当前位置:文档之家› 初中数学竞赛专题:代数式 (2)

初中数学竞赛专题:代数式 (2)

初中数学竞赛专题:代数式 (2)
初中数学竞赛专题:代数式 (2)

初中数学竞赛专题:代数式

2.4根式及其运算 2.4.1★化简:

(1

(2)(?; (3()()11899940001n n --个

解析 (1)直接计算不是好办法.注意到53361253689+=-=,于是

()()2253125368936893636?+=-++

222289363689=-+=.

89==.

(2)直接逐步展开太麻烦,只不过符号不同而已.于是,我们将一些项适当组合,利用平方差公式.

??

???

?

??

2

2

77????=--

?????

??

?

(

44=+-+ (

2

24104=-=.

(3)()()211899940001900060001n n n n --=-+个

29106101n n =?-?+ ()2

3101n =?-,

所以3101n =?-.

2.4.2★化简:

(1

(2n 是自然数); (325n n n n ++??++??

(4

()090α?

解析

(1)原式=121x x =--+.

因为1x -,21x +的零点分别是1,1

2

-,我们分情况讨论如下: 当12

x -≤时,原式()()1212x x x =--++=+; 当112

x -<≤时,

原式()()1213x x x =---+=-;

当1x >时,原式()()1212x x x =--+=--. (2)因为()()()1231n n n n ++++

()()()3121n n n n =++++????????

()()223321n n n n =++++

()()2

223231n n n n =++++

()2

231n n =++,

231n =

++.

(3)因为

12324623151021020510n n n

n n n ??+??++????+??++??

()()

33333312312151012n n ??+++=

??++

+

123

1510

??=

??,

25n n n n ?+??=++??.

(4)因为12sin cos αα+

22sin 2sin cos cos αααα=++ ()2

sin cos αα=+,

同理,()2

12sin cos sin cos αααα-=-.

故原式=sin cos sin cos a ααα=++-.

由于090α?,cos 0α>.且当045α?<

故当045α?<

2.4.3 解析1配方法:

2

295422-+-=-?

)

2

2=

,

2=

=.

解析2 待定系数法:

设2

9-=,则

()

9x y -=+-

9,20,x y xy +=??

=?解主程组,得5,4,x y =??=?或4,

5

x y =??=?. 从而,

2=

=.

解析3公式法:

=

2=

=.

评注本题解法中,配方法虽然较简单,但对一些数字较大的题目,其解法仍困难.待定系数法虽然较麻烦,但它仍不失为一种普遍可行的方法.

2.4.4

. 解析

被开方数中含有三个不同的根式,且系数都是2,

+,

因此用待定系数法来化简.设

=,

两边平方得

13+

x y z =+++

所以13,5,

7,35.x y z xy yz zx ++=??

=??

=??=?

①②③④

②?③?④得

()

2

2573535xyz =??=.

因为x 、y 、z 均非负,所以0xyz ≥,所以

⑤÷②,有7z =.同理有5x =,1y =.所求x 、y 、z 显然满足①,所以

原式1= 2.4.5★★化简:

解析 设原式x =,则

(

(

244x =

++

)

8

82

1=+=+

)

2

6

1=+=

,

显然有0x >,所以原式

1x =. 2.4.6

. 解析1 利用()()3

333a b a b ab a

b +=+++来解.

x =,两边立方得

3403x x =+,

即36400x x --=.

将方程左端因式分解有

()()

2

-++=.

44100

x x x

因为()2

2410260

++=++>,所以40

x x x

x=.所以原式4

x-=,4

=.

解析2

==+

2

2

原式((

224

=+=.

评注解析2看似简单,但对于三次根号下的拼凑是很难的,因此本题解析1是一般常用的解法.

2.4.7★★化简:

解析由于22

-?=,不为完全平方数,故对上式中每一项独立化简很困难.注意到53862425

互为共轭根式.因此,我们可采取“以退为进”的方法,即先平方,再开方.

设m则

299

m=,

218

m=+

=+

18

=+

18

()

=+=+

182214

(22

=++?

2

(2

=,

即m=

9=

2.4.8

. 解析

设m =,则

311m =

+

而1

1127?

=- ?

,所以

32m = 即32m m =-,320m m +-=.

()()2120m m m -++=.

由于220m m ++=无实数根,所以1m =. 所以

1=. 2.4.9★★设有正数11a =,2k ≥时,12k k a a -=+,

60a ++

+

解析

因为

1k k

+=

所以

原式

(

61

111

2

2

2

a =

+

+

+

12

=.

而11a =,61121a =. 原式152

=

=.

