当前位置:文档之家› 外差式调频连续波低空定高引信探测器

外差式调频连续波低空定高引信探测器

外差式调频连续波低空定高引信探测器
外差式调频连续波低空定高引信探测器

外差式调频连续波低空定高引信探测器

韩银福夏雷范永

(机电工程与控制国家级重点实验室,陕西西安 710065)

摘要:针对中大口径炮弹自差式无线电引信接收灵敏度低、探测距离近的问题,提出了外差式调频连续波体制的探测方法,此方法能提升调频多普勒引信的探测灵敏度,使得调频多普勒引信对地能实现更高的炸高。该探测体制的引信通过挂飞试验证明,对地探测距离能达到100米以上。

关键词:外差式调频连续波多普勒引信探测器

0 引言

国外中大口径炮弹无线电引信定高高度已达到1000米,而国内60米以上尚未突破,以往中大口径炮弹无线电引信多采用自差式探测体制,接收灵敏度较差,同时受到引信电池及引信尺寸的限制,发射功率也不宜很高,所以探测距离很难进一步提高。

为满足子母弹、碳纤维弹、发烟弹等特种弹药的低空开舱需求,迫切需要炸高100米以上的无线电定高引信,针对自差式探测体制接收灵敏度低、探测距离近的问题,提出了接收灵敏度高的外差式调频连续波探测方法。

1调频多普勒定距引信介绍

1.1调频多普勒体制定距原理

调频多普勒引信是发射等幅调频信号的引信,调制信号多为三角波调制,其发射的信号频率按调制信号规律变化。利用回波信号与发射信号的频率差确定与地面的距离信息,通过提取差频上的多普勒信号来定距[1]。

1.2自差式调频多普勒体制

图1 自差式调频多普勒体制

目前常用的调频多普勒引信为自差式体制,主要由发射机、环形器、收发天线、混频器、选频放大、二次混频、放大滤波电路和信号处理电路。信号处理部分产生的调制方波信号,通过积分得到三角波对发射机的VCO进行频率调制。发射机产生的调频信号通过环形器由天线发射出去,目标反射回来的信号和从发射机通过环形器泄漏过来的信号送入混频器进行混频得到差频信号。根据调制信号谐波的距离特性,通过选取不同调制信号的谐波幅度信息,然后进行二次混频分别提取出两路含有谐波幅度信息的多普勒信号,通过滤波放大和检波,最后双路信号进行幅度比较得出点火信号。

自差式调频多普勒电路简单,但是探测距离近,探测距离很难达到60米以上。

1.3 回波差频信号特征分析

三角波的数学表达式:

?????<<--<<=02,220,

2t T kt T t kt u m m s ππ (1)

式中: k 为发射信号调频斜率,k=2△f /T m , T m ——调制周期,△f 为射频频偏。

通过三角波调制后发射信号为:

?????<<-<<+=m m t m t t T t T kt t f E T t kt t f E U 2),2cos(20),2cos(2020ππππ (2)

回波信号与发射信号由于时间差的关系存在相位差,为

?????<<---<<-+-=m m t m t r T t T t k t f E T t t k t f E U 2),)()(2cos(20),)()(2cos(2020τπτπτπτπ (3)

乘积混频器输出的差频信号为

)](22cos[)(0t t f T f E t u d d d d θπαπ+++= (4)

式中,2/r t d d u u k E =;

t kT t d πθ2)(=;

将差频信号进行分析推导得出其差频信号对应调制频率的某次谐波幅度与高度的对应关系:

])[(]2/)2(sin[)2(222n fT n fT fT An d d d -?-??=ππ

)

(]2)sin[(222n u n u u --=ππ

(5) An 近似为sinx/x 形式,它是发射信号频偏和延迟时间(即对应高度)的函数,称为高度函数。 其中:△f 为调制频偏,T d 为延迟时间(对应高度),u=2△f T d =4△f H/c ,n 取整数。 2 外差式调频多普勒引信体制

为了提高无线电引信的探测距离,在自差式调频体制的基础上,采用接收灵敏度更高的外差式体制来提高引信的探测距离。

外差式体制原理框图如下图2所示[2],系统主要由收发一体天线、环行器、发射部分和接收部分组

成。

发射部分主要包括调制电路、压控振荡器、射频功率放大器和环行器四部分,接收部分主要包括低噪放、下变频、上变频、中频滤波放大、中频信号、二次混频、差频滤波放大、三次混频、多普勒信号的放大滤波和后级信号处理部分。

图2 外差式调频体制引信原理框图

外差式调频体制和自差式调频体制方案相比,在接收端增加了低噪声放大器,可降低接收机的系统噪声,接收灵敏度会大大提高,同时增加了一级中频,保证系统的增益[3]。通过对回波信号进行多次滤波放大,提高信噪比。所以,外差式调频体制的引信探测距离更远。

3结果及分析

3.1设计结果

通过对无线电调频引信的回波差频分析可知,其定高高度和定高精度主要由射频频偏、调制频率和差频频率三个设计参数来决定。根据公式(5),定高精度主要由射频频偏来决定,射频频偏越大,精度越高,反之亦然。为满足一定的定高精度,则需要一定的射频带宽。而定高高度则有射频频偏、调制频率和选取的差频频率三个参数共同决定。

确定定高高度为100米,定高精度为小于15米,根据公式(5)选取合适的参数如下:

射频频偏为12MHz;

选取的差频频率为调制频率的8次谐波;

