当前位置:文档之家› 关于船用螺旋桨安装方法的改进

关于船用螺旋桨安装方法的改进

关于船用螺旋桨安装方法的改进
关于船用螺旋桨安装方法的改进

关于船用螺旋桨安装方法的改进

船用螺旋桨是推动船舶前进的机构,螺旋桨安装于船尾水线以下,由船舶主机获得动力而旋转,将水推向船后,利用水的反作用力推船前进。现代船用螺旋桨类型很多,如定距桨、可调螺距桨、对转桨、导管桨、喷水推进器和吊舱式推进装置等。随着船舶大型化及航速的增加,螺旋桨的负荷更大,加之船东对振动的更高要求,现代船用螺旋桨的设计成为设计和研究人员越来越关注的关键问题之一。

船舶的发展决定了船用螺旋桨的发展,而船舶的发展则受到太多因素的影响。但整体说来,螺旋桨发展的目标不外是产生更大的推力,以推动更大的船舶或使船舶前进得更快、更有效率。在能源日益昂贵的今天,急需开发简便、节能、高效的新一代螺旋桨及相关设备/装置。

船用螺旋桨安装方法改进

1、船舶高速、节能、双向施力螺旋桨安置法

“船舶高速节能双向施力螺旋桨安置法”是在现有船桨技术结构的基础上提出的不同安置方案;由于现有桨安置法只能使桨产生单向施力和单一功能,使该桨发挥不足一半的应有功效,浪费过半能源并使船速过低;而本发明则能使船桨产生双向多功能施力,充分发挥船桨应有的潜能,使航速能大幅度提升和节能。该桨是安置在一个管道内,其管道贯穿船体前后,其进水口在船头,排水口在船尾,当桨转动作功时船前水流通过进水口快速抽往船尾行成反冲力。另一方面桨在抽吸船前水流时,其进水口也能产生一股低压牵引力。

2、大型船舶螺旋桨立式预装装置

龙叶大型船舶螺旋桨立式预装装置,包括基座、吊具,所述的基座由面板、座板、立板、支撑管及调整板组成,面板上布设有螺旋桨预装时将螺旋桨紧固在基座上的螺栓孔,支撑管和立板均至少四个相搭配,分别布设在面板和座板之间,支撑管的上端和下端分别与面板和座板固定连接,立板的一侧与支撑管固定连接,立板的上端和下端分别与面板和座板固定连接,座板上布设有若干调整板,每个调整板上安装有调整基座水平的调整螺钉。所述的吊具由法兰、吊耳、加强板组成,吊耳固定连接在法兰上,吊耳两侧布设加强板,加强板与法兰和吊耳固定连接,法兰上的螺栓孔与预装的艉轴法兰的螺栓孔相应相同。

本实用新型的优点是装置结构简单,现场操作性强,预安装安全。

3、大型螺旋桨轴与艉管之间的安装装置

一种大型船舶上的小间隙配合的龙叶大型螺旋桨轴与艉管之间的安装装置,由纵向轨道支架、纵向轨道以及置于纵向轨道上的小车组成。小车由纵向行走轮、固定支架、侧向限位条、上下活动支架、上下调节螺杆、滑板、左右调节螺杆和衬垫组成。纵向行走轮装置在固定支架上,并置于两只纵向轨道上,侧向限位条布置在两条纵向轨道顶部,上下活动支架有置于固定支架上方,与固定支架之间分别用两件上下调节螺杆相连,所述滑板有两件,左右各一件,分别置于左右两只活动支架上,与左右两只活动支架之间分别用两件左右调节螺杆相连,所述衬垫有两件,分别置于左右两件滑板顶部的斜面上。本实用新型简单可靠和实用。

4、采用整体式导架的可调螺旋桨

一种采用整体式导架的可调螺旋桨,包括桨毂、油缸、活塞、导架、叶片盘根、滑块和艉轴,其导架是由空心轴穿过四方体中心形成整体式导架,四方体的四个角上分别设有一个曲柄销;空心轴一端与活塞连接,另一端与艉轴的内孔联接;叶片盘根设有一个导槽,整体式导架上的曲柄销通过滑块置于叶片盘根的导槽中。

其优点是:由于采用整体式导架结构,可减少零件数目和机加工量以及船检费用,增强零件的可靠性;由于叶片盘根上不设曲柄销,而设导槽,减小了叶片盘根毛坯尺寸,降低了成本,减少了粗加工量;采用整体式导架,使整个可调螺旋桨的安装更加方便。

Y12F型飞机螺旋桨的安装.doc

颁发专用条件哈飞航空工业股份有限公司Y12F型飞机螺旋桨的安装征求意见稿 编号:PSC-23-XX 反馈意见截止期:2015年XX月XX日 1.概述 本征求意见稿建议为哈飞航空工业股份有限公司Y12F型飞机颁发专用条件。Y12F审定基础中的CCAR 23部适航标准相当于FAR 23部至第55修正案,哈飞航空工业股份有限公司自愿符合FAR 23部第59修正案的相关要求。局方与申请人一致同意用此专用条件来要求与FAR 23部第59修正案等效的附加安全标准。 2.背景 Y12F飞机是哈飞航空工业股份有限公司(HAIC)研发的双发涡桨中短途支线飞机,属于23部通勤类飞机。飞机采用上单翼、下平尾、单垂尾、可收放式前三点起落架常规布局。其上安装了Hartzell公司的HC-B5MP-3D/M10876ANSK 螺旋桨。 CAAC于2005年8月17日正式受理了HAIC关于Y12F型飞机的型号合格申请,确定的审定基础适航要求按CCAR-23-R3《正常类、实用类、特技类和通勤类飞机适航规定》,环境要求按CCAR-34《涡轮发动机飞机燃油排泄和排气排出物规定》及CCAR-36-R1《航空器型号和适航合格审定噪声规定》。

