产品成本大大降低,开发难度更简单,应用更广泛,嵌入式无线通信和无线网络将逐步取代现有的有线通信和有线网络,无线技术将展示其巨大的影响力,必将掀起一场的新的技术浪潮。系列A: 433/868/915MHZ频段 1. NRF905基本特性工作电压:1.9-3.6V 调制方式: GFSK 接收灵敏度:-100dBm 最大发射功率: 10mW (+10dBm) 最大传输数率:50kbps 瞬间最大工作电流: <30mA 工作频率:(422.4-473.5MHZ)1) 接收发送功能合一,收发完成中断标志2) 433/868/915 工作频段,433MHZ 开放ISM 频段免许可使用3) 发射速率50Kbps,选用外置433 天线,空旷通讯距离可达300 米左右,加功放可到3000 米左右;室内通信仍有良好通信效果,3-6层可实现可靠通信,抗干扰性能强,很强的扰障碍穿透性能;4) 每次最多可发送接收32 字节,并可软件设置发送/ 接收缓冲区大小1/2/4/8/16/32 5) 100 多个频道,可满足多点通讯和跳频通讯需求6) 内置硬件 8/16 位CRC 校验,开发更简单,数据传输可靠稳定。 7) 1.9-3.6V 工作,低功耗,待机模式仅2.5uA. 8) 内置SPI 接口,也可通过I/O 口模拟SPI 实现。最高SPI 时钟可达10M。 2. SI4432基本特性1) 完整的FSK 收发器,2) 工作频率范围430.24~439.75MHz;发射功率最大17dBm,接收灵敏度-115 dBm(波特率9.6Kbps);空旷通讯距离800 米左右(波特率9.6Kbps) 3) 工作频率范围900.72~929.27MHz;发射功率最大17dBm;接收灵敏度-115 dBm(波特率9.6Kbp);空旷通讯距离800 米左右(波特率9.6Kbps) 4) 传输速率最大128Kbps 5) FSK 频偏可编程(15~240KHz) 6) 接收带宽可编程(67~400KHz) 7) SPI 兼容的控制接口,低功耗任务周期模式,自带唤醒定时器 8) +20dB,低的接收电流(18.5mA),最大发射功率的电流(73mA) 3. CC1100芯片特性工作电压:1.8-3.6V 接收灵敏度:在1200 波特率下-110dBm 最大发射功率: 10mW (+10dBm) 最大传输数率:500kbps 瞬间最大工作电流: <30mA 工作频率:(387-464MHZ)1)315、433、868、915Mh 的ISM 和SRD 频段2)最高工作速率500kbps,支持2-FSK、GFSK 和MSK 调制方式选用外置433 天线,直线通讯距离可达300 米左右,降低通信波特率距离更远,我公司也提供高精度参数RF1100SE 模块,性能更佳,室内通信仍有良好通信效果,3 层左右可实现可靠通信,抗干扰性能强,很强的扰障碍穿透性能; 3)高灵敏度(1.2kbps 下-110dDm,1%数据包误码率) 4)内置硬件CRC 检错和点对多点通信地址控制5)较低的电流消耗(RX 中,15.6mA,2.4kbps,433MHz) 6)可编程控制的输出功率,对所有的支持频率可达+10dBm 7)支持低功率电磁波激活功能,支持载波侦听系统 8)模块可软件设地址,软件编程非常方便 9)单独的64 字节RX 和TX 数据FIFO 4. CC1020芯片特性1) 频率范围为402 MHz -470MHz 工作2) 高灵敏度(对12.5kHz 信道可达-118dBm) 3) 可编程输出功率,最大10dB m 4) 低电流消耗(RX:19.9mA) 5) 低压供电(2.3V 到3.6V)6) 数据率最高可以达到153.6Kbaud 7) SPI 接口配置内部寄存器8) 比相同功率下,NRF905- CC1100 远1/3 5. A7102基本特性1) 433Mhz 开放ISM 频段免许可证使用2) 最高工作速率50kbps,高效GFSK 调制,抗干扰能力强,适合工业控制场合 3) 125 频道,满足多点通信和跳频通信需要 4) 内置硬件CRC 检错和点对多点通信地址控制 5) 低功耗3-3.6V 工作,待机模式下状态仅为2.5uA 6) 收发模式切换时间 < 650us 7) 模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接与各种单片机使用,软件编程非常方便 8)TX Mode: 在+10dBm 情况下,电流为40mA; RX Mode: 14mA 9)增加了电源切断模式,可以实现硬件冷启动功能!10)SPI 接口、功能强大、编程简单,与RF905SE 编程接口类似。11)增加了RSSI 功能,通过SPI 接口可以获取当前接收到的信