根据公式(5)得到差频信号幅度和高度的对应关系如下图3所示。选取的差频频率为调制频率的8次谐波,由图中可以看出,差频信号在100米处幅度呈现最大值,当高度偏离100米时,差频信号幅度迅速下降,信号幅度呈现|sin(x)/x|的趋势,有较好的距离截至特性。

差频信号主瓣幅度比邻近副瓣高出5倍左右,主瓣宽度约30米,则主瓣信号从最小到最大对应的距离为主瓣宽度的一半,为15米。因此,在此15米之内可通过信号检测来实现信号判别,则定高精度小于15米,满足设计要求。

图3 差频信号幅度和高度的对应关系图

3.2 试验结果

根据设计完成了外差式调频多普勒引信样机,其外形尺寸满足GJB814标准外形,引信的主要电指标[4]如下:

射频中心频率为2.04GHz;

射频频偏为12MHz;

调制频率为56.875KHz;

提取的差频频率为调制频率的8次谐波即455KHz;

提取调制频率8次谐波上的多普勒信号作为定高信息。

通过挂飞试验测试,得到外差式调频多普勒引信对地回波信号及GPS高度信息关系如下图4所示,根据信号特征,能在100米高度处得出点火信号。

图4 实测调频多普勒引信回波信号和GPS高度信息对比图

3.3 结果分析

从实测信号的试验结果来看,图4所示引信回波信号的趋势和图3所示的理论计算很吻合,在高度100米附近处幅度达到最大值,而且有较好的距离截止特性,当高度远离100米时,信号幅度迅速下降。而且信号信噪比很好,能达到引信定高的目的。

3.4 误差分析

根据引信电参数设计的引信,理论上回波信号幅度最大值对应的高度在精确的100米处,而试验测试结果信号幅度最大值对应的高度比100米略小,原因主要有以下三点:

1)GPS高度信息本身具有一定的高度误差(小于10米)。

2)挂飞试验测试时引信和地面不完全垂直,势必会造成一定的高度误差。

3)射频频偏本身会有偏差。

上述三种原因造成的误差都可通过调整射频频偏来弥补,使其定高高度更为精准。

4 结论

通过在自差式调频多普勒探测体制引信的基础上,提出了探测灵敏度更高、探测距离更远的外差式调频多普勒体制引信。由挂飞试验测试结果可知,通过合理参数设计后,得到的回波信号趋势和设计计算的结果很吻合,并且回波信号信噪比很好。因此,采用外差式调频多普勒探测体制,能在中大口径炮弹引信上探测距离提高到100米以上。

参考文献

[1] 崔占忠,宋世和,徐立新.近炸引信原理,北京理工大学出版社,2005

[2] Cotter W.Sayre 无线通信设备与系统设计大全人民邮电出版社 2004.1

[3] 陈邦媛.射频通信电路.科技出版社.2006

[4] 戈稳.雷达接收机技术.电子工业出版社.2005

调频连续波雷达简要分析

连续波调频雷达 雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达,常规脉冲雷达是周期性地发射高频脉冲。而连续波雷达即是发射连续波信号的雷达,它的信号可以是单频、多频或者调频(多种调制规律如三角形、锯齿波、正弦波、噪声和双重调频或者是编码调制)的。单频连续波雷达可用于测速,多频(至少三个频点)和调频连续波雷达可用于测速和测距。它的优点是不存在距离盲点、精度高、带宽大、功率低、简单小巧,缺点是测距量程受限、存在多普勒距离耦合和收发很难完全隔离。 f 锯齿波调频 频率-时间特性曲线 调频连续波雷达参数与性能分析: 1、频率: 13.6GHz (±15MHz) (Ku 波段) 2、扫频带宽F ?: 30MHz 距离分辨率:m F C R 51030210326 8 =???==?? 3、调制周期T : ms 06.1=T 理论最大量程:Km C T R 1591031053.02 max 83=???=?=- 0 调制周期T 带宽 F t

4、实际回波最大迟延: s d m 16.0t max = 实际最大量程: Km C R d 241031008.02 t max 83max =???=?= -‘ 实际最大差拍频率: M T t F d b 53.4f max max =?=? 5、相干处理时间间隔:ms s d 9.0m 16.0ms 06.1t -T T max Coherent =-== f 锯齿波调频 频率-时间特性曲线 可采点数: 36000m 9.040T Fs N Coherent =?=?=s MHz 实际频率分辨率: Hz MHz N Fs 111136000 400f === 对应的实际距离分辨率:m F C T R 89.5103021111 1031006.120f 6 83=??????=??= ??‘ (量程越小,差拍频率越小,可获得的越大的相干处理时间,能该晒距离分辨率) 6、速度多普勒耦合: 速度较小不考虑,采用锯齿波调频信号时,一般直接将其影响加到系统误差中去。若采用三角波调频倒可以再信号处理时对其进行补偿。 0 调制周期T 带宽 F t

