当前位置:文档之家› 反函数例题讲解

反函数例题讲解

反函数例题讲解
反函数例题讲解

反函数例题讲解

例1.下列函数中,没有反函数的是 ( )

(A) y = x 2-1(x <2

1-) (B) y = x 3+1(x ∈R )

(C) 1

-=

x x

y (x ∈R ,x ≠1) (D) ?

?

?<-≥-=).1(4)2(22x x x x y ,

分析:一个函数是否具有反函数,完全由这个函数的性质决定.

判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数.

本题应选(D ). 因为若y = 4,则由 ?

?

?≥=-2422x x ,

得 x = 3.

由 ?

?

?<=-144x x ,

得 x = -1.

∴ (D )中函数没有反函数.

|

如果作出 ?

?

?<-≥-=).1(4)2(22x x x x y ,

的图像(如图),依图

更易判断它没有反函数.

例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 .

∴ 1-x 2 = (1-y )2,

x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 .

∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是:

① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ

( y ).

② 求给出函数的值域,并作为所得函数的定义域;

③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________.

分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -

1 (

2 )的值(略).

依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f -1 (2 )的值会简捷些.

令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 .

又x <-1,于是舍去x = 0,得x =-2,即 f

-1

(2 ) = -2 .

|

例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x )的图像

( )

~

(A (D (B (C

分析:作为选择题,当然不必由f ( x )求出f -1 ( x ),再作出f -1 ( x )图像,予以比较、判断.

由241)(x x f +=(x ≤0)易得函数f ( x )的定义域为(]0,∞-,值域为

[)∞+,1.于是有函数f

-1

( x )的定义域为[)∞+,1,值域为(]0,∞-.依此对给出图

像作检验,显然只有(D )是正确的.

因此本题应选(D ).

例5.给定实数a ,a ≠0,a ≠1,设函数1

1

--=

ax x y (x ∈R ,x ≠a 1).

求证:这个函数的图像关于直线y = x 成轴对称图形. 分析:本题可用证明此函数与其反函数是同一个函数的思路.

证明:先求给出函数的反函数:

由 1

1

--=ax x y (x ∈R ,x ≠a 1),得y ( ax -1) = x -1 .

(ay -1)x = y -

1 . ①

若ay -1 = 0,则ay = 1 . 又a ≠0,故 a y 1=

.此时由①可有y = 1.于是a

1

=1,即a = 1, 这与已知a ≠1是矛盾的,故ay -1 ≠ 0 . 则由①得 11--=ay y x (y ∈R ,y ≠a

1

). ∴ 函数 11--=

ax x y (x ∈R ,x ≠a 1)的反函数还是1

1

--=ax x y (x ∈R ,x

≠a

1).

由于函数f ( x )与f -1 ( x )的图像关于直线y = x 对称,故函数1

1

--=

ax x y (x ∈R

且x ≠

a

1

)的图像关于直线y = x 成轴对称图形. 本题证明还可依轴对称的概念进行,即证明:若点P (x ,y )是函数f ( x )图像上任一点,则点P 关于直线的对称点Q (y ,x )也在函数f ( x )的图像上(过程略).

'

例题讲解(反函数)

例1.求下列函数的反函数: (1) y =3x -1 (x ∈R ); (2) y =x 3+1 (x ∈R ); (3)1+=x y (x ≥0); (4)1

3

2-+=

x x y (x ∈R ,且x ≠1). 通过本例,使学生掌握求反函数的方法.求反函数时,要强调分三个步骤进行.第一步将y = f (x )看成方程,解出x = f -1 (y ),第二步将x ,y 互换,得到y = f

-1

(x ),第三步求出原函数的值域,作为反函数的定义域.其中第三步容易被忽略,

造成错误.

如第(3)小题,由1+=x y 解得x = (y -1)2,再将x ,y 互换,得y = (x -1)2.到此以为反函数即y = (x -1)2,这就错了.必须根据原函数的定义域x ≥0,求得值域y ≥1,得到反函数的定义域,于是所求反函数为

y = (x -1)2 (x ≥1).