在申请CAAC型号合格审定的同时,HAIC还向FAA提交了型号合格审定的申请,按照FAA审定要求,审定基础将包括FAR 23部第59修正案。为此,申请人要求在CAAC型号合格审定基础中,加入自愿符合FAR 23部第59修正案内容。经协调,审查组与申请人达成一致意见,根据FAR23部修正案23-59的要求,编制了关于Y12F飞机对螺旋桨的安装的附加要求的专用条件草案。 现根据适航司管理程序AP-21-AA-2012-21《颁发专用条件和批准豁免的程序》,编制此专用条件征求意见稿。 3.适用范围 本专用条件适用于Y12F型飞机上螺旋桨的安装,用于替代CCAR-23-R3中23.905、23.907条之要求。 4.专用条件草案 第23.905. 螺旋桨桨距操纵系统 (a) 可变桨距和可反桨螺旋桨 (1)螺旋桨系统的单个失效或故障,不会导致螺旋桨桨距低于正常飞行低距止动位置。任何有意低于正常飞行低距止动位置的范围,必须由申请人在适用的手册中表明。如果证明概率极小,结构元件的破损不必考虑。 (2)对于桨距可以低于飞行低距止动位置的螺旋桨,必须通过安装手册中的定义,使飞行机组能够感受并指示出桨叶是低于飞行低距止动位置的。感受和指示螺旋桨桨距位置的方法必须保证其失效不会影响螺旋桨操纵。 (b) 螺旋桨操纵系统 (1)螺旋桨操纵系统的设计、制造和验证必须表明:

船用螺旋桨的设计关键分析

船用螺旋桨的设计关键分析 船、机、桨系统中,船体是能量的需求者,主机是能量的发生器,螺旋桨是能量转换装置,三者之间是相互紧密联系的,但同时又要遵从各自的变化特性。 1.螺旋桨 民用船使用的图谱桨,一般以荷兰的B型桨和日本的AU桨为主。AU桨为等螺距桨、叶切面为机翼型;B型桨根部叶切面为机翼型、梢部为弓形,除四叶桨0.6R至叶根处为线性变螺距外,其余均为等螺距,桨叶有15°的后倾。为便于设计方便,由.KT、KQ——J敞水性征曲线图转换为BP一δ图谱。 桨与船体各自在水中运动时,都会形成一个水流场。水流场与桨的敞水工作性能和船的阻力性能密切相关。当桨在船后运动时,2个原本独立的水流场必然会相互作用、相互影响。船体对螺旋桨的影响体现在2个方面:(1)伴流。由于船尾部螺旋桨桨盘处因水的粘性等因素作用,形成一股向前方向的伴流,使得螺旋桨的进速小于船速。(2)伴流的不均匀性。船后桨在整个桨盘面上的进速不等(在实用上可取相对旋转效率为1)。 2.螺旋桨对船体的影响 由于螺旋桨对水流的抽吸作用,造成桨盘处的水流加速,由伯努利定律可知,同一根流线上,水质点速度加快,必然会导致压力下降,从而造成船的粘压阻力增加。也就是桨产生的推一部分用于克服船体产生的附加阻力。 如果用伴流分数ω表征伴流与船速的比值,用推力减额t表征船体附加阻力与船体自身阻力的比值。那么,敞水桨与船后桨的差别就在于一个船身效率(1一t)/(1一ω)从中可以看出,伴流分数ω越大、推力减额t越小,则船身效率越高。 从螺旋桨图谱可以看出,横坐标的参数为√BP或BP。BP称为收到功率系数(或称为载荷系数),其值为:BP=NPD0.5 /VA2.5式中:N为螺旋桨转速;PD为螺旋桨敞水收到功率;VA为螺旋桨进速。 BP值越小,对应的螺旋桨敞水效率越高;反之,则螺旋桨效率越低。从个体因素来讲,N值和PD0.5 /VA2.5值越小,BP 值就越小。PD和VA参数有联动关系,在相对低速的范围内,PD值变大、BP值变小;在相对高速的范围内,PD值变大、BP值也变大。这取决于船的阻力特性。 实际船螺旋桨设计时,还要考虑以下的先决条件:螺旋桨直径有无限制、船舶航速的具体要求。 一般情况下,螺旋桨设计工况都对应船舶满载航行的状态,在该航行状态下,主机发出预定功率、螺旋桨效率达到最佳,船、机、桨匹配理想。但如果设计参数选择不当,就会造成螺旋桨产生“轻载”或“重载”的现象,“轻载”是指螺旋桨达到设计转速后,不能充分吸收主机的转矩,主机发不出预定功率;“重载”是指螺旋桨还未达到设计转速时,主机转矩已达到最大值,主机同样发不出预定功率。 螺旋桨设计产生“轻载”还是“重载”现象,主要取决于2个方面:(1)伴流分数ω、推力减额t取值是否正确。(2)船舶阻力计算的误差。 如选取的伴流分数ω大于船后实际值,则螺旋桨不能吸收预定的功率和发出要求的推力,从而无法达到预定的航速,螺旋桨处于“轻载”状态;反之螺旋桨处于“重载”状态。

船舶分类

船舶按不同的分类标准可以划分为许多种不同的船型。 (1) 按用途可分为民用船舶和军用船舶。在民用船舶中又分为运输船舶、科学调查船、公务执法船、工程船舶、渔船、海洋开发装置等。 (2) 按航区可分为海船和内河船。 (3) 按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效应船等。后四种船型基本上属高性能船舶。 (4) 按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等。 (5) 按动力装置种类可分为柴油机推进船、电力推进船、蒸汽动力装置船、燃气动力装置船、核动力装置船。 以下阐述的船型是指柴油机带动螺旋桨推进的排水型海洋运输船舶。 运输船舶大致可以分为以下几类: 1. 油船——原油船、成品油船、供油船 2. 散货船 3. 集装箱船 4. 干(杂)货船 5. 多用途船 6. 滚装船(Ro-Ro 船) 7. 客滚船、车客渡船 8. 客船、客货船 9. 交通船 10. 豪华型旅游船(邮船) 11. 液化气体船——液化石油气体船(LPG 船)、液化天然气体船(LNG 船)、压缩天然气船(CNG 船) 12. 化学品船 13. 冷藏船 14. 驳船 通常我们将油船、散货船、集装箱船称之为三大主力船型,它在世界船舶保有量(现有船舶中)中占77.4%。(现有杂货船和多用途船占9.2%,且其比例逐步缩小,而集装箱船比例将逐步上升),在造船产量中占89.9%。 通常我们又将CNG 船、LNG 船、全冷式LPG 船多功能化学品船、豪华型旅游船、通常我们又将CNG 船、LNG 船、全冷式LPG 船多功能化学品船、豪华型旅游船、超大型集装箱船、滚装船称之为高新技术船型。