调频连续波(FMCW)雷达微波物位计的工作原理

调频连续波(FMCW)雷达/微波物位计的工作原理 FMCW是取英文Frequency Modulated Continuous Wave的词头的缩写。FMCW 技术是在雷达物位测量设备中最早使用的技术。 FMCW微波物位计采用线性的调制的高频信号,一般都是采用10GHz或24GHz微波信号。它是一种基于复杂数学公式的间接测量方法,由频谱计算出物位距离。天线发射出被线性调制的连续高频微波信号并进行扫描,同时接收返回信号。发射微波信号和返回的微波信号之间的频率差与到介质表面的距离成一定比例关系。 如果我们认为被线性调制的发射微波信号的斜率为K,发射信号和反射信号的频率为rf,滞后时间差为rt,发射天线到介质表面的距离为R,C为光速。 那么我们可以得到:rt = 2R/C 由于采用的是调频的微波信号,因此我们可得:rf = K×rt; 两式合并后,我们得到公式: R = C× rf/2K (公式2) 根据公式2,我们可以看到,天线到介质表面的距离R与发射 频率和反射频率差rf成正比关系。 信号处理部分将发射信号和回波信号进行混合处理,得到混合信号频谱,并通过独立的快速傅立叶(FFT)变化来区分不同的频率信号,最后得到准确地数字回波信号,计算出天线到介质表面的距离。 实际上,FMCW信号是在两个不同的频率之间循环。目前市场上的FMCW微波物位计主要以两种频率为主:9到10GHz和24.5到25.5GHz。 采用FMCW原理的微波物位计都具有连续自校准的处理功能。被处理的信号与一个表示已知固定距离的内部参照信号进行比较。任何差值会自动得到补偿,这样消除了由温度波动或变送器内部电子部件老化引起的可能的测量漂移。 2.2、脉冲 脉冲雷达物位计,与超声波技术相似,使用时差原理计算到介质表面的距离。设备传输固定频率的脉冲,然后接收并建立回波图形。信号的传播时间直接与到介质的距离成一定比例。但是与超声波使用声波不同,雷达使用的是电磁波。它利用好几万个脉冲来“扫描”容器并得到完整的回波图。 通常,采用脉冲方式的微波物位计的精度和可靠性都不如FMCW微波位计,但是脉冲物位计因为价格较FMCW低很多,因此是目前市场应用得最多的微波物位计。当然,很多生产厂商通过增强回波处理功能等方式大大提高了脉冲雷达的可靠性。

超声波测距电路图

超声波测距电路图 超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振 来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。 < 三、超声波测距系统的电路设计 图2 超声波测距电路原理图

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图 本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。电路原理图如图2所示。其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。

线性调频连续波合成孔径雷达成像算法

第6卷 第3期 信 息 与 电 子 工 程 Vo1.6,No.3 2008年6月 INFORMATION AND ELECTRONIC ENGINEERING Jun.,2008 文章编号:1672-2892(2008)03-0167-05 线性调频连续波合成孔径雷达成像算法 杨 蒿,蔡竟业 (电子科技大学 通信与信息工程学院140教研室,四川 成都 610054) 摘 要:线性调频连续波(LFMCW)合成孔径雷达(SAR)因体积小,重量轻,成本相对低,成为 近来研究的热点。连续波SAR 的回波信号通常经过相干解调处理。针对其独特的应用背景和信号模 型,对现有的各种成像处理算法进行了讨论和比较,总结出其优缺点及应用范围。并对LFMCW- SAR 今后的发展提出了展望。 关键词:线性调频连续波;合成孔径雷达;成像算法 中图分类号:TN958 文献标识码:A Linear Frequency Modulated Continuous Wave-Synthetic Aperture Radar Imaging Algorithm YANG Hao,CAI Jing-ye (School of Communication and Information Engineering,UESTC,Chengdu Sichuan 610054,China ) Abstract:Linear Frequency Modulated Continuous Wave(LFMCW)-Synthetic Aperture Radar(SAR) has become a focus in recent researches,due to its compactness and low cost. This paper analyses and compares various imaging algorithms,based on the special application background and signal model derived from its dechirped raw data. Then the advantages,disadvtanges and application fields of the algorithms are presented. Future development of LFMCW SAR is prospected. Key words:Linear Frequency Modulated Continuous Wave;Synthetic Aperture Radar;imaging algorithm 目前机载对地观测受到越来越广泛的关注,其应用领域不仅涵盖搜索救援、区域监测、灾害监视与控制等民用方面,还包括小型无人机对地侦察等军事领域。合成孔径雷达与光电成像设备相比可以全天候、全天时工作,如在云雨雾等恶劣气候及夜晚条件下工作,而且具有实时大面积连续成像能率[1]。但是,传统的脉冲SAR 由于其设备复杂,体积大,重量重,成本相对较高等缺陷限制了其应用层面,特别是不能安装到小型飞机如直升机和无人机上完成一些紧急任务,也不适于低成本的民用项目[2]。因此,LFMCW ?SAR [3]以其紧凑、低耗、相对便宜且高分辨力的优点逐渐发展起来[4?10]。连续波SAR 概念自1988年被提出,并应用于飞机高度计之后,特别是连续波SAR 在发射能量一定的前提下,与脉冲SAR 相比拥有更低的发射功率,并且具有更好的隐蔽性,发射机也可以使用全固态设计,使得系统具备了高可靠性和较少维护的优点[11?14]。同时,连续波SAR 接收机前端通过相干混频处理得到差频信号,在成像带较窄的情况下,可以大大降低信号带宽,从而降低对信号高速采集与处理的需求。 本文描述了LFMCW ?SAR 的去调频信号模型,在该信号模型的基础上,讨论针对去调频信号的各种成像处理算法,对各种算法进行了比较总结,最后对未来LFMCW ?SAR 的发展进行了展望。 1 LFMCW ?SAR 的信号模型 LFMCW ?SAR 接收到的回波信号经去斜、下变频后可表示为: 2 022444(,;)exp (j )exp [j ()()]exp [j ()]c r r a r t r t c t c r k k S t t r C r t r r r r c c c λπππ=????? (1) 收稿日期:2007-11-22;修回日期:2008-01-08