例2.求下列函数的反函数: (1) y = x 2-2x -3 (x ≤0);

(2) =y ???

??--111x

x

通过本例,使学生进一步掌握求反函数的方法,明确求解中三个步骤缺一不

(x ≤0),

(x >0).

可.

解:(1) 由y = x 2-2x -3, 得y = (x -1)2-4, 即 (x -1)2 = y +4,

因为x ≤0,所以41+-=-y x ,所以原函数的反函数是

[

41+-=x y ( x ≥-3).

(2) 当x ≤0时,得x = y +1且y ≤-1; 当x >0时,

得1

1

+=

y x 且y >-1,

所以,原函数的反函数是:

=y ???

??++1

11

x x

例题讲解(反函数)

[例1]若函数f (x )与g (x)的图象关于直线y =x 对称,且f (x )=(x -1)2(x ≤1),求g (x ).

选题意图:本题考查互为反函数的函数的图象间的对称关系.

\

解:f (x )与g (x )在定义域内互为反函数, f (x )=(x -1)2(x ≤1)的反函数是 y =1-x (x ≥0), ∴g (x )=1-x (x ≥0).

说明:互为反函数的图象关于y =x 对称,反之亦然,也是判断两个函数互为反函数的方法之一,本是f (x )与g (x )互为反函数,要求g (x ),只须求f (x )在限定区间上的反函数即可.

[例2]若点P (1,2)在函数y=b ax +的图象上,又在它的反函数的图象上,求a ,b 的值.

选题意图:本题考查反函数的概念,反函数的图象与原函数图象的对称关系的应用.

解:由题意知P (1,2)在其反函数的图象上,

根据互为反函数的函数图象关于y =x 对称的性质,

x ≤-1, x >-1.

P′(2,1)也在函数y =b ax +的图象上,

因此:?????+=+=b

a b

a 212解得:a =-3,

b =7.

@

说明:引导学生树立创造性思考问题的方式、方法,利用

互为反函数的图象的对称关系.(1,2)在反函数图象上,则(2,1)也在原函数图象上是解决该问题的关键所在,即f (2)=1,这是得到a ,b 的另一个关系式的条件,这样两个条件两个未知数,就可解出a ,b 的值.

[例3]已知函数f (x )=(1+2

x

)2-2(x ≥-2),求方程f (x )=f -1(x )

的解集.

选题意图:本题考查互为反函数的函数的图象关于y =x 对称的关系,灵活运

用这一关系解决问题的能力.

分析:若先求出f -1(x )=22+x -2(x ≥-2),再解方程(1+2

x

)2-2=22+x -2,整理

得四次方程,求解有困难,但我们可以利用y =f (x )与y =f -1(x )的图象的关系求解.

先画出y =f (x )=(1+2

x

)2-2的图象,如图,因为y =f (x )的图象和y =f -1(x )的图象关于直

线y =x 对称,可立即画出y =f -1(x )的图象,由图象可见两图象恰有两个交点,且交

点在y =x 上,因此,由方程组???

??

=-+=x

y x y 2)2

1(2联立即可解得. 解:由函数f (x )=(1+

2

x )2

-2(x ≥-2)画出图象,如图,由于函数f (x )的反函数的图象与函数f (x )的图象关于y =x 对称,故可以画出其反函数图象(如图),由图可知

两图象恰有两个交点且交点都在y =x 上.因此,方程组?????

=-+=x y x y 2

)2

1(2的解即为f (x )=f -1(x )的解,于是解方程组得x =-2或x =2,从而方程f (x )=f -1(x )的解集为{-2,2}.

说明:解决本题的关键是,根据互为反函数的图象关于y =x 对称,若两个函数有交点,则交点必在直线y =x 上,由此,将要解的两个较复杂的方程组转化为

直线y =x 与其中y =(1+2

x

)2-2一个方程组的解的问题.

图2—8

例题讲解(练习)

例1.函数f (x )=x -x 3是否存在反函数说明理由

!