油船: 油船(Oil tanker)通常有原油船(Crude oil carrier)和成品油船(Product oil tanker)之分或者两者兼运之,即原油/成品油船或成品油/原油船。这里泛指的油船是包含不需特殊涂料的船。 由于MARPOL(防污染公约)的13F,13G 及25A 等条款的实施。很多单壳油船将被强制淘汰,新建油船必需双壳。由于在西班牙沿岸造成的油船海损事故,造成了大面积的海上污染,这个强制淘汰限期一再被提前。 油船按载重量吨位的大小大致可分为以下几类: ULCC: DW 35 万吨以上; VLCC: DW 25~32.5 万吨; Suez max :DW ~16 万吨; Aframax :DW 10~11 万吨; Panamax :DW 7~7.5 万吨; Handysize: DW4~5 万吨。 具体情况如下: (1) 超级油船(ULCC—Ultra Large Crude Oil Carrier) 载重量35 万吨以上,已建成的最大吨位为56.5 万吨“Jahre Viking”号,由于港口条件限制这种船建造量极小。 (2) 巨型油船(VLCC—Very Large Crude Oil Carrier) 载重量25~32.5 万吨的原油船。由于装载量大,运输经济性好,是国际上远洋运输原油的主要工具。适合于载运闪点低于60℃的原油产品,航行于无限航区。货油舱区为双壳结构,由两道纵舱壁和多道横舱壁将其分为15 个货油舱(3×5),2 个污油舱。 随着国际上对油船的公约、规则和法规不断提出新要求以及船东对航运的经济效益要求越来越高,VLCC 的发展不断更新换代。国际上自1966 年第一艘单壳体VLCC 在日本问世以来,上世纪90 年代已发展到第三代双壳体VLCC。 前几年,欧洲船东又提出一种超宽浅吃水双尾鳍双桨VLCC,称之为V-max 型VLCC。 又称第4 代VLCC,它操纵性好、航速高、安全性好。 (3) 苏伊士型油船(Suez max) 顾名思义,是能通过苏伊士运河的最大型油船,载重量16 万吨左右。有一道纵舱壁和多道横舱壁分为12 个货油舱(2×6),2 个污油油舱。 (4)阿芙拉型油船(Aframax) 11 万吨级Aframax 型油船自诞生之日起,就因其航行范围广,承运油品种类多,技术经济性好的特点而倍受国际著名航运公司的青睐。 因航线不同,为适应不同港口和市场需要可以优化出四型吨位相同但尺度不同的Aframax 船型。

船舶螺旋桨螺距及拱度的优化设计研究

船舶螺旋桨螺距及拱度的优化设计研究 2010年6月11日 摘要 基于螺旋桨水动力性能的升力面理论预报程序,利用iSIGHT软件进行指定负荷分布形式下桨叶螺距及拱度的优化设计研究,并对设计结果进行粘流CFD计算验证。以某集装箱船螺旋桨为母型桨,保持其原有的径向负荷分布形式,指定不同的弦向负荷分布形式,采用上述方法进行螺距及拱度的优化设计(桨叶其它参数与母型桨相同)。CFD计算表明,通过指定适当的负荷弦向分布,可以在保证效率的同时使桨叶表面压力分布更加均匀,从而推迟桨叶空化。 关键词:船舶、舰船工程;螺旋桨;优化;设计;升力面理论;CFD 0引言 随着船舶向大型化、高速化发展,对螺旋桨的综合性能要求日益提高。现代船舶螺旋桨设计在追求高推进效率的同时,还必须在复杂的船尾流场中尽量推迟乃至避免空化的发生,从而降低螺旋桨诱发的船体振动及噪声。为了满足这些相互制约的要求,螺旋桨优化设计方法的研究日益受到船舶工程界的重视。 传统的螺旋桨设计方法分为图谱设计和理论设计两大类,前者无法直接用于适伴流及大侧斜桨的设计,后者可分为升力线、升力面及面元方法等,能够处理伴流及侧斜问题,但对负荷面分布形式的处理比较单一,应用也不够广泛。近年来,优化方法在螺旋桨设计中的应用研究开始出现,性能计算采用系列桨性能试验回归公式或升力面、CFD等数值方法,优化采用遗传算法、序列二次规划法、DOE方法等,优化目标包括推力、效率、激振力或其组合,但尚未形成比较成熟的体系,与工程应用的要求也有较大距离。 Benini开发了基于遗传算法的系列螺旋桨多目标优化方法,采用试验数据的回归公式计算敞水性能。以敞水效率和推力最大化为目标、Keller空泡限界公式为限制条件,对B

螺旋桨拆装工艺

螺旋桨安装工艺 一.拆卸 1.准备下列工量具: a.手摇泵及连接软管、接头、压力表2套 b.百分表(带磁座)1只 c.点温计1只 d.直角尺和千分尺各1套 计量器具应计量合格有效 2.将军帽拆卸后,保险板,螺栓的保险丝拆除,将军帽内的液压螺母清洁。 3.直角尺和千分尺测量尾轴端面至桨叶尾端面的距离L,作为回装桨叶的参考。 4.在桨毂前的桨轴上安装百分表(用于观察轴向移动);液压螺母的油孔丝堵取下, 连接手摇泵1台(用于轴向压油);桨叶的油孔丝堵取下,连接手摇泵1台(用于径向压油)。 5.2台手摇泵同步缓慢地向螺母和桨叶压油,观察百分表;在桨叶与螺母间隙约0.5mm 时(此时2台手摇泵的压力均约为60-70mpa),桨叶的手摇泵泄压,使桨叶与桨轴抱紧;然后螺母的手摇泵泄压,手动盘动螺母,拆下螺母,塑料布覆盖保护。 6.桨叶手摇泵再次缓慢的压油,油压超过推入量到位油压时,螺旋桨能砰然跳开,记 录跳开油压。 7.在施工过程中,螺旋桨的吊钩不能脱开,防止跌落。 二·回装 8.确定推入量。 a.测量桨和轴的表面温度Cb和Cs。 b.根据公式计算推入量的上限和下限数值(见船方的桨叶安装说明书),对比拆桨 叶前的数值L。 9.确定推入距离的起始点 a.连接桨叶和液压螺母的手摇泵。 b.百分表安装桨毂前的桨轴上(用于测量艉轴是否移动)。 c.用轴向手摇泵向液压螺母泵油,使油压上升到2Mpa时,将百分表示值调到“0” 位。 10.轴向继续泵油,干压推入量达到2mm(或者3mm),分别记录0.5mm、1.0mm、1.5mm 和2.0mm时的压力。 11.在坐标纸上作出P—D图,经过上述点(2mm)的P与D轴的交点Ds为推入距离的 起始点。此图表应提交厂检、船检和船东。 12.径向手摇泵开始同时与轴向手摇泵缓慢压油(开始涨毂),此时径向与轴向的压力 应尽量相同,每压入1mm记录下将径向和轴向的压力,直至压到推入量的上下限之间的数值,并对比拆桨叶前的数值L。 13.先拆下径向手摇泵,再拆下轴向的手摇泵,丝堵回装。螺母回装直至与桨叶贴紧, 液压螺母的保险安装,将军帽内加入黄油,回装将军帽。