无线通信系统安全需求

1系统安全要求 1.1安全标准 卖方必须遵照以下国际标准(最近版)的规定及要求: EN50126 “Railway applications –The specification and demonstration of Reliability,Availability,Maintainability and Safety (RAMS) EN50128:“Railway Applications –Communications, signaling and processing systems – Software for railway control and protection systems” EN50129:“Railway Applications –Communications, signaling and processing systems – Safety related electronic systems for signaling” 1.2隐患分析(Hazard Analysis)及隐患登记册(Hazard Log) 1.2.1 隐患分析是针对系统的潜在隐患进行系统的分析、在工程项目的适当阶段应用的一种安全分析技术,开展隐患分析的目的是作出优化系统安全的变更。 1.2.2 设计过程中,卖方需参照买方提供的主隐患清单(附件2)开展初步隐患分析、系统/子系统隐患分析、接口隐患分析及操作和支持隐患分析。卖方须将各个隐患分析的结果纳入隐患登记册,提交买方审查,并定期更新。 (a) 初步隐患分析:在项目早期、系统设计开始前开展的隐患分析,用以识别系统可能涉及和需要控制的潜在隐患,并引出系统设计过程中需要执行的措施以消除或减轻相关隐患。 (b) 系统/子系统隐患分析:其目的是识别和分析与子系统和部件设计相关的潜在隐患,包括与子系统架构、部件失效、人因错误等相关的隐患,并引出相应的隐患消除或减轻措施。 (c) 接口隐患分析:通过识别和分析与系统、子系统内部以及外部接口相关的潜在隐患,引出系统和相关接口系统需要执行的隐患消除或减轻措施。 (d) 操作和支持隐患分析:通过识别和分析在系统/设备的制造、安装、测试、运输、储存、培训、运营和维修等过程中与人员和程序相关的潜在隐患,并引出需要执行的隐患消除或减轻措施。 1.2.3 隐患和可操作性研究(HAZOPS)

几种常用无线收发芯片性能比较表

几种常用无线收发芯片性能比较表 作者:发布时间:2008-9-5 22:31:35 阅读次数:几种常用无线收发芯片性能比较表

由于无线收发芯片的种类和数量比较多,如何在你的设计中选择你所需要的芯片是非常关键的,正确的选择可以使你少走弯路,降低成本,更快地将你的产品推向市场。下面几点有助于你选择你所需要的产品: 1、收发芯片的数据传输是否需要进行曼彻斯特编码? 采用曼彻斯特编码的芯片,在编程上会需要较高的技巧和经验,需要更多的内存和程序容量,并且曼彻斯特编码大大降低数据传输的效率,一般仅能达到标称速率的1/3。 而采用串口传输的芯片(如nRF401),应用及编程非常简单,传送的效率很高,标称速率就是实际速率,因为串口对大家来说是再熟悉不过的了,编程也很方便。

2、收发芯片所需的外围元件数量 芯片外围元件的数量的直接决定你的产品的成本,因此应该选择外围元件少的收发芯片。有些芯片似乎比较便宜,可是外围元件使用很多昂贵的元件如变容管以及声表滤波器等;有些芯片收发分别需要两根天线,会大大加大成本。这方面nRF401做得很好,外围元件仅10个左右,无需声表滤波器、变容管等昂贵的元件,只需要便宜且易于获得的4MHz晶体,收发天线合一。 3、功耗 大多数无线收发芯片是应用在便携式产品上的,因此功耗也非常重要,应该根据需要选择综合功耗较小的产品. 4、发射功率 在同等条件下,为了保证有效和可靠的通信,应该选用发射功率较高的产品。但是也应该注意,有些产品号称的发射功率虽然较高,但是由于其外围元件多,调试复杂,往往实际的发射功率远远达不到标称值。 5、收发芯片的封装和管脚数 较少的管脚以及较小的封装,有利于减少PCB面积降低成本,适合便携式产品的设计,也有利于开发和生产。nRF401仅20脚,是管脚数和体积最小的。 【未经授权,禁止转载。】【打印本页】

物联网中的几种短距离无线传输技术

短距离无线通信场指的是 100m 以内的通信,主要技术包括 Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(Ultra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。各国也相应地制定短距离通信技术标准,特别是RFID 和 NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的RFID 相关规范有欧美的 EPC 规范、日本的 UID(Ubiquitous ID)规范和 ISO 18000 系列标准。中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。例如科技部、工信部联合 14 部委制订的《中国 RFID 发展策略白皮书》等。此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。 1、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。 最初的规范是在1997年提出的,称为,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率是,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如和的先后推出,Wi-Fi的应用将越来越广泛。速度更快的使用与相同的正交频分多路复用调制技术,它也工作在频段,速率达54Mb/s。根据最新的发展趋势判断,将有可能被大多数无线网络产品制造商选择作为产品标准。微软推出的桌面操作系统Windows XP和嵌入式操作系统Windows CE,都包含了对Wi-Fi的支持。 2、UWB技术 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在~频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复杂度发射/接收机实现高速数据传输,在近年来得到了迅速发展。它在非常宽的频谱范围内采用低功率

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

相关主题
文本预览
相关文档 最新文档