点评:不存在,∵ f (0)=f (-1)=f (1)=0. 例2.求下列函数的反函数. (1) ()1

5

6-+=

x x x f (2) 1--=x y

(3) f (x )=x 2-2x +3,x ∈(1,+∞) (4)()211x x f --=(-1≤x ≤0) 点评:(1) ()6

51

-+=-x x x f

(x ∈R 且x ≠6)

(2) f

-1

(x )=x 2+1 (x ≤0)

(3) ()121

+-=

-x x f (x >2)

(4) ()()2

1

11---=-x x f

(0≤x ≤1)

例3.求函数()()

?????<--≥-=1111x x x x y 的反函数. 点评:反函数为()

()

?????<-≥+=0101

2

2

x x

x x y .

例4.已知()1

23++=

x x x f ,求f [f -

1(x )]的值. 点评:22

221

=???

????

????? ??-f f ,注意f (x )的定义域为{x |x ∈R 且x ≠-1},值域为{y |y ∈R 且y ≠-3}.

例5.已知一次函数y =f (x )反函数仍是它自己,试求f (x )的表达式. 分析:设y =f (x )=ax +b (a ≠0),则f

-1

(x )=

a

1

(x -b ).

由a 1(x -b )=ax +b 得???????=-=b

a

b a a

1???∈-=?R b a 1或???==01b a ∴ f (x )=x 或f (x )=-x+b (b ∈R ) 例6.若函数3

41

++=

x ax y 在其定义域内存在反函数. (1) 求a 的取值范围;(2) 求此函数的值域.

(

解:(1)方法一:原式可化为4xy +3y =ax +1,

(4y -a )x =1-3y ,

当y ≠

4a ,即

4341a

x ax ≠++时, 解得34

≠a 时原函数有反函数.

方法二:要使341

++=x ax y 在其定义域内存在反函数,则需此函数为非常数函数,

即3

14≠a ,所以34≠a 时函数341++=x ax y 在其定义域内存在反函数.

(2) 由3

41

++=

x ax y 解得a y y x -+-=413.

∴341++=

x ax y 的反函数为a x x y -+-=41

3. ∵a

x x y -+-=413的定义域是{x |x ∈R 且x =4a }

故341++=x ax y 的值域是{y |y ∈R 且y ≠4

a }.

!

例7.设函数y =f (x )满足f (x -1)=x 2-2x +3(x ≤0),求f -1

(x +1).

解:∵ x ≤0,则x -1≤-1.

∵ f (x -1)=(x -1)2+2 (x ≤0) ∴ f (x )=x 2+2 (x ≤-1).

由y =x 2+2 (x ≤1)解得2--=y x (y ≥3) ∴ ()21

--

=-x x f (x ≥3).

故()111

--

=+-x x f

(x ≥2).

点评:f -1

(x +1)表示以x +1代替反函数f

-1

(x )中的x ,所以要先求f

-1

(x ),再以x +1代x ,

不能把f -1

(x +1)理解成求f (x +1)的反函数.

习 题

1.已知函数f (x )=x 2-1 (x ≤-2),那么f -1

(4)=______________.

2.函数y =-x 2+x -1 (x ≤

2

1

)的反函数是_________________. 3.函数(][)

?????-∈∈-=0110122,,,

,x x x x y 的反函数为__________________.

4.函数322+-=x x y (x ≤1)的反函数的定义域是_____________. 5.已知m x y +=2

1与31

-=nx y 是互为反函数,则m =______和n =________.

答 案 1.5-

2.??? ?

?