船用螺旋桨小知识集锦

船用螺旋桨小知识集锦 螺旋桨简介 由桨毂和若干径向地固定于毂上的桨叶所组成的推进器,俗称车叶。螺旋桨安装于船尾水线以下,由主机获得动力而旋转,将水推向船后,利用水的反作用力推船前进。螺旋桨构造简单、重量轻、效率高,在水线以下而受到保护。 普通运输船舶有1~2个螺旋桨。推进功率大的船,可增加螺旋桨数目。大型快速客船有双桨至四桨。螺旋桨一般有3~4片桨叶,直径根据船的马力和吃水而定,以下端不触及水底,上端不超过满载水线为准。螺旋桨转速不宜太高,海洋货船为每分钟100转左右,小型快艇转速高达每分钟400~500转,但效率将受到影响。螺旋桨材料一般用锰青铜或耐腐蚀合金,也可用不锈钢、镍铝青铜或铸铁。 驱动船前进的一种盘形螺旋面的推进装置。由桨叶及与其相连结的桨毂构成。常用的是三叶、四叶和五叶。包括单体螺旋桨、龙叶导管螺旋桨、对转螺旋桨、串列螺旋桨、可调螺距螺旋桨、超空泡螺旋桨、大侧斜螺旋桨等。螺旋桨一般安装在船尾(水下)。船用螺旋桨多由铜合金制成,也有铸钢,铸铁,钛合金或非金属材料制成。对船用螺旋桨的研究分理论和试验两个方面。理论方面现已有动量定理、叶元体理论、升力线理论、升力面理论、边界元方法等理论和分析方法,能较准确地预报螺旋桨的水动力性能并进行理论设计。试验方面的研究主要是通过模型试验研究螺旋桨性能,绘制螺旋桨设计图谱。船用螺旋桨的设计方法分两大类,即理论设计方法和图谱设计方法。 60年代以来,船舶趋于大型化,使用大功率的主机后,螺旋桨激振造成的船尾振动、结构损坏、噪声、剥蚀等问题引起各国的重视。螺旋桨激振的根本原因在于螺旋桨叶负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。 螺旋桨的分类 在普通螺旋桨的基础上,为了改善性能,更好地适应各种航行条件和充分利用主机功率,发展了以下几种特种螺旋桨。 可调螺距螺旋桨 简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。对于一般运输船舶,可使船-机-桨处于良好的匹配状态。但调距桨的毂径比普通螺旋桨的大得多,叶根的截面厚而窄,在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。 导管螺旋桨 在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。此导管又称柯氏导管。导管与船体固接的称固定导管,导管被连接在转动的舵杆上兼起舵叶作用的称可转导管。导管可提高螺旋桨的推进效率,这是因为导管内部流速高、压力低,导管内外的压力差在管壁上形成了附加推力;导管和螺旋桨叶间的间隙很小,限制了桨叶尖的绕流损失;导管可以减少螺旋桨后的尾流收缩,使能量损失减少。但导管螺旋桨的倒车性能较差。固定导管螺旋桨使船舶回转直径增大,可转导管能改善船的回转性能。导管螺旋桨多用于推船。

DWT油污水接收船螺旋桨设计书

1145 DWT油污水接收船螺旋桨设计书 指导老师: 专业班级: 学生姓名: 学号: 邮箱: 完成日期:2013/4/24

目录 1.船型............................. 错误!未定义书签。2.主机参数. (4) 3.推进因子的确定 (4) 4.桨叶数Z的选取 (4) 5.AE/A0的估算 (4) 6.桨型的选取说明 (5) 7.根据估算的AE/A0选取2~3张图谱 (5) 8.列表按所选图谱(考虑功率储备)进行终结设计 (5) 9.空泡校核 (6) 10.计算与绘制螺旋桨无因次敞水性征曲线 (8) 11. 船舶系泊状态螺旋桨计算 (9) 12.桨叶强度校核 (9) 13.桨叶轮廓及各半径切面的型值计算 (10) 14.桨毂设计 (10) 15.螺旋桨总图绘制 (11) 16.螺旋桨重量及转动惯量计算 (11) 17.螺旋桨设计总结 (12) 18.课程设计总结 (12)

1. 船型 单甲板,流线型平衡舵,柴油机驱动,适于油污水接收的中机型单桨船。 1.1艾亚法有效功率估算表:(按《船舶原理(上)》P285实例计算)(可以自主选定一种合适的估算方法,例如泰勒法。)