2.4.10★★计算:

()()()(23212123

232121k k k k n n n ++

++

+++++++++. 解析

先将通项的分母有理化,并裂项,得

((

()()()()22

232121232123k k k k k k ++=

++-++

((

()()

232122123k k k k ++=

++

12=??

,

所以,原式111

2

222=+++- ? 11

2?=- ?

=

2.4.11★★求

)()

解析 设根号内的式子为A ,注意到()121=-,及平方差公式()()22a b a b a b +-=-,所以

()()()()()24256

212121212

11A =-+++++

()()()()()2248256

212121212

11=-+++++ ()()()()()44816256

212121212

11=-+++++

()()25625621211=

=-++

225622562112??=-+=,

所以 原式224===.

2.4.12★★计算

解析

原式=

=

=

1==.

2.4.13★★★计算:

12007S =++

. 解析考察S 中一般项,有

=

=

=1111

111

n n n n n +=

-=+-

++. 所以

11111111111112233420072008S ???????

?=+-++-++-+

++- ? ? ? ???????

??

12007

200712007

20082008

=+-

=. 2.4.14★★(1)求证:

11a

a b ab =+-+;

(21

2008

. 解析(1)因为

2

11a a b ab ??+- ?+?

? ()()222

2

212111a a a a a b b ab ab b ab ??=+++--??+++????

()()()22

2

2

211211a ab a b a a a b ab b ab ??+--=+++??++????

()

2

2

2

211a a b ab =+++, 上式两边开平方,得

11a

a b ab =+-+. (2)在(1)在令2007a =,1b =,则

2007200712008

+-

1

2007

2008

=,

所以1

20072008

=.

2.4.15★已知a =求23

331

a a a ++的值.

解析

因为)121a =-,即11a

.所以

23331a a a ++ 21313a a a ??=

++???

? )))

2

133

11??=++

????

))

1

1211=

-+=-=.

2.4.16★★记[]x 表示不超过x 的最大整数(如[]1.31=,1234??

-=???

?

等),求

2013++++??的值. 解析 因为

??

??=

11?==+=??,

所以

2013++++??

20121

1112012=

++

+=个.

2.4.17★★若0x >,0y >,8

,求223

3

x y +的值.

解析

设23x p

=,23

y q =,那么

422

3

3

x y p q ==

24

23

3

x y pq =.

所以23x p =,

23y q

=, 于是,原式即

8=,

8=,

(8p q +.

()

32

8p q +=,

23

84p

q +==.

即2233

4x y +=. 2.4.18★★已知函数

()f x ,

求()()()()()13521999f f f f k f ++++-+

+的值.

解析

因为

()(

)

(

)

2

2

1

f x =

=

-

12

=

,

所以,()()()()135999f f f f ++

+

+

(

3

1

10002??=+

+

+

+

??

1

52

==.

2.4.19★★设333199519961997x

y z ==,

0xyz >,

=求111x y z

++的值. 解析 因0xyz >,可设333199519961990x y z k ==

=>,则3

1995

k x =

,3

1996k y =

,31997k

z

=.代入已知式得

=, 两边立方,化简,得

3

111111x y z x y z ??

++=++ ???

. 因为0x >,0y >,0z >,所以

111

1x y z

++=. 2.4.20★★已知0a >,0b >,

当2

21

ab

x b =

+时,求 的值.

解析 当221

ab

x b =

+时,

==

1

b+

=.

同样(但请注意算术根!)

=.②将①,②代入原式有

原式

=

()

()

11

11

b b

b b

++-

=

+--

,

1

1

,1

b b

b

b

?

?

=?

<

??

当≥时;

当时

2.4.21★★化简

解析

原式

=

=

22

=-+

=.

2.4.22★★化简x

y

a

=

解析

a x y a

x

=

a x a x =?a

x a x

=

?. 若0a >,则1,1,x a x y x x a >?=

=?-<-?当时,当时 若0a <,则1,1,x a x y x x a ->-?=-

=?

2.4.23★★化简

)1S x >.

解析 因为

2

1x ±=±

)

2

1=

,

所以

)

11S =

,,22,

12x x ??=?<

2.4.24★★已知12x =,()0,0a b >>.计算

Q =

解析

由12x =,得

x =

所以

=

代入原式,得

Q =

()2b a b

a b a b

-=

+--

(),,0a b a b

b

b a a b a

-??

=?-<

(),,

,0

b

a b a b Q a

a b a b ?--?=??

-<

2.4.25★★已知1,求22a b +的值. 解析

移项

,两边平方,得

()()22221121a b b a -=-

-,

化简,得

()2221b a =-+.