-≤---=

432

3

41x x y

3.(](]?????∈--∈+=10011,

,,

,,x x x x y

4.[

)

∞+,2

5.6

1

,2

反函数与零点习题含答案

反函数-习题 1.函数f (x )=1-x +2 (x ≥1)的反函数是( ) A .y =(x -2)2+1 (x ∈R) B .x =(y -2)2+1 (x ∈R) C .y =(x -2)2+1 (x ≥2) D .y =(x -2)2+1 (x ≥1) 2.已知函数x x f a log )(=)1,0(≠>a a 且的图象过点(2,-1),函数()y g x =是函数 ()y f x =的反函数,则函数()y g x =的解析式为( ) A.()2x g x = B.1()()2 x g x = C.12 ()log g x x = D.2()log g x x = 3. 若函数)1(-=x f y 的图像与函数1ln +=x y 的图像关于x y =对称,则)(x f =( ) A. 1 2-x e B. x e 2 C. 1 2+x e D. 2 2+x e 4. 函数? ??≥<+=0,0,1x e x x y x 的反函数是______________. 5. 函数)2(,2-≥+-=x x y 的反函数是_______________. 6. 若函数)1,0(≠>=a a a y x 的反函数的图象过点(2,-1),则a =_________. 7. 函数)0)(24(log 2>++=x x y 的反函数是_______________. 8. 已知函数()f x 的反函数为)0(,lg 21)(>+=x x x g ,则(1)(1)f +g =_____________. 9. 函数1ln(1) (1)2 x y x +-= >的反函数是_______________. 10.若函数()y f x =的反函数... 图象过点(15),,则函数()y f x =的图象必过点__________. 11. 将x y 2=的图像先向______(填左、右、上、或下)平移_______个单位,再作关于直线 x y =对称的图象可得到函数)1(log 2+=x y 的图像. 12. 已知函数b a y x +=的图象过点(1,4)其反函数图象过点(2,0),则___.___==b a . 13. 已知函数x x x f 3 131)(+-=,则)5 4 (1 -f =____________.

反函数_典型例题精析

2.4 反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵= ≠-,∴≠,由=得-=--,∴=所求反函数为=≠.352112323521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----22 2 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

反函数典型例题精析.doc

学习必备 欢迎下载 2. 4 反函數·例題解析 【例 1】求下列函數的反函數: (1)y = 3x 5 (x ≠- 1 ) . 2x 1 2 (2)y = x 2 - 2x + 3, x ∈ ( -∞, 0] . 1 (3)y = x 2 1 (x ≤ 0) . x +1 ( -1≤x ≤ 0) (4)y = - x (0<x ≤1) 解 (1) ∵ y = 3x 5 (x ≠- 1 ),∴ y ≠ 3 , 2x 1 2 2 由 y = 3x 5 得 (2y - 3)x =- y - 5, 2x 1 ∴ x = y 5 所求反函数为 y = y 5 (x ≠ 3 ). 3 2y 3 2y 2 解 (2)∵ y =(x -1) 2 + 2, x ∈ (-∞, 0]其值域為 y ∈ [2,+∞ ), 由 y = (x - 1) 2 + 2(x ≤ 0) ,得 x -1=- y 2,即 x = 1- y 2 ∴反函数为 f 1 (x) = 1- x 2, (x ≥ 2) . 解 (3)∵y = 1 ,它的值域为 0<y ≤1, x 2 (x ≤ 0) 1 由 y = 2 1 得 x =- 1 y , x 1 y ∴反函数为 f 1 (x) =- 1 x (0 <x ≤1) . x 解 (4)由y = x 1(-1≤ x ≤ 0), 得值域 0≤y ≤1,反函数 f 1 (x) = x 2 -1(0≤x ≤1). 由 y =- x (0<x ≤1), 得值域- 1≤ y < 0,反函数 f 1 (x) =x 2 ( -1≤x < 0), x 2 -1 (0≤ x ≤ 1) 故所求反函数为 y = 2 ( - ≤ < . x 1 x 0)

反函数例题讲解

反函数例题讲解 例1.下列函数中,没有反函数的是 ( ) (A) y = x 2-1(x <2 1-) (B) y = x 3+1(x ∈R ) (C) 1 -= x x y (x ∈R ,x ≠1) (D) ? ? ?<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D ). 因为若y = 4,则由 ? ? ?≥=-2422x x , 得 x = 3. 由 ? ? ?<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ? ? ?<-≥-=).1(4)2(22x x x x y , 的图像(如图),依图 更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f - 1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x <-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x ) 的图像是 ( ) (A ((B (C