提高线性调频连续波雷达测距精度的ZFFT算法

航天电子对抗第22卷第1期 收稿日期:2005-07-06;2005-10-18修回。 作者简介:张红(1982-),女,硕士研究生,主要研究方向是雷达信号处理。 提高线性调频连续波雷达测距精度的ZFFT 算法 张 红,王晓红,郭 昕 (北京理工大学电子工程系,北京 100081) 摘要: 线性调频连续波(LFM CW )雷达在理论上有很高的测距精度,然而在实际系统中,由于FFT 变换的栅栏效应,使得其距离分辨力和测距精度处于同一数量级,满足不了近距离测距时高精度的要求。在传统的FFT 处理的基础上,采用ZFFT 算法,在运算量增加不多的情况下,完成对中频回波主瓣的局部细化,大大提高了LFM CW 雷达的测距精度,以满足高精度测距的要求。 关键词: 雷达;测距;LFM CW;ZFFT 中图分类号: TN958.94 文献标识码: A Improving ra nge measuring precision o f LFMC W radar usin g ZFFT method Zhang Hong,Wang Xiaohong,Guo Xin (Department of Electronic and Engineering,Beijing Institute of Technology ,Beijing 100081,China) Abstract:T he L inea r Fr equency M o dulated Continuous W ave (L FM CW )Radar has high theor etical r ang e measuring precision.But its practical range precision is of the same mag nitude as the rang e resolut ion because of the inher ent frequency space of FFT ,w hich can not satisfy the high precisio n requirement fo r the near r ang e measuring.ZF FT met ho d is adopted to r educe fr equency space of the main lo be of echo r ang e spectr um o n the FFT with incr easing less operat ion.T his method can gr eatly improv e the range precisio n of L FM CW r adar and satisf y the pr actical needs o f high precisio n r adar rang measuring. Key words:rada r;range measur ing;L FM CW;ZFF T 1 引言 线性调频连续波(LFM CW)能实现较高的距离和多普勒频率的分辨力,在各种近距离雷达,防撞雷达,末制导雷达,远距离天波、地波雷达以及飞机高度表中已得到广泛应用。LFM CW 雷达回波中频的处理普遍采用数字信号处理方式来获取回波中频的距离谱,然后根据一定的判决准则来判定目标的有无,并通过计算过门限的目标频谱值来测量目标的距离[1] ,其系统 框图如图1所示。 该方法是通过目标的回波和目标发射波形混频后得到差拍信号,对差拍信号进行FFT 运算,计算出回波中频在距离轴上的功率谱曲线(即距离谱),可以充分利用LFM CW 雷达的高距离分辨和高测距精度的特点,适用于更为复杂的目标环境,是微波、毫米波测 图1 L FM CW 雷达系统示意图 距和成像的重要手段。但是,由于FFT 的 栅栏效应 [2-3],使得通过FFT 变换得到的距离谱具有固定的采样间隔 R ( R 为雷达的距离分辨力),从而产生 R /2的测距误差。当测量的距离较远时, R R ,测量误差远远小于目标的距离,相对误差较小;但当测量距离较近时, R !R ,相对测量误差较大。为此,如何克服FFT 的栅栏效应、提高近距离的测距精度的问题,就成为LFMCW 测距雷达重要的研究课题。本文采用ZFFT 对距离谱进行局部细化,可在增加较少运算量的情况下,大幅提高LFM CW 测距雷达的测距精度。 48

调频连续波

信号采集与处理单元关键技术研究 1.1 太赫兹频段线形调频连续波雷达系统及工作原理 1.1.1 LFMCW雷达的基本特点 调频连续波(FMCW)雷达一种通过对连续波进行频率调制来获得距离与速度信息的雷达体制。雷达调频可以采用多种方式,线性和正弦调制在过去都已经得到广泛的运用。其中线性调频是最多样化的,在采用FFT处理时它也是最适合于在大的范围内得到距离信息的。鉴于此原因,有关调频连续波的焦点问题基本上都集中在LFMCW雷达上。 线性调频连续波(LFMCW)雷达是具有高距离分辨率、低发射功率、高接收灵敏度、结构简单等优点,不存在距离盲区,具有比脉冲雷达更好的反隐身、抗背景杂波及抗干扰能力的特点,且特别适用于近距离应用,近年来在军事和民用方面都得到了较快的发展。主要优点可归结为以下三方面: LFMCW最大的优点是其调制很容易通过固态发射机实现; 要从LFMCW系统中提取出距离信息,必须对频率信息进行处理,而现在这一步可以通过基于FFT的处理器来完成; LFMCW的信号很难用传统的截获雷达检测到。 除了上述优点外,LFMCW雷达也存在一些缺点。主要表现在两个方面: 作用距离有限:LFMCW雷达发射机和接收机是同时工作的,作用距离增大时,