两边再平方,得

()()()2

2222224121b a b a b a -=-+-+,

整理得()()2

2222210a b a b +-++=,

即()2

2210a b +-=,

所以221a b +=. 2.4.26★★化简:

(1;

(2 解析 (

1)原式=

=

=

=.

(2)原式=

=

=

)

3

=.

评注(2)也可用换元法来化简:

5

2

x y

??

= ?

??

≥,则

25

2

x

y

+

=.

原式)3

2

x

===+(因为0

x≥)

)

3

=.

2.4.27★★★化简:

解析用换元法

设x,则2

31

a x

=+,2

8

3

3

a

x

+

=+.所以

原式=

=

=

()()

112

x x

=++-=.

2.4.28★★若1

a=,计算

1

12121212a

+

+

++

(共有200层)的值.

解析

先计算几层,看一看有无规律可循.

因为1a =

,所以

11a

=,

所以12121a a

++

=, 所以

11

11

2a

a =

=+

所以,不论多少层,原式11a

==. 2.4.29

的值.

解析

用构造方程的方法来解.设原式为x ,利用根号的层数是无限的特点,有

x

=,

两边平方得

22x

=,

即22x -= 两边再平方得

42442x x x -+=+,

所以42420x x x --+=.

观察发现,当1x =-,2时,方程成立.因此,方程左端必有因式()()12x x +-,将方程左端因式分解,有()()()21210x x x x +-+-=. 所以1x =-

,2x =,x =

又因为02x <<,所以1x =-,

2x =,x

=应舍去,所以x

=.即 原式=

2.4.30x ,小数部分为y ,试求2212

x xy y ++的值.

解析

因为

)

2

1

24

=

=

=+,而01<,所以2x =,y =,所以 2

22114222x xy y ++=+?+??

)(

1

1

41352

2

=+

+

=.

初中数学竞赛专项训练找规律题

观察——归纳—猜想——找规律 给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜 想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是: (1)通过对几个特例的分析,寻找规律并且归纳; (2)猜想符合规律的一般性结论; (3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字类 基本技巧 (一)标出序列号: 例如,观察下列各式数:0,3,8,15,24,……。 我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。 容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n 项 是2 n -1 (二)公因式法: 每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。 例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ), 1,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3 时,正好是2×3-1的平方,以此类推。 (三)增副 A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且是n 的3次幂,即:n 3 +1 B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n 2 (四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后 用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加 上第一位数,恢复到原来。 例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……, 序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2 时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12-n 。再看原数列是同 时减2得到的新数列,则在12-n 的基础上加2,得到原数列第n 项12+n

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

初中数学竞赛知识点

初中数学竞赛知识点归纳 一、数的整除(一) 如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. ①抹去个位数②减去原个位数的2倍③其差能被7整除。 如1001100-2=98(能被7整除) 又如7007700-14=686,68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数②减去原个位数③其差能被11整除 如1001100-1=99(能11整除) 又如102851028-5=1023102-3=99(能11整除) 二、倍数.约数 1 两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。例如3|15,15是3的倍数,3是15的约数。 2 因为0除以非0的任何数都得0,所以0被非0整数整除。0是任何非0整数的倍数,非0整数都是0的约数。如0是7的倍数,7是0的约数。 3 整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,……。 4 整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。例如6的约数是±1,±2,±3,±6。 5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。 6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。 7 在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作: A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除 例如23=3×7+2则23-2能被3整除。 三、质数.合数 1正整数的一种分类:

(完整)初中数学竞赛相似三角形专题

初二竞赛专题:相似三角形 1.如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明: 111 AB CD EF += . 2.如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长. 3.如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且 梯形AEFD 与梯形EBCF 的周长相等,求EF 的长. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点, 则 BD EG DC FG = . O F E D C B A F E D C B A F E D C B A G F E D C B A B D A E G F C

4.一条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求证: 5.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d. 6.如图,边长为1的等边ABC △,BC边上有一点D,1 3 BD=,AC上有一点E ,60 ADE ∠=o,求EC的长.7.已知,B是AC中点,D、E在AC的同侧,且ADB EBC ∠=∠,DAB BCE ∠=∠,证明:BDE ADB ∠=∠. E D C B A D E B C A

8.如图,在ABC △中,60BAC ∠=o ,点P 是ABC △内一点,且APB BPC CPA ∠=∠=∠,若8PA =,6PC =,求PB 的长. 9.如图,在锐角ABC △中,AD 、CE 分别为BC 、AB 边上的高,ABC △和BDE △的面积分别等于18和2, 22DE =,求点B 到AC 的距离. 10.如图所示,已知3个边长相等的正方形相邻并排,求EBF EBG ∠+∠. 11.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证: 2FD FB FC =?. E D C A B P C B A H G B A