导数与反函数练习题.doc

1. 2. (2011-重庆)曲线尸?X 3+3X 2在点(I, 2) A. y=3x - 1 B. y=-3x+5 (201b 山东)曲线 y=x 3+l 1 在点 P (1, 12) 处的切线方程为( ) C. y=3x+5 D. y=2x 处的切线与y 轴交点的纵坐标是( 15 3. A. [- 1,-岑] B ?[?1, 0] C. [0, II D.[兰,1] 乙 那么导函数y=f (x )的图象可能是( 函数q : g (x ) =x 2 - 4x+3m 不存在零点则 p 是 D.既不充分也不必要条件 导数与反函数练习题 选择题 (2011 ?杭州)如图是导函数尸f (x )的图象,则下列命题错误的是( ) A .导函数y=f (x )在x=xi 处有极小值 B .导函数y=F (x )在x=x?处有极大值 C.函数y=f (x )在x=X3 处有极小值 D.函 数y=f (x )在x=X4处有极小值 4. (2011 ?福建)若a>0, b>0,且函数f (x ) =4x 3 - ax 2 - 2bx+2在x=l 处有极值,则ab 的最大值等于( ) A. 2 B. 3 C. 6 D. 9 5. (2010*江西)若 f (x ) =ax 4+bx 2+c 满足 f (I ) =2,则 f ( - 1)=( ) A. -4 B. - 2 C. 2 D. 4 6. (2009?江西)若存在过点(1, 0)的直线与曲线尸x3和y=ax 2+^X- 9都相切,则a 等于( ) 方 91 7 9R 7 A. - 1 或一竺 B. - 1 C. 一」或一竺 D. 一 ■或 7 64 4 4 64 4 ° TT 7. (2008?辽宁)设P 为曲线C : y=x~+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,—],则点P 横 4 坐标的取值范围是( ) A.充分不必要条件 B.必要不充分条件 C. 充分必要条件8.(2008?福建)如果函数y=f (x )的图象如图, q 的( )

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

反函数·典型例题精析

2.4 反函數·例題解析 【例1】求下列函數得反函數: 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域為y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为 =-,≥. y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 【例2】求出下列函數得反函數,並畫出原函數与其反函數得圖像. 解 (1)∵已知函數得定義域就是x ≥1,∴值域為y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 它們得圖像如圖2.4-2所示. (1)求它得反函數;(2)求使f -1(x)=f(x)得實數a 得值. (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3. 或解 由f(x)=f -1(x),那麼函數f(x)與f -1(x)得定義域与值域相同,定義域就是{x|x ≠a,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3. 【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d ++ 試求a 、b 、c 、d 滿足什麼條件時,它得反函數仍就是自身. 令x =0,得-a =d,即a +d =0. 事實上,當a +d =0時,必有f -1(x)=f(x),

因此所求得條件就是bc -ad ≠0,且a +d =0. 【例5】設點M(1,2)既在函數f(x)=ax 2+b(x ≥0)得圖像上,又在它得反函數圖像上,(1)求f -1(x),(2)證明f -1(x)在其定義域內就是減函數. 解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.???????? ??--1373137313737373 x 【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x -+-++-+----12 1212112212 111 解法(二) 由函數y =f(x)與其反函數y =f -1(x)之間得一一對應關 系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12 【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --1 1 1 因為原函數得圖像與其反函數得圖像關於直線y =x 對稱, ∴函數y =f(x)得圖像關於直線y =x 對稱.