2.主机参数(设计航速约11kn ) 型号: 6L350PN 标定功率: P S2 = 650kw 标定转速: 362 r/min 3.推进因子的确定 (1)伴流分数w 本船为单桨内河船,故使用巴甫米尔公式估算 =0.165*C B x x=1 =0.1×(Fr-0.2)=0.1*(0.228-0.2)=0.0028 ω=0.185 (2)推力减额分数t 本船为有流线型舵使用商赫公式 t=k =0.111 k=0.6 (3)相对旋转效率: 近似地取为ηR =1.00 (4)船身效率 ηH =w -1t -1=1.091 4.桨叶数Z 的选取 根据一般情况,单桨船多用四叶,加之四叶图谱资料较为详尽、方便查找, 故选用四叶。 5.A E /A 0的估算 按公式A E /A 0 = (1.3+0.3×Z)×T / (p 0-p v )D 2 + k 进行估算, 其中:T =P E /(1-t)V= 346/((1-0.111)*11*0.515)=68.7028kN 水温15℃时汽化压力p v =174 kgf/m 2=174×9.8 N/m 2=1.705 kN/m 2 静压力p 0=p a +γh s =(10330+1000×2.5)×9.8 N/m 2=125.734kN/m 2

浅谈船舶螺旋桨的设计

浅谈船舶螺旋桨的设计 目录 目录 (1) 2 摘要 ...................................................... 关键词 (2) 引言 (2) 1结构与计算要素 .......................................... 1.1结构组成 ............................................ 1.2计算要素 ............................................ 2项目设计过程及结果与分析 ................................ 2.1船体估算数据 ....................................... 2.2螺旋桨要素选取及结果与分析 .......................... 2.3推力曲线及自由航行计算及结果与分析 .................. 2.4计算总结 ............................................ 2.5螺旋桨模型的敞水实验 ................................ 3螺旋桨设计的发展 ....................................... 3.1节能减排促使螺旋桨加快创新 ......................... 结束语 ................................................... 3 3 3 5 6 6 7 9 9 11 11 13 14 14 14 参考文献 ................................................. 致谢 ..................................................... 附录 .....................................................

船用锻件市场分析

船用锻件市场分析 一、市场背景 随着世界造船中心逐渐从欧洲转移到东亚,日本、韩国和中国1995年造船产量占世界总量的76.3% ,1999年已上升到77.8%,东亚已成为世界造船工业的中心。自1995年以来,我国造船产量一直位居世界第三位。2000年我国造船产量接近350万载重吨。从中长期来看,由于大批油船需要更新,天然气这种清洁能源海运量急剧增长,在2005年前造船市场总体上保持兴旺势头。2005年,中国造船产量达到650 万载重吨,占世界市场份额提高到15%以上。船舶工业建造总量的日益增长,就越来越多需要船用锻件,这就给为船厂配套的船用锻件制造厂的发展提供了良好的机遇。按造船产量500万吨来估算,各大船厂需外协的锻件大约为3万多吨,毛坯约6万吨,船用锻件的市场前景普遍看好。但是由于造船周期的日益缩短,价格竞争日益激烈,这样对船用锻件的需求周期越来越短,质量要求越来越高,价格却要求越来越低。国内专业厂家中只有武汉重工铸锻有限责任公司的船用锻件产量较大,产量可达1.5万吨以上。其它厂家产量还都不大,1000-2000吨,有的几百吨,没有真正形成气候。从国际轴系锻件的成品价格来看,一般都在3美元/公斤以下,船用锻件毛坯交货期往往3个月以内,经精加工后的锻件交货期为5个月左右。 在船用柴油机锻件方面,由于人工成本节节攀升,欧洲一些全球知名的大公司如MAN B&W柴油机公司早在70年代末、80年代初就开始通过扩大与人工成本较低的国家和地区特别是亚洲一些国家(如中国和韩国)

的相关厂家进行合作,或转让技术和专利,或颁发生产许可证等生产方式生产零部件或整套设备,就地生产、就地销售,从而降低了制造成本和运费,缩短了交货期。丹麦Holeby公司采购部经理曾就中速柴油机曲轴粗加工订货事宜到中国考察工厂,希望在价格和交货期适合的情况下长期保持合作事宜。由芬兰瓦锡兰柴油机集团、瑞士新苏尔寿柴油机集团,Grandi Motori Triete公司和Diesel Ricerche公司合并组成的瓦锡兰——新苏尔寿(Wartsila DNS)。新公司成立后,其采购重点随着世界造船中心从欧洲移至东南亚而做了相应调整。在中国设有三家许可证生产厂家,如大连船用柴油机厂(DMD)、沪东重机股份有限公司(HHM)和宜昌船舶柴油机厂(YMD)。这就给为柴油机配套的船用锻件厂提供了发展机遇。在另一方面瓦锡兰中国公司在柴油机零部件方面也加大了与国内船用锻件制造厂的直接联系,为有效地降低采购成本,确保周期,已改过去分散为统一采购,集中订货,并在与国内船用锻件制造厂合作方面取得了实质性进展。作为造船强国的日本和韩国,其各大船厂为降低成本,也在不断加大与中国船用锻件厂的联系,希望中国的船用锻件厂在满足其交货期的前提下,能够供应价廉物美的船用锻件。就近几年国内船用锻件厂与日本、韩国几大主要造船厂接触的情况来看,日本、韩国造船厂对船用锻件的需求量仍然很大,由于受汇率变动的影响及生产率水平的差异,使国内船用锻件的价格略高于国际市场价格。加上交货期的日益缩短,这些无疑加大了国内船用锻件厂承接订单的难度,这也是国内船用锻件厂对韩、日近几年出口量不太大的原因。随着国内船用锻造厂加大技术改造的力度,生产成本的大幅下降,通过其优质的船用锻件,必然会吸引更多的国内外客户,随着中国

船舶设计原理课程大作业-螺旋桨设计

SHANGHAI JIAO TONG UNIVERSITY 螺旋桨设计计算书 姓名:王志强 学号:5130109174 课程:船舶原理(2) 专业:船舶与海洋工程 日期:2016年4月