最全最新初中数学竞赛专题讲解一元二次方程的求解

初中数学竞赛专题讲解一元二次方程的求解 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 1.形如方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为= 。 2.关于一元二次方程()0a ≠根的讨论,一般需应用到根的判别式、根与系数 的关系等相关知识。 ⑴若,则它有一个实数根1x =;若 ,则它有一个实数根1x =-。 ⑵运用数形结合思想将方程()0a ≠根的讨论与二次函数 ()0a ≠的图象结合起来考虑是常用方法。 几个基本模型 (1)设()()2 0f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x x n <<的充要条件是202b m n a b af a ?<-???>?? (2)一般地设m n p <<,设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满 足12,m x n x p <<>的充要条件是()()()000af m af n af p >??? (3)一般地设m n p q <≤<设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x , 满足12m x n p x q <<≤<<的充要条件是()()() ()0000af m af n af p af q >??? (4)一般地设m n ≤设()()2 0f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12x m n x ≤≤≤的充要条件是()()00af m af n ≤???≤??

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛专题选讲《观察法》

初中数学竞赛专题选讲观察法 一、内容提要 数学题可以猜测它的结论(包括经验归纳法),但都要经过严谨的论证,才能确定是否正确. 观察是思维的起点,直觉是正确思维的基础. 观察法解题就是用清晰的概念,直觉的思维,根据题型的特点,得出题解或猜测其结论,再加以论证. 敏锐的洞察力来自对概念明晰的理解和熟练的掌握. 例如:用观察法写出方程的解,必须明确方程的解的定义,掌握方程的解与方程的系数这间的关系. 一元方程各系数的和等于零时,必有一个解是1;而奇次项系数的和等于偶次项系数的和时,则有一个根是-1;n 次方程有n 个根,这样才能判断是否已求出全部的根,当根的个数超过方程次数时,可判定它是恒等式. 对题型的特点的观察一般是注意已知数据,式子或图形的特征,分析题设与结论,已知与未知这间的联系,再联想学过的定理,公式,类比所做过的题型,试验以简单的特例推导一般的结论,并探求特殊的解法. 选择题和填空题可不写解题步骤,用观察法解答更能显出优势. 二、例题 例1. 解方程:x+x 1=a+a 1. 解:方程去分母后,是二次的整式方程,所以最多只有两个实数根. 根据方程解的定义,易知 x=a ;或x= a 1. 观察本题的特点是:左边x 11=? x , 右边a 11=?a . (常数1相同). 可推广到:若方程f(x)+a m a x f m +=)((am ≠0), 则f(x)=a ; f(x)= a m . 如:方程x 2+22255a a x +=, x 2+3x -83202=+x x (∵8=10-1020). 都可以用上述方法解. 例2. 分解因式 a 3+b 3+c 3-3abc. 分析:观察题目的特点,它是a, b, c 的齐三次对称式. 若有一次因式,最可能的是a+b+c ;若有因式a+b -c,必有b+c -a, c+a -b ; 若有因式a+b, 必有b+c, c+a ; 若有因式b -c,必有c -a, a -b. 解:∵用a=-b -c 代入原式的值为零, ∴有因式a+b+c. 故可设 a 3+b 3+c 3-3abc=(a+b+c)[m(a 2+b 2+c 2)+n(ab+bc+ca)]. 比较左右两边a 3的系数,得m=1, 比较abc 的系数, 得 n=-1. ∴a 3+b 3+c 3-3abc=(a+b+c) (a 2+b 2+c 2-ab -bc -ca) 例3. 解方程x x =++++3333.

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

初中数学竞赛专项训练.doc

初中数学竞赛专项训练(2) (代数式、恒等式、恒等变形) 一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。 1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为( ) A. 2 1 B. 2 2 C. 1 D. 2 4、设a <b <0,a 2+b 2= 4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 5、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值( ) A. 0 B. 1 C. 2 D. 3 6、设a 、b 、c 为实数,2 26 23 2222 π π π + -=+ -=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有 一个值 ( ) A. 大于0 B. 等于0 C. 不大于0 D. 小于0 7、已知abc ≠0,且a+b+c =0,则代数式ab c ca b bc a 222+ +的值是 ( ) A. 3 B. 2 C. 1 D. 0 8、若13649832 2 ++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是 ( ) A. 正数 B. 负数 C. 零 D. 整数 二、填空题 1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____ 2、已知-1<a <0,化简4)1 (4)1(22+-+-+a a a a 得_______ 3、已知实数z 、y 、z 满足x+y=5及z 2=xy+y -9,则 x+2y+3z=_______________ a