反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x 5= ,x [,]22ππ ∈- 解:x =arcsin 5 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx =5 ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =或x =π- (2)1 sin x 4 =-,x [,]22ππ∈- 解:1x arcsin 4=- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsina =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,再用诱导公式 处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x =x =π- (3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+

高一反函数·典型例题精析

反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1)= ≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵= ≠-,∴≠,由=得-=--,∴=所求反函数为=≠.352112323521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1

得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x 【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x

高中数学-反函数例题选讲

高中数学-反函数例题选讲 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1)= ≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232 3521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=-- ≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

反函数题型及解析

反函数题型及解析 1.求下列函数的反函数,找出它们的定义域和值域(1)y=2+lg(x+1);(2)y=3+;(3)y=. 2.求函数的反函数(1)y=(2)y=(3)y=lnx+1 (4)y=3x+2 3.求下列函数的反函数的定义域(1)y=(2)(3) 4.求下列函数的反函数,并指出该函数和它的反函数的定义域(1)y=;(2)y=;(3)y=e x﹣1 5.求下列函数的反函数(1)y=;(2)y=(e x﹣e﹣x);(3)y=1+ln(x﹣1) 6.求下列函数的反函数. (1)y=log(1﹣x)+2(x<0);(2)y=2﹣(﹣2≤x≤0);(3)y=(﹣1≤x≤0);(4)y=x|x|+2x.

反函数题型解析 1.分析:(1)由对数式的真数大于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,化对数式为指数式,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域; (2)由根式内部的代数式大于等于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域; (3)由分式的分母不为0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y 互换求出原函数的反函数,得到反函数的定义域和值域. 解:(1)y=2+lg(x+1),由x+1>0,可得x>﹣1,∴原函数的定义域为(﹣1,+∞),值域为R. 由y=2+lg(x+1),得lg(x+1)=y﹣2,化为指数式得,x+1=10y﹣2,x,y互换得:y=10x﹣2﹣1, 此反函数的定义域为R,值域为(﹣1,+∞); (2)y=3+,由x≥0,可得原函数的定义域为[0,+∞),值域为[3,+∞).由y=3+,得,x=(y ﹣3)2,x,y互换得:y=(x﹣3)2,此反函数的定义域为[3,+∞),再由为[0,+∞); (3)y=,由x+1≠0,得x≠﹣1,∴原函数的定义域为{x|x≠﹣1},由y==,∴原函数的值域为{y|y≠1}.由y=,得yx+y=x﹣1,即(1﹣y)x=1+y,∴x=,x与y互换得:,此反函数的定义域为{x|x≠1},值域为{y|y≠﹣1}. 2. 分析:由已知的解析式求出x的表达式,再把x换成y、y换成x,并注明反函数的定义域. 解:由y=的得,xy+4y=x﹣4,解得(y≠1),所以(x≠1),则函数y=的反函数是(x≠1).(2)函数y=可得:2x=2x y+y.可得2x(1﹣y)=y,2x=,可得x=,函数y=的反函数为y=.(3)由y=lnx+1解得x=e y﹣1,即:y=e x﹣1,∵x>0,∴y∈R所以函数f (x)=lnx+1(x>0)反函数为y=e x﹣1(x∈R);(4)∵y=3x+2,∴3x=y﹣2,又3x>0,故y>2,∴x=log3(y﹣2)(y>2),∴函数y=3x+2的反函数是y=log3(x﹣2)(x>2) 3.分析:欲求反函数的定义域,可以通过求原函数的值域获得,所以只要求出函数的值域即可,反函数的定义域即为原函数的值域求解即可 解:(1)∵y=,∴ye x+y=e x,∴(y﹣1)e x=﹣y,∴,∴x=ln,x,y互换,得函数y= 的反函数为:,,解得反函数的定义域为:{x|0<x<1} (2)反函数的定义域即为原函数的值域,由,x>0,所以,所以, 则y<0,反函数的定义域为(﹣∞,0) (3)由得,e x=.∵e x>0,∴>0,∴﹣1<y<1,∴反函数的定义域是(﹣1,1) 4.解:(1)由y=,即2xy﹣y=x,x(2y﹣1)=y,解得x=,x,y互换得y=,其定义域为{x|x ≠} (2)由(2)y=可得y2=2x﹣3,即x=(y2+3),x,y互换得y=(x2+3),因为原函数的值域为[0,+∞), 则反函数的定义域为[0,+∞) (3)由y=e x﹣1则x﹣1=lny,即x=1+lny,x,y互换得y=1+lnx,则其定义域为(0,+∞)

最新整理反函数典型例题精析

2.4 反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1)= ≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232 3521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