发射机泄漏到接收机的功率也增加; 距离-速度耦合问题:LFMCW雷达采用的是超大时带积的线性调频信号,根据雷达信号模糊函数理论,它必然存在距离与速度的耦合问题,这不仅导致系统的实际分辨能力下降,而且会引起运动目标测距误差。 1.1.2 太赫兹频段LFMCW雷达系统 根据目前国内的元器件水平和技术条件,在能够满足太赫兹波探测系统技术指标的前提下,本系统工作频率为220GHz,采用宽带线性调频探测体制方案,依靠天线测量目标的散射特性获取目标信息和距离信息。线性调频连续波雷达具有低截获特性,在距离速度模糊方面与普通的脉冲雷达相比具有较大优势。对于调频体制,利用在时间上改变发射信号的频率并与接收信号频率进行混频处理不仅能测定目标距离,而且能够精确测量目标径向速度,所以线性调频探测系统实现了太赫兹频段雷达的主动探测功能。 现代的连续波雷达普遍采用零拍接收机,也可称为零中频超外差接收机,本地振荡器就用发射机泄漏过来的信号代替,与回波信号直接混频,产生窄带差拍信号,经特性滤波和放大后,由A/D采样进行数字化处理。因此,LFMCW雷达结构较 为简单,易于实现。 频率合成器在基准信号源作用下产生线性调频信号,并通过正交解调和倍频,生成所需频段的线性调频信号,一路经过多级放大后由发射天线发射出去,另一路耦合到混频器作为本振信号,高频电磁波遇目标后反射回接收天线,经放大后

超声波测速

12 =12×s=0.4s= =9×s=0.3s=vt -t+t v==17.9m/s. 超声波测速 超声波测速 适合作流动物质中含有较多杂质的流体的流速测量,超声多普勒法只是其中一种,还有频差法和时差法等等。 时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算(作为分母,公式不好写,我积分不够没法贴图),而声速收温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。 频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。 还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。 以上这些东东都是关于流体的流速的超声测量方法。对于移动物体的速度测量多采用超声多谱勒法。 根据声学多普勒效应,当向移动物体发射频率为F的连续超声波时,被移动物体反射的超声波频率为f,f 与F服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,F,c表达式得出物体移动速度v。 设超声波速度为V两次发出超声波的时间间隔为T第一次用时为T1第二次为T2则车速为V1=V×(T2-T1)/T(以上数据均可测出) 超声波测速仪测量车速,图B中P1、P2是测速仪发出的超声波信号,n1,n2... 如图所示,图A是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差测出被测物体的速度。图B中P1、P2是测速仪发出的超声波信号,N1、N2分别是P1、P2由汽车反射回来的信号。设测速仪匀速扫描,

调频连续波激光调制方法研究

收稿日期:2014-10-11;修订日期:2014-11-18 基金项目:机电动态控制重点实验室资助项目(9140C360202130C36129) 作者简介:陈慧敏(1973-),男,副教授,博士,主要从事激光探测与目标识别方面的研究工作。Email:laserchm@https://www.doczj.com/doc/ed13552446.html, 调频连续波激光调制方法研究 陈慧敏,高志林,朱雄伟 (北京理工大学机电动态控制重点实验室,北京100081) 摘要:调频连续波(FMCW)激光调制电路是FMCW 激光探测系统的重要组成部分。对FMCW 激光调制方法进行研究,设计并实现由线性调频信号产生电路和半导体激光器驱动电路组成的激光调制电路,并给出相应的实验结果。其中线性调频信号产生电路采用基于直接数字频率合成技术的集成芯片AD9958进行设计,产生10~110MHz 的锯齿波线性调频信号;半导体激光器驱动电路采用直接电流调制方式,利用线性调频信号对激光载波的强度进行调制,激励激光器出光。测试结果表明:调频连续波激光调制电路能够满足调制频偏100MHz 、调频周期100μs 的设计要求。 关键词:调频连续波; 光强调制;直接数字频率合成中图分类号:TN249文献标志码:A 文章编号:1007-2276(2015)06-1762-04Method of frequency modulated continuous wave laser modulation Chen Huimin,Gao Zhilin,Zhu Xiongwei (Science and Technology on Electromechanical Dynamic Control Laboratory,Beijing Institute of Technology,Beijing 100081,China)Abstract:Frequency modulated continuous wave (FMCW)laser modulation circuit is an important part of the FMCW laser detection system.In this paper,the method of FMCW laser modulation was studied and a laser modulation circuit composed of a linear frequency modulation signal producing circuit and a semiconductor laser driver circuit was designed and implemented.Experimental result is given.The linear frequency modulation signal producing circuit was designed using the direct digital synthesis chip AD9958and produced a 10-110MHz sawtooth linear frequency modulation signal.The semiconductor laser driver circuit modulates the laser intensity with the linear frequency modulation signal through direct current modulation.Test results show that the laser modulation circuit can meet the design requirements :frequency deviation of 100MHz,frequency modulation period of 100μs. Key words:frequency modulated continuous wave;laser intensity modulation;direct digital synthesis 第44卷第6期 红外与激光工程2015年6月 Infrared and Laser Engineering