一、船舶的主要参数船型:单桨集装箱船 二、最大航速确定

按满载工况、主机功率P s=0.85P max、螺旋桨转速102r/min,设计MAU型5叶右旋桨1只。 螺旋桨敞水收到功率: P D=0.85ηSηR P max=0.85×0.97×1.0×33000kW=27208.5kW 最大航速设计的步骤: 假定若干个盘面比( 0.5、0.55、0.6、0.65、0.7、0.75、0.8),对每一个盘面比进行以下计算: 1)假定若干直径(范围7.5m ~ 8.5m,每隔0.01米取一次值); 2)对每个直径,假定若干航速(范围21节~25节,每隔0.001节取一次值); 3)对每个直径与航速的组合,用回归公式计算设计进速系数下不同螺距比(范围0.4~1.6)螺旋桨的推力、扭矩,通过插值(或二分法)确定满足设计功率要求(即:螺旋桨要求的扭矩与设计功率与转速下的收到转矩平衡)的螺距及相应的有效推力与敞水效率; 4)对每个直径,根据阻力曲线及不同航速下的有效推力值,通过插值确定有效推力与阻力平衡的航速,以及对应的螺距和敞水效率; 5)根据航速(或敞水效率)与直径的关系,确定最大航速(或最高敞水效率)对应的直径,该直径即为所假定盘面比下的最佳直径。 三、空泡校核 柏立尔空泡限界线图 空泡校核计算结果: P0=P a+γ?s=10330+1025×(12.7?4.7)kgf/m2=18530kgf/m2=181594N/m2

中国造船产业现状发展分析

第11卷 第8期 中 国 水 运 Vol.11 No.8 2011年 8月 China Water Transport August 2011 收稿日期:2011-06-05 作者简介:刘 全(1978-),男,长江水利委员会长江勘测规划设计研究院上海分院工程师,硕士,从事港航工程专业 设计工作。 中国造船产业现状发展分析 刘 全 (长江水利委员会长江勘测规划设计研究院 上海分院,上海 200439) 摘 要:文中从国内外造船产业现状入手,从造船企业生产能力、造船市场需求、市场价格走势等方面分析了中国造船产业的现状与特点,对未来船舶制造行业发展的整体环境及发展趋势进行了初步探讨。 关键词:造船;产业;现状;发展 中图分类号:U673.2 文献标识码:A 文章编号:1006-7973(2011)08-0037-03 2009年6月9日,为应对国际金融危机影响,国家发改委牵头,工信部、中国船舶工业行业协会、中国船舶工业集团公司、中国船舶重工集团公司等单位参与制定《船舶工业调整和振兴规划》(规划期为2009~2011年)。规划指出加快船舶工业调整和振兴,必须采取积极的支持措施,稳定造船订单,化解经营风险,确保产业平稳较快发展;控制新增造船能力,推进产业结构调整,提高大型企业综合实力,形成新的竞争优势;加快自主创新,开发高技术高附加值船舶,发展海洋工程装备,培育新的经济增长点。 一、造船市场状况及趋势分析 克拉克松统计数据表明(图1),全球手持船舶订单量自2008年10月份开始出现回落,全球新接船舶订单量自2007年下半年开始出现下调,而造船完工量呈现持续增长之势。得益于世界经济持续好转,造船市场逐渐复苏,2010年上半年全球新船订单量达到1,218万修正总吨(CGT),同比激增223%,已超过2009年全年1194万CGT 的订单总量。其中,我国承接订单502万CGT,韩国463万CGT,分别占全球新船订单总量的41.2%和38%,中、韩两国接单量占80%左右。此外,日本新接订单50万CGT,占4.1%。 图1 全球三大造船指标变动情况(1996-2009) 据统计,2010年1-9月全球累计成交新船1130艘、8764.3万载重吨,同比增长242%。2010年10月份,全球新船交付量继续走低,新船交付量延续回落趋势。全球新船交付613万DWT,同比下降了44%。图2显示,中、韩、日手持订单同比继续下降,10月底手持订单分别为1.90亿DWT、1.57亿DWT 和0.87亿DWT,继续同比回落8%、 10%和25%。 图2 三大造船国订单变动情况(1996-2010) 图3反映油船、散货船、集装箱船和液化气船的克拉克松新船价格综合指数,2008年9月190点为历史最高位。2010年以来,受全球经济回暖及成本推动的影响,克拉克松新船价格综合指数止跌回升,从年初136点,上升至2011年初的142点,上升了6点。 图3 克拉克松新船价格指数变动情况(1980.10-2010.10) 目前,船价仍处于底部,船厂毛利率仍偏低。经历了大幅下跌之后,船价已经跌到了2004年的位置。虽然2010年上半年船价在钢材价格底位、订单逐渐恢复的情况下有小幅上升,但我们认为在产能逐步释放、订单维持相对低位等因素影响下,目前的船价仍只能在底部盘整,无法趋势性上涨。 我国船舶工业造船产量在世界船舶工业中所占份额由2000年的6%提高到2009年的30.4%。造船业高速发展主要有以下原因:一是中国对铁矿石等原料的巨大需求,导致散装货船供不应求;二是中国成为全球第二大原油进口国,

船舶原理 螺旋桨 螺距

第一章绪论 第二章螺旋桨的几何特征 一、主要内容 1、本课题的主要研究内容; 2、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的 概念; 3、螺旋桨的外形和名称及几何特征的有关专业术语。 二、重点内容 1、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的 概念; 2、桨叶数、桨的直径、螺距比和盘面比等概念。 三、教学方法 多媒体授课、结合螺旋桨模型组织教学 四、思考题 1、什么是有效马力、机器马力、收到马力和传送效率、推进效率和推进 系数? 2、表征螺旋桨几何特征的主要参数有哪些? 三、下讲主要内容 理想推进器理论。

第一章绪论 一、本课题的研究对象和内容 1、船舶快速性 船舶在给定主机马力(功率)情况下,在一定装载时于水中航行的快慢问题。 2、推进器 将能源(发动机)发出的功率转换为推船前进的功率的专门装置或机构。常见的推进器为螺旋桨。 3、主要内容 1)推进器在水中运动时产生推力的基本原理及其性能好坏; 2)螺旋桨的图谱设计方法。

二、马力及效率 1、有效马力P E 1)公制有效马力(本教材常用)2)英制有效马力式中,Te 为有效推力(kgf ),R 为阻力(kgf ),v 为船速(m/s )E ()7575P v Rv UShp =e =或hp T E ()7676P v Rv UKhp =e =T 思考:在船舶专业中常用的速度单位还有哪些?