反函数习题精选

习题精选 一、选择题 1.在同一坐标系中,图象表示同一曲线的是( ). A.与 B.与 C.与 D.与 2.若函数存在反函数,则的方程为常数)( ). A.至少有一实根 B.有且仅有一实根 C.至多有一实根 D.没有实根 3.点在函数的图象上,则下列各点中必在其反函数图象上的是 ( ). A. B. C. D. 4.()的反函数是() A.() B.() C.() D.() 5.设函数,,则的定义域是() A. B. C. D. 6.已知,则的表达式为() A. B. C. D. 7.将的图象向右平移一个单位,向上平移2个单位再作关于的对称图象,所得图象的函数的解析式为()

A. B. C. D. 8.定义在上的函数有反函数,下例命题中假命题为() A.与的图象不一定关于对称; B.与的图角关于轴对称; C.与的图象不可能有交点; D.与的图象可能有交点,有时交点个数有无穷多个9.若有反函数,下列命题为真命题的是() A.若在上是增函数,则在上也是增函数; B.若在上是增函数,则在上是减函数; C.若在上是增函数,则在上是增函数; D.若在上是增函数,则在上是减函数 10.设函数(),则函数的图象是() 11.函数()的反函数 =() A.()B.()

C.()D.() 二、填空题 1.求下列函数的反函数: (1) ; (2) ; (3) ; (4) . 2.函数的反函数是_____________________. 3.函数()的反函数是_________. 4.函数的值域为__________ . 5. ,则的值为_________. 6.要使函数在上存在反函数,则的取值围是 _____________. 7.若函数有反函数,则实数的取值围是_____________.8.已知函数(),则为__________. 9.已知的反函数为,若的图像经过点,则 =________. 三、解答题 1.求函数的反函数.

高考反函数问题常见类型解析

高考反函数问题常见类型解析 反函数是高中数学中的重要概念之一,也是学生学习的难点之一。在历年高考中占有一定的比例。为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。 一. 条件存在型 例1.函数f x x ax ()=--2 23在区间[ ] 12,上存在反函数的充要条件是( ) A. (]a ∈-∞,1 B. [)a ∈+∞2, C. (][)a ∈-∞+∞,,12 D. [] a ∈12, 解析:因为二次函数f x x ax ()=--2 23不是定义域内的单调函数,但在其定义域的 子区间( ]-∞,a 或[ )a ,+∞上是单调函数。而已知函数f x ()在区间[1,2]上存在反函 数,所以[](]12,,?-∞a 或者[][)12,,?+∞a ,即a ≤1或a ≥2。故选(C ) 点评:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。 二. 式子求解型 例2.函数y x x =-≤23 10()的反函数是( ) A. y x x =+≥-()()113 B. y x x =-+≥-()()113 C. y x x = +≥()()103 D. y x x =-+≥()()103 解析:由x ≤0可得x 23 0≥,故y ≥-1,从y x =-23 1解得x y =±+()13 因x ≤0,所以x y =-+()13即其反函数是y x x =-+≥-()()113 故选(B )。 点评:反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。 三.求定义域值域型 例3.若f x -1 ()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。 解析:通法是先求出f (x )的反函数f x x -=-1 101(),可求得f -1(x )的值域为 ()-+∞1,,而利用反函数的值域就是原函数的定义域这条性质,立即得f -1(x )的值域 为()-+∞1,。 点评:这种类型题目可直接利用原函数的定义域、值域分别是反函数的值域和定义域这一性质求解。 四.性质判断型