【CN109946659A】一种车载毫米波雷达线性调频连续波运动频率扩展校正方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910170757.8 (22)申请日 2019.03.07 (71)申请人 东南大学 地址 210000 江苏省南京市玄武区四牌楼2 号 (72)发明人 黄永明 曹孟德 宫玉琴 张铖  王海明  (74)专利代理机构 南京经纬专利商标代理有限 公司 32200 代理人 许方 (51)Int.Cl. G01S 7/40(2006.01) (54)发明名称一种车载毫米波雷达线性调频连续波运动频率扩展校正方法(57)摘要本发明公开一种车载毫米波雷达线性调频连续波频率扩展校正方法,该方法步骤为:首先对每根接收天线的线性调频连续波中频信号,按慢时间维补零并进行FFT运算;其次,根据系统的速度分辨率计算新的慢时间维频谱单元对应的速度刻度;接着按照每个新的慢时间维频谱单元和快时间维时域单元,根据对应的速度刻度,对每根接收天线中频信号慢时间维FFT结果进行匹配重排并进行运动相位补偿;最后对匹配重排及相位补偿后的慢时间维FFT运算结果按照快时间维进行FFT运算,得到无运动频率扩展影响的线性调频连续波二维FFT运算结果。该方法能够解决已有技术方案中车载毫米波雷达线性调频连续波的运动频率扩展问题,明显地提升系统性能,其复杂度较低、 实现简单。权利要求书2页 说明书5页 附图4页CN 109946659 A 2019.06.28 C N 109946659 A

1.一种车载毫米波雷达线性调频连续波频率扩展校正方法,其特征在于,所述的方法步骤包括: (1)对每根接收天线的中频信号按照慢时间维补零并进行FFT运算; (2)按照雷达系统参数计算系统速度分辨率,并由此计算得到速度刻度向量,作为新的慢时间维坐标刻度对应的速度值; (3)对每根接收天线中频信号的慢时间维FFT运算结果,按照每个快时间维时域单元和每个新的慢时间维频谱单元,根据对应的速度刻度向量进行频谱单元位置重排; (4)对每根接收天线中频信号进行频谱单元位置重排后的慢时间维FFT运算结果,按照每个快时间维时域单元和新的慢时间维频谱单元,计算其对应的运动相位补偿因子,并根据其进行运动相位补偿; (5)对每根接收天线中频信号进行频谱单元位置重排和相位补偿后的慢时间维FFT运算结果,按照快时间维进行FFT运算,得到无运动频率扩展的车载毫米波雷达线性调频连续波中频信号二维FFT运算结果。 2.根据权利要求1所述的一种车载毫米波雷达线性调频连续波运动频率扩展校正算法,其特征在于,所述步骤(1)中,对每根接收天线的中频信号按照慢时间维补零并进行FFT 运算, 得到其计算结果为其中,N q 为系统单个扫频率的采样点数,即快时间维采样点数,N s 为系统的慢时间维FFT运算点数,M为系统的扫频重复个数,即慢时间维采样点数,N c 为系统慢时间维FFT运算时的补零点数。 3.根据权利要求2所述的一种车载毫米波雷达线性调频连续波运动频率扩展校正算法,其特征在于, 所述步骤(2)中的系统速度分辨率为: 式中,c为电磁波在自由空间的传播速度,T为系统扫频重复时间,f 0为载波中心频率,由式(1)与系统慢时间维采样点数M计算新的慢时间维频谱单元位置m对应的速度值为: V[m]=(M -m+1)·v res ,m=1,2,...M。 (2) 4.根据权利要求3所述的一种车载毫米波雷达线性调频连续波运动频率扩展校正算法,其特征在于:所述步骤(3)中,对每根接收天线中频信号慢时间维FFT运算结果,按照每个新的慢时间维频谱单元和快时间维时域单元根据其对应的速度值进行频谱单元位置重排,具体方法为: (3.1)对每根接收天线中频信号慢时间维FFT运算结果,按照每个慢时间维频谱单元位置n s 和快时间维时域单元位置 计算其对应的速度参数为: 式中,μ为扫频斜率,μ=B/T,B为扫频带宽; (3.2)按照每个新的慢时间维频谱单元位置m和快时间维时域单元位置 在不同的原慢时间维频谱单元中搜索对应速度值与V[m]最接近的频谱单元位置为: 权 利 要 求 书1/2页2CN 109946659 A

FMCW可调连续波雷达原理

调频连续波FMCW雷达理 FMCW是取英文Frequency Modulated Continuous Wave的词头的缩写。FMCW 技术是在雷达物位测量设备 中最早使用的技术。 FMCW微波物位计采用线性的调制的高频信号,一般都是采用10GHz或24GHz微波信号。它是一种基于复杂数学公式的间接测量方法,由频谱计算出物位距离。天线发射出被线性调制的连续高频微波信号并进行扫描,同时接收返回信号。发射微波信号和返回的微波信号之间的频率差与到介质表面的距离成一定比例 关系。 如果我们认为被线性调制的发射微波信号的斜率为K,发射信号和反射信号的频率为rf,滞后时间差为rt, 发射天线到介质表面的距离为R,C为光速。 那么我们可以得到:rt = 2R/C 由于采用的是调频的微波信号,因此我们可得: rf = K×rt; 两式合并后,我们得到公式: R = C× rf/2K (公式2) 根据公式2,我们可以看到,天线到介质表面的 距离R与发射频率和反射频率差rf成正比关系。 信号处理部分将发射信号和回波信号进行混合处理,得到混合信号频谱,并通过独立的快速傅立叶(FFT)变化来区分不同的频率信号,最后得到准确地数字回波信号,计算出天线到介质表面的距离。 实际上,FMCW信号是在两个不同的频率之间循环。目前市场上的FMCW微波物位计主要以两种频率为主: 9到10GHz和24.5到25.5GHz。 采用FMCW原理的微波物位计都具有连续自校准的处理功能。被处理的信号与一个表示已知固定距离的内部参照信号进行比较。任何差值会自动得到补偿,这样消除了由温度波动或变送器内部电子部件老化引 起的可能的测量漂移。 2.2、脉冲 脉冲雷达物位计,与超声波技术相似,使用时差原理计算到介质表面的距离。设备传输固定频率的脉冲,然后接收并建立回波图形。信号的传播时间直接与到介质的距离成一定比例。但是与超声波使用声波不同,雷达使用的是电磁波。它利用好几万个脉冲来“扫描”容器并得到完整的回波图。 通常,采用脉冲方式的微波物位计的精度和可靠性都不如FMCW微波位计,但是脉冲物位计因为价格较FMCW 低很多,因此是目前市场应用得最多的微波物位计。当然,很多生产厂商通过增强回波处理功能等方式大