2、主机马力和传送效率 推进船舶所需要的功率由主机供给,主机发出的马力 称为主机马力,以P S 表示。 主机马力经减速装置、推力轴承及主轴等传送至推进器,在主轴尾端与推进器联接处所量得的马力称为推进器 的收到马力,以P D 表示。 传送效率η s =P D / P S ,它反映了推力轴承、轴承地、 尾轴填料函及减速装置等的摩擦损耗。

船舶降速航行的经济性和排放变化分析

2.2最佳航速的选择 在具体的营运环境和经济条件下,采取不同的航速,船舶的营运经济效果是 不一样的:过慢,则使船舶的周转慢而失去应有的收益;过快,虽然可以加速船 舶的周转,增加营运收入,但由于燃油费用急剧上升,会得不偿失。船舶在设计 时选定航速虽然也充分考虑了船舶的营运经济性,但通常只能在某个特定的营运 环境及经济条件下考虑。而由于运输市场的不稳定性,船舶在实际使用过程中所 处的营运环境和经济条件会经常变化,如航线的更改、货源充足程度的变化、港 口装卸效率的提高、燃油价格的上涨等,这些都会影响船舶的营运经济性。这时 就要通过改变船舶原有的航速来保证其营运经济性。因此,在实际营运过程中, 要经常根据船舶的技术性能,结合当时的环境条件,研究其实际应该采用的最佳 航速,以提高船舶的营运经济效果。 2.2.1航速、主机功率、油耗量三者之间的关系 船速、主机功率、油耗量三者之间的关系是在船舶设计时确定的船机浆之间 的静态工况匹配关系基础上得出的一个重要关系式。他们间的参数式在推进装置船舶降速航行的经济性和排放变化分析 工作时的运动学和功力学关系。并且船机浆三者在运行工况下的相互联系和相互 制约,三者中任何一个特性变化,必然会影响其他两者的运转状态,从而引起配 合工作特性的变化。船舶的正常航行是以螺旋桨推进特性进行的。 螺旋桨吸收的功率与其转速的关系式是: (2.1) 式中:一螺旋桨吸收功率; 一螺旋桨转速。 上式反映出螺旋桨运转特性,即浆的吸收功率弓与转速的三次方成正比。 如果不计传动损失,螺旋桨的吸收功率就等于主机功率。这样,主机功率只与转 速也是三次方关系,即: (2.2) 而从船舶营运的经济行角度分析,势必要将螺旋桨转速的特性转换成以船舶 航速为变量的特性。 船舶在稳定工况下正常航行时,螺旋桨产生的有效推和 船舶航行阻力R(R= )是相等的。故得: (2.3) 式中: 一阻力系数; 一推力系数; 一船速。 式中系数, 之值是由船舶线型、尺度及航行状态决定,对己设计建造 的船舶,其线型与尺度是已定的,当船舶的航行状态也保持一定时,此两系数可 看作为常数。由此得出: (2.4)

飞机螺旋桨工作原理

飞机螺旋桨工作原理.txt吃吧吃吧不是罪,再胖的人也有权利去增肥!苗条背后其实是憔悴,爱你的人不会在乎你的腰围!尝尝阔别已久美食的滋味,就算撑死也是一种美!减肥最可怕的不是饥饿,而是你明明不饿但总觉得非得吃点什么才踏实。与现实中飞行技术的对比:飞机螺旋桨工作原理 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J =V/nD。式中D—螺旋桨直径。理论和 试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J?Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速

国内外螺旋桨主要制造商现状

国内外螺旋桨主要制造商现状目前找到的关于主要国内制造商的消息,大致如下: 一镇江中船瓦锡兰螺旋桨有限公司 是目前世界范围内发展最快的定距桨制造商。对于提高年产量和产品最大规格的生产工具及技术方面的有效投资令公司步入了如今蓬勃发展的局面。 原镇江船舶螺旋桨厂始建于二十世纪七十年代,是当时中国第一家专业螺旋桨制造商。经过三十年的发展,原镇江船舶螺旋桨厂以超过30%的市场占有率稳居国内(市场)同行业第二位。其精湛的生产技术和对本土市场深入了解对合资公司的建立和发展做出了巨大的贡献。 瓦锡兰荷兰推进器联合有限公司以其领先的技术和著名的LIPS?商标闻名于世界船舶行业。她为合资公司带来了其卓越的定距桨设计和生产技术以及LIPS?商标。在提高公司整体水平的同时也为其进一步的技术革新和市场开拓奠定了坚实的基础。 久经考验的LIPS设计软件,用于熔化、保温的高效的工频电炉,以及先进的实验室仅仅是合资公司目前投入使用的先进技术项目中的一部分。对员工的培训,技术上的交流令合资公司在当今的市场上最先进的定距桨项目中更具有竞争力。 二武汉川崎船用机械有限公司(简称WKM) 武汉川崎船用机械有限公司(简称WKM),是由武汉船用机械厂(简称WMMP)和日本国川崎重工业株式会社(简称KHI)共同投资创建的一家合资企业,主要产品是,利用川崎专有知识产权和生产经营模式,制造川崎侧向推进器和川崎全回转螺旋桨。可以预想,船用推进装置,对于江河、海洋等水上运输十分发达的中国国内市场,以及需求量不断增加的世界航运市场,前景非常光明。| 公司成立于1995年11月,正式投产于1998年1月,2005年年产侧推装置200台套。2001年7月得到DNV船级社ISO9002质量体系认证书。 三大连船用推进器有限公司 大连船用推进器有限公司(DMPC)是中国船舶重工股份有限公司的子公司,是中国最大的船用螺旋桨专业化制造公司。公司具有五十多年的船用螺旋桨生产经验,工艺先进,技术力量雄厚,检测手段完备。具备各种船用螺旋桨设计、制造和桨轴研配生产能力。主要产品有:大中小型定距式船用螺旋桨、调距桨部件以及各种铜合金铸件,产品出口几十个国家和地区,现已获得CCS、LR、DNV、ABS、NK、KR、BV、GL、RINA等九个国家船级社的认可,1997年通过GB/T19002—1994质量体系认证,2003年通过GB/T19001—2000质量体系认证。 进入二十一世纪,公司进行了全面技术改造。新建铸造车间、数控加工车间和成品加工车间,引进了七轴五联动九米数控铣床和重型五轴数控落地镗铣床;购置了30吨、7吨双炉体中频感应电炉、10米数控双柱立车等生产设备;联合研制了100吨、30吨大型静平衡仪、Ф11m、Ф8m、Ф6m大型数显螺距规等检测设备;自行研制了冒口切割、内孔加工等大型专用设备。目前,公司一次性总熔化能力达170吨。现已开始批量生产直径11米左右,成品