反函数的几种题型及解法素材

例析反函数的几种题型及解法 反函数是高中数学中的重要概念之一,也是学生学习的难点之一。在历年高考中也占有一定的比例。为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。 一. 反函数存在的充要条件类型 例1. (2004年北京高考)函数f x x ax ()=--2 23在区间[] 12,上存在反函数的充要条件是( ) A. (]a ∈-∞,1 B. [ )a ∈+∞2, C. (][)a ∈-∞+∞,,12 D. []a ∈12, 解析:因为二次函数f x x ax ()=--2 23不是定义域内的单调函数,但在其定义域的子区间( ]-∞,a 或[) a ,+∞上是单调函数。 而已知函数f x ()在区间[1,2]上存在反函数 所以[](]12,,?-∞a 或者[][) 12,,?+∞a 即a ≤1或a ≥2 故选(C ) 评注:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。 二. 反函数的求法类型 例2. (2005年全国卷)函数y x x =-≤23 10()的反函数是( ) A. y x x = +≥-()()113 B. y x x =-+≥-()()113 C. y x x = +≥()()103 D. y x x =-+≥()()103 解析:由x ≤0可得x 2 3 0≥,故y ≥-1 从y x = -23 1解得x y =±+()13 因x ≤0

反函数·典型例题精析

反函数·典型例题精析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

2.4 反函数·例题解析 ? 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤112x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232 3521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈ [2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----22 2 解 (3)y (x 0)0y 1y x f (x)(0x 1)1 ∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1

得值域-≤ <,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x 【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设= ,∴≠-,∵+=+,-=-,这里≠,31x x a ++

反函数说课稿

反函数说课稿 反函数说课稿 作为一名辛苦耕耘的教育工作者,通常会被要求编写说课稿,说课稿有助于学生理解并掌握系统的知识。说课稿应该怎么写呢?以下是小编整理的反函数说课稿,欢迎大家分享。 反函数说课稿1 一、说教材 1、地位与重要性“反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。 2、教学目标(1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;(2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;(3)培养学生发现问题、观察问题、解决问题的能力;(4)使学生树立对立统一的辩证思维观点。 3、教学重难点重点是反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。难点是反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。二、说教法根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。电脑多媒体以声音、动画、影像等多种形式强化对学生感

中考必考反函数经典试题锦集[1]1

反函数练习题 一、 选择题 1、 已知函数)1(1 56≠∈-+= x R x x x y 且,那么它的反函数为( ) A 、()1156≠∈-+=x R x x x y 且 B 、()665≠∈-+=x R x x x y 且 C 、??? ??-≠∈+-=65561x R x x x y 且 D 、()55 6-≠∈+-=x R x x x y 且 2、 函数?????≥-=)0(2 1)0(2x x x x y 的反函数是( ) A 、()?? ?≤-=0)0(2 x x x x y B 、()???-≤-=0)0(2 x x x x y C 、()()?????≤-=0021 x x x x y D 、()() ?????-≤-=0021 x x x x y 3、 已知点(a,b)在y=f(x)的图像上,则下列各点中位于其反函数图像上的点是( ) A 、))(,(1a f a - B 、()()b b f ,1- C 、()()a a f ,1- D 、()()b f b 1,- 4、 若函数)1(1)(2-≤-=x x x f ,则)4(1-f 的值为( ) A 、5 B 、5- C 、15 D 、3 二、 填空题 5、 函数f(x)2916x -=是否有反函数? ;当?? ????∈34,0x 时,反函数为 ,定义域为 ;当?? ????-∈0,34x 时,反函数为 ,定义域为 。 6、 设f(x)的反函数为)(1x f -,23)(1+=-x x f ,则=-)3(1f ,

f(3)= 7、 若点(1,2)既在函数b ax x f +=)(的图象上,又在函数f(x)的反函数)(1x f -的图象上,则a= ,b= 8、 f(x)在()+∞,0上为递增函数,则)1(1-f 与)3(1-f 的大小关系是 三、 解答题 9、 函数y=f(x)的图象是过点(2,1)的直线,其反函数的图象经过点(-2,-1),求函数f(x) 10、函数)(c x R x c x b ax y -≠∈++=且的反函数为2 13+-=x x y ,求a,b,c 的值 11、已知132)(1≥-=-x x x f ,,求f(x) 12、函数f(x)=x 2-2tx+1(t ∈R),定义域为[][]8,71,0 ∈x , (1)f(x)在定义域内是否一定有反函数? (2)若f(x)有反函数,求t 的范围。

相关主题
文本预览
相关文档 最新文档