连续波雷达测速测距原理

连续波雷达测速测距原理 一. 设计要求 1、当测速精度达到s ,根据芯片指标和设计要求请设计三角调频波的调制周期和信号采样率; 2、若调频信号带宽为50MHz ,载频24GHz ,三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),请用matlab 对算法进行仿真。 二. 实验原理和内容 1. 多普勒测速原理 依据芯片参数,发射频率为24GHz ,由上式可以得出,当测速精度达到s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz 。 2.连续波雷达测距基本原理 设天线发射的连续波信号为:① 则接收的信号为:② 若目标距离与时间关系为:③ ) 2cos()(000?π+=t f t x f T ] )(2cos[)(000 ?π+-=r f R t t f t x t v R t R r -=0)(图 频域测速原理 N f f f f s d m d 2/||max max =-=?max max /2/4/4r d s v f f N T λλλ?=?==

则延迟时间应满足以下关系:④ 将④代入②中得到 其中 2 f c v f r d = 根据上图可以得到,当得到 t ?,便可以实现测距,要想得到 t ?,就必须测得fd 。 已知三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),则可以通过:③ ④ 分别计算出向三个目标发出去信号,由目标反射回来的信号相对发射信号的延迟时间。 02() r r r t R v t c v =--} )](2 [2cos{)(0000?π+---=t v R v c t f t x r r f R ] 22)(2cos[00 000?ππ+-+=c R f t f f d t v R t R r -=0)(02()r r r t R v t c v =--

调频连续波

三、信号采集与处理单元关键技术研究 Equation Section 3 3.1 太赫兹频段线形调频连续波雷达系统及工作原理 3.1.1 LFMCW雷达的基本特点 调频连续波(FMCW)雷达一种通过对连续波进行频率调制来获得距离与速度信息的雷达体制。雷达调频可以采用多种方式,线性和正弦调制在过去都已经得到广泛的运用。其中线性调频是最多样化的,在采用FFT处理时它也是最适合于在大的范围内得到距离信息的。鉴于此原因,有关调频连续波的焦点问题基本上都集中在LFMCW雷达上。 线性调频连续波(LFMCW)雷达是具有高距离分辨率、低发射功率、高接收灵敏度、结构简单等优点,不存在距离盲区,具有比脉冲雷达更好的反隐身、抗背景杂波及抗干扰能力的特点,且特别适用于近距离应用,近年来在军事和民用方面都得到了较快的发展。主要优点可归结为以下三方面: LFMCW最大的优点是其调制很容易通过固态发射机实现; 要从LFMCW系统中提取出距离信息,必须对频率信息进行处理,而现在这一步可以通过基于FFT的处理器来完成; LFMCW的信号很难用传统的截获雷达检测到。 除了上述优点外,LFMCW雷达也存在一些缺点。主要表现在两个方面: 作用距离有限:LFMCW雷达发射机和接收机是同时工作的,作用距离增大时,发射机泄漏到接收机的功率也增加; 距离-速度耦合问题:LFMCW雷达采用的是超大时带积的线性调频信号,根据雷达信号模糊函数理论,它必然存在距离与速度的耦合问题,这不仅导致系统

的实际分辨能力下降,而且会引起运动目标测距误差。 3.1.2 太赫兹频段LFMCW雷达系统 根据目前国内的元器件水平和技术条件,在能够满足太赫兹波探测系统技术指标的前提下,本系统工作频率为220GHz,采用宽带线性调频探测体制方案,依靠天线测量目标的散射特性获取目标信息和距离信息。线性调频连续波雷达具有低截获特性,在距离速度模糊方面与普通的脉冲雷达相比具有较大优势。对于调频体制,利用在时间上改变发射信号的频率并与接收信号频率进行混频处理不仅能测定目标距离,而且能够精确测量目标径向速度,所以线性调频探测系统实现了太赫兹频段雷达的主动探测功能。 现代的连续波雷达普遍采用零拍接收机,也可称为零中频超外差接收机,本地振荡器就用发射机泄漏过来的信号代替,与回波信号直接混频,产生窄带差拍信号,经特性滤波和放大后,由A/D采样进行数字化处理。因此,LFMCW雷达结构较为简单,易于实现。基本框图如图19所示: 图1调频连续波雷达基本组成框图 频率合成器在基准信号源作用下产生线性调频信号,并通过正交解调和倍频,生成所需频段的线性调频信号,一路经过多级放大后由发射天线发射出去,另一路耦合到混频器作为本振信号,高频电磁波遇目标后反射回接收天线,经放大后