超级资源(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富: 它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨: 从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨: 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨: 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨: 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨: 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注: 一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

2017年全国初中数学联赛初二卷与详解

2017年全国初中数学联合竞赛试题 初二卷 第一试 一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b c a b ++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1, 1110135 a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2 的值为( ). A.125 B.120 C.100 D.81 3.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.1 4.已知正整数a,b,c 满足a 2 -6b-3c+9=0,-6a+b 2 +c=0,则a 2 +b 2 +c 2 的值为( ). A.424 B.430 C.441 D.460 5.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A. 102 B.103 C.32 D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ). A.56 B.58 C.60 D.62 二、填空题:(本题满分 28 分,每小题 7 分) 7.3 11a a ++=a 的值为________. 8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 9.设a,b 是两个互质的正整数,且3 8ab p a b =+为质数.则p 的值为________.

初中数学竞赛专项训练.doc

初中数学竞赛专项训练 1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A . 111? B 。 1000? C 。 1001?D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105 +b ×104 +c ×103 +a ×102 +b × 10+c=a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103 +1)=1001(a×103+b ×10+c ),而a ×103+b ×10+c是整数,所以能被1001整除。故选C 方法二:代入法 2、若2001 119811198011 ??++= S ,则S 的整数部分是 解:因1981、1982……2001均大于1980,所以9022 1980 1980 1 221== ?> S ,又1980、1981……2000均小于2001,所以22 21 902220012001 1221== ? < S ,从而知S的整数部分为90。 3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着. 解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所 以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那 些编号为1、22、32、42、52、62、72、82、92 、102共10盏灯是亮的.

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

初中数学竞赛专题:方程组

初中数学竞赛专题:方程组 §4.1方程组的解法 4.1.1★已知关x 、y 的方程组 ()21,221 3.ax y a x a y +=+??? +-=?? ① ② 分别求出当a 为何值时,方程组有唯一一组解;无解;有无穷多组解, 解析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结 为一元一次方程ax b =的形式进行讨论,但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零. 由①式得 ()21y a ax =+-,③ 将③代入②得 ()()()()122a a x a a -2+=-+.④ 当()210a a -+≠(),即2a ≠且1a ≠-时, 方程④有唯一解2 1 a x a += +,将此x 值代入③有 () 1 21y a = +, 因而原方程组有唯一一组解. 当()()210a a -+=,且()()220a a -+≠时,即1a =-时,方程④无解,因此原方程组无解. 当()()210a a -+=且()()210a a -+=时,即2a =时,方程④有无穷多个解,因此原方程组有 无穷多组解. 评注对于二元一次方程组111 222 a x b y c a x b y c +=??+=?,(1a 、2a 、1b 、2b 为已知数,且1a 与1b ,2a 与2b 中都至少 有一个不为零). (1)当 11 22 a b a b ≠时,方程组有唯一的解 2112122112 211221b c b c x a b a b a c a c y a b a b -? =?-? ? -?=?-?

全国初中数学联赛试题及详解

2010年全国初中数学联合竞赛试题及详解 第一试 一、选择题:(本题满分42分,每小题7分) 1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B ) A .1. B .2. C .3. D .4. 解: 由已知可推得011a b b c a c -=??-=±?-=±? 或 110 a b b c a c -=±??-=±?-=?,分别代入即得。 2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C ) A .0. B .1. C .2. D .3. 解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤. 3.若b a ,是两个正数,且 ,0111=+-+-a b b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423 a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A ) A .-13. B .-9. C .6. D . 0. 解:由已知:42x ax bx c +++一定能被231x x --整除。 ∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++ ∴(333)(10)0a b x a c +++++=,故3330213100 a b a b c a c ++=??+-=-?++=? 5.在△ABC 中,已知?=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且?=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B ) A .15°. B .20°. C .25°. D .30°. 解:如图,由已知,ADE 是正三角形。作BF ∥DE 交 AC 于F ,则BD =EF ,从而EC =DE+BD =AB =BF ,DE =FC , 又∠1=∠2=120○ ,故ΔEDC ≌ΔFCB .故x θ?+=. ∵∠CDB =2?,∠BDE =120○ ,∴40?=,故 40x θ+= 由406020θ?θθ+=+=?=,得:20x =.

相关主题
文本预览
相关文档 最新文档