船用螺旋桨推进器探讨

船用螺旋桨推进器探讨 一,船用推进器的发展历程。 船舶推进器的种类很多,最古老的要算篙了,它可撑着船前进。后来又发明了桨和橹,它们一直沿用至今。随后是利用风帆作为推进工具,出现了多种形式的帆船。随着机器在船上的应用,就出现了明轮推进器。19世纪初出现了螺旋桨推进器。为了证明螺旋桨的优越性, 英国海军组织了一场有趣比赛:把动力相当的“响尾蛇号”螺旋桨轮船和“爱里克托号”明轮进行了竞赛。两艘船的船尾用粗缆绳系起来,让它们各朝相反的方向驶去。“响尾蛇号”的螺旋桨飞快地旋转,“爱里克托号”的明轮猛烈地向后拨水。先是互不相让,但过了一会儿,“响尾蛇号”就把“爱里克托号”拖走了。这场比赛证明了螺旋桨的优越性。从此,螺旋桨轮船就取代了明轮。 二,螺旋桨的基本构造与在船舶中的应用基本知识。 螺旋桨俗称车叶,由若干桨叶所组成。桨叶的数目通常为三叶、四叶或五叶,各叶片之间相隔的角度相等。螺旋桨通常装在船的尾部,螺旋桨与艉轴的连接部分称为毂,桨叶就固定在毂上。有船尾向船首看时,所看到的螺旋桨桨叶的一面称为叶面(压力面),另一面称为叶背(吸力面)。桨叶的外端为叶梢,而与毂的连接处称为叶根。螺旋桨旋转时叶梢的圆形轨迹为梢圆,此圆称为螺旋桨桨盘,直径称为螺旋桨直径,其面积称为盘面积。 螺旋桨正车旋转时,有船尾向船首看所见到的旋转方向为顺时针方向的称为右旋桨,反之为左旋桨。双桨船的螺旋桨装在船尾二侧,正常旋转时,若其上都向着船中线转动的称为内旋桨,反之为外旋桨。螺旋桨直径的大小往往受到船舶吃水的限制。一般来说,螺旋桨直径愈大转速愈低,其效率愈高。螺旋桨与船的尾框要有良好的配合,避免叶尖露出水面而影响效率。螺旋桨船体间隙要适当,以避免引起严重的振动。 三,船用螺旋桨的工作原理。 螺旋桨旋转时,把水往后推。根据力的作用与反作用的原理,水给螺旋桨以反作用力,这就是推力,推船前进。螺旋桨的运动情况同螺钉的运动情况极为相似。把螺钉旋转一圈,它就在螺帽中向前推进一段距离,这段距离称为螺距。螺旋桨的桨叶叶面(压力面)通常是螺旋面的一部分,就像螺钉的螺纹的一部分那样,不过螺旋桨是在水中运动的,水取代的螺帽的地位。 四,船用螺旋桨的有关几何参数。 桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 螺距:它是桨叶角的另一种表示方法。各种意义的螺矩与桨叶角的关系。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。 桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。

船舶推进课程设计8154L远洋渔船螺旋桨设计书

船舶与海洋工程学院船舶推进螺旋桨设计书8154L远洋渔船螺旋桨设计书 指导老师:xxx 专业班级:xxx 学生姓名:xxx 学号:xxx 邮箱:xxx 完成日期:2013/4/18

目录 1.船型 (2) 2.主机参数 (3) 3.推进因子的确定 (3) 4.桨叶数Z的选取 (3) 5.AE/A0的估算 (3) 6.桨型的选取说明 (4) 7.根据估算的AE/A0选取2~3张图谱 (4) 8.列表按所选图谱(考虑功率储备)进行终结设计 (4) 9.空泡校核 (5) 10.计算与绘制螺旋桨无因次敞水性征曲线 (7) 11. 船舶系泊状态螺旋桨计算 (7) 12.桨叶强度校核 (8) 13.桨叶轮廓及各半径切面的型值计算 (8) 14.桨毂设计 (9) 15.螺旋桨总图绘制 (10) 16.螺旋桨重量及转动惯量计算 (10) 17.螺旋桨设计总结 (11) 18.课程设计总结 (11)

8154L远洋渔船螺旋桨设计书 1. 船型 单桨单舵,前倾首柱,巡洋舰尾,柴油机驱动,尾机型远洋渔船。 艾亚法有效功率估算表:(按《船舶原理(上)》P285实例计算)(可以自主选定一种合适的估算方法,例如泰勒法。)

2.主机参数 3.推进因子的确定 (1)伴流分数w 本船为单桨渔船,故使用汉克歇尔公式估算 w=0.77×C P -0.28=0.77×0.569-0.28=0.158 (2)推力减额分数t 本船为单桨渔船,使用汉克歇尔公式 t=0.77×C P -0.30=0.77×0.569-0.30=0.138 (3)相对旋转效率: 近似地取为ηR =1 (4)船身效率 η H = w -1t -1=(1-0.158)/(1-0.138)=0.98 4.桨叶数Z 的选取 根据一般情况,单桨船多用四叶,加之四叶图谱资料较为详尽、方便查找, 故选用四叶。 5.A E /A 0的估算(注意:对于内河船及大径深比螺旋桨的船不一定适用!) 按公式A E /A 0 = (1.3+0.3×Z)×T / (p 0-p v )D 2 + k 进行估算, 其中:T= V t P E )1(-=350×0.735/((1-0.138)×13×0.5144)=44.63kN 水温15℃时p v =174 kgf/m2=174×9.8 N/m 2=1.705 kN/m 2 静压力p 0=p a +γh s =(10330+1025×2)×9.8 N/m 2=121.324 kN/m 2 k 取0.2 D 允许=0.7×T d =(0.7~0.8)×2.90=2.03m ~2.32m (单桨船)

相关主题
文本预览
相关文档 最新文档