具有实时语音播报的超声波测距测速仪

具有实时语音播报的超声波测距测速仪(C题) 摘要:本文研究内容为实时语音播报的测距测速仪,利用超声波进行距离测量,测量精度在厘米级别,适用于近距离测距。本系统以STC12C5A60S为微处理芯片, 其产生40kHz频率,再利用超声波换能器TCT40-16T产生超声波信号并发射 出去,由TCT40-16R接收超声波信号,并利用超声波专用芯片CX20106A检 波、处理超声波信号,最后发送给微处理器。微处理器通过计算得到与障碍 物的距离,并通过所得距离计算出物体的移动速度。微处理器通过串口控制 JQ6500语音模块。当微处理器计算得到障碍物的距离和物体移动速度时,微 处理器发送指定的命令,驱动语音模块播放保存在FLASH中的语音,实现实 时语音播报。 关键词:STC12C5A60S2;JQ6500;超声波。

1 系统方案设计 设计任务 根据命题要求,设计并制作一台具有实时语音播报的超声波测距测速仪。 A. 具有超声波测距功能,测量距离~,测距精度±1cm; B. 自动语音实时播报测量距离数值;实时播报时间间隔t≤10s;实时语音播报清晰明亮、无明显失真,在1米距离处人耳能准确分辨。 C. 实时显示测量的距离和速度,并且显示内容要与语音播报内容同步。 总体设计方案 具有实时语音播报的超声波测距测速仪由6部分组成:超声波发射模块、超声波接收模块、51单片机最小系统、LCD1602显示模块、JQ6500语音播报模块、按键模块组成。 图1-1 超声波测距测速仪组成图 声波测速测距原理 声波测距原理 超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到发射波就立即停止计时。假设超声波在空气中的传播速度为V,根据计时器记录的时间T,发射点距障碍物的距离S,如图1-2所示。

基于单片机超声波多普勒测速的设计

摘要 在速度测量领域,利用多普勒效应的设计不在少数。其中,多以激光多普勒测速设计或装置为主,激光以其高强度、频率单一、不易受到干扰等良好的性质受到众多多普勒测速设计者的青睐,以激光为波源做成的装置具有测速范围广(4×10~(-5)~10~4米/秒)、空间分辨率高、动态响应快等优点。但是,这种装置一般而言价格比较昂贵,在许多测量精度要求不那么严格的地方的应用受到了很大的限制。因此,我们设计了以超声波作为波源结合单片机用以数据处理的方案,再加上其他一些必要的电子电路,可以把整个装置集成到一块PCB板上,以电池供电。这样便解决了价格问题,提高了性价比,同时携带方便,测量精度亦在可以接受的范围内。 关键词:多普勒效应;超声波;单片机;混频放大;差频测量;模数转换;滤波整形 基于单片机的超声波多普勒测速设计 1前言 1.1多普勒效应 多普勒效应是指物体辐射的波长因为光源和观测者的相对运动而产生变化,在运动的波源前面,波被压缩,波长变得较短,频率变得较高,在运动的波源后面,产生相反的效应,波长变得较长,频率变得较低,波源的速度越高,所产生的效应越大,根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度,恒星光谱线的位移显示恒星循着观测方向运动的速度,这种现象称为多普勒效应。 测速的公式简介。多普勒效应是本设计的理论依据,深入的考虑,可基于超声波多普勒效应推导出移动物体的速度,具体公式如下:

(1)当波源静止,观察者运动时 f=[(u+Vr)/u]f0 ① (2)当波源运动,观察着静止时 f=[u/(u-Vs)]f0 ②(3)当两者同时运动时 f=[(u+Vr)/(u-Vs)]f0 ③由于超声波的发生器和接收器是集中在一起的,所以当运动物体反射超声波时,应该把运动物体当做波源,而把超声波接收器作为观察者。这样,就可以结合上述公式求出运动物体的速度与多普勒频移之间的关系,如下: (1)当波源静止,观察者运动时 Vr=[(f0-f’)/(f0+f’)]u ④(2)当波源运动,观察者静止时 Vs=[(f0-f’)/(f0+f’)]u ⑤(3)当两者相对运动时 Vr={[(f’-f0)u2-(f’+f0)Vs]/[(f’+f0)u+(f0-f’)Vs]}u ⑥其中第⑤式的情况在实际情况中不会出现,但是注意到两者相对运动时的第⑥式中出现了波源的运动速度Vs,这时就需要用第⑤式先求出波源的运动速度, 进而求出物体的运动速度。由上述推导公式可知,只要得到多普勒频移信号f-f0,即可求得物体的运动速度Vr。 1.2单片机 1.2.1单片机简介 单片机是一种集成在硅片上的电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

超声波测量距(原理图+实物图+程序)

-LE D

#include //器件配置文件#include //传感器接口 sbit RX = P3^2; sbit TX = P3^3; //按键声明 sbit S1 = P1^4; sbit S2 = P1^5; sbit S3 = P1^6; //蜂鸣器 sbit Feng= P2^0; //变量声明 unsigned int time=0; unsigned int timer=0; unsigned char posit=0; unsigned long S=0;

unsigned long BJS=50;//报警距离80CM //模式 0正常模式 1调整 char Mode=0; bit flag=0; unsigned char const discode[] ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40,0xff/*-*/}; //数码管显示码0123456789-和不显示unsigned char const positon[4]={0xfd,0xfb,0xf7,0xfe}; //位选 unsigned char disbuff[4] ={0,0,0,0}; //数组用于存放距离信息 unsigned char disbuff_BJ[4] ={0,0,0,0};//报警信息 //延时100ms(不精确) void delay(void) { unsigned char a,b,c; for(c=10;c>0;c--) for(b=38;b>0;b--)

相关主题
文本预览
相关文档 最新文档