当前位置:文档之家› 广义积分的审敛法、伽玛函数

广义积分的审敛法、伽玛函数

反常积分的收敛判别法 阿文 摘 要:掌握不同类型函数反常积分收敛性的多种判别方法,对于需要计算出其收敛值的,也可以方便的计算出其收敛的数值. 关键词:Cauchy 判别法; Abel 判别法; Dirichlet 判别法 引 言 一般情况下,只需确定一个反常积分函数的收敛性,而不一定需要求出其具体的收敛数值.因此,掌握不同类型函数的反常积分收敛判别法是极其必要的. 一 非负函数反常积分的收敛判别法 1.比较判别法 设在),[+∞a 上恒有)()(0x K x f ?≤≤,其中K 是正常数,则 (1) 当? +∞a dx x )(?收敛时?+∞a dx x f )(也收敛; (2) 当?+∞a dx x f )(发散时?+∞a dx x )(?也发散. 2.Cauchy 判别法 设在),[+∞a ),0(+∞?上恒有0)(≥x f ,K 是正常数, (1)若p x K x f ≤)(,且p>1,则dx x f a ?+∞)(收敛; (2)若p x x f K ≥)(,且p 1≤,则?+∞a dx x f )(发散. 二 一般函数反常积分的收敛判别法 1.Abel 判别法 dx x f a ? +∞)(收敛,)(x g 在),[+∞a 单调有界,则dx x g x f a )()(?+∞收敛;

2.Dirichlet 判别法 F(A)=dx x f A a ?)(在[),+∞a 上有界,)(x g 在[),+∞a 上单调且+∞→x lim 0)(=x g ,则dx x g x f a )()(?+∞ 收敛. 三 无界函数反常积分的收敛判别法 1.Cauchy 判别法 设在[),b a 上恒有0)(≥x f ,当x 属于b 的某个领域),[0b b η-时,存在正常数K ,使得 (1) ,) ()(p x b K x f -≤且p<1,则?b a dx x f )(收敛; (2) ,)()(p x b K x f -≥且p 1≥则?b a dx x f )(发散. 2.Abel 判别法 ?b a dx x f )(收敛,)(x g 在),[ b a 上单调有界,则?b a dx x g x f )()(收敛. 3.Dirichlet 判别法 ? -=ηηb a dx x f F )()(在],0(a b -上有界,)(x g 在),[b a 上单调且0)(lim =-→x g b x , 则?b a dx x g x f )()(收敛. 总 结 函数的类型不同,其相应的反常积分收敛判别法也就不同. 熟练掌握多种判别法可以对不同类型函数的敛散性做出正确的估计及计算.一般的,同一类函数也可用不同的方法来计算,既省时间,正确度又高. 参考文献 [1]陈纪修,於崇华,金路.数学分析(第二版)[M],北京:高等教育出版社,2004.6.

广义积分的收敛判别 法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分 ?+∞ a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

收敛而非绝对收敛,则称?+∞ a dx x f )(条件收敛,也称f (x )在[a ,+)∞上 条件可积. 由于a A A ≥?/,,均有 |)(|/ ?A A dx x f ≤ ?/ |)(|A A dx x f 因此,由Cauchy 收敛原理,我们得到下列定理. 定理9.3如果广义积分?+∞a dx x f )(绝对收敛,则广义积分?+∞ a dx x f )(必收敛. 它的逆命题不一定成立,后面我们将会看到这样的例子。 对其它形式的广义积分,类似地有绝对收敛及条件收敛的定义及性质. 下面我们先介绍当被积函数非负时,广义积分收敛的一些判别法. 比较判别法: 定理9.4(无限区间上的广义积分)设在[a ,+∞)上恒有 ),()(0x k x f ?≤≤(k 为正常数) 则当?+∞ a dx x )(?收敛时, ?+∞ a dx x f )(也收敛; 当? +∞a dx x f )(发散时, ?+∞ a dx x )(?也发散. 证明:由Cauchy 收敛原理马上得结论成立. 对瑕积分有类似的结论判别法 定理9.5 设f (x ), g (x ) 均为[a ,b )上的非负函数,b 为两个函数的奇点,如存在一个正常数k, 使 ∈?≤≤x x kg x f ),()(0[a , b ), 则

§10.2 无界函数的广义积分 一 无界函数广义积分的概念 定义1 设()f x 在x b =的临近无界(我们称b 点为()f x 的奇点),但对于任意充分小的正数η,()f x 在[],a b η-上可积,即 lim ()b a f x dx η η+-→? 存在时,称这极限值I 为无界函数()f x 在[,]a b 上的广义积分。记作 ()0 lim ()b b a a f x dx f x dx η η+-→=? ? 。 如果上述的极限不存在,就称()b a f x dx ?发散。 类似可定义 ()b a f x dx ?(a 为奇点). 如果()f x 在[,]a b 内部有一个奇点c ,a c b <<,当()c a f x d x ? 和()b c f x dx ?都收敛时, 就称 ()b a f x dx ?收敛,并且有 ()()()b c b a a c f x dx f x dx f x dx =+? ??。 如果上式右边的任何一个积分发散,就称()f x dx +∞ -∞ ? 发散。 例1:讨论积分 () 1 b p a dx x a -?()0p >的收敛性。 例2:讨论积分 1 ? 的收敛性。 二 无界函数积分的性质 性质1 定积分的一些性质包括分部积分法和换元积分法对无界函数的广义积分也成立。 柯西收敛原理 ()b a f x d x ?( x a =是奇点)收敛的充分必要条件是:0ε?>,0δ?>,当0,'ηηδ<<时,总有 ()' a a f x d x ηη ε++

无穷积分敛散性的判别法 郑汉彬 摘 要:无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的—个先决条件。由于判别方法比较多,学生不易掌握,从而是数学分析的一个难点,也一直是一个重要的研究课题。本文就一些常见和不常见的判定方法做一个归纳,这样将有助于我们灵活地运用各种判别法判定无穷积分的敛散性。 关键词:无穷积分;瑕积分;收敛性;判别法 无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件。由于判断方法比较多,不易掌握,从而是数学分析和高等数学的一个难点。最原始的判别方法是对积分区间无穷型的反常积分先将积分限视为有限的积分区间,按常义积分处理,待积分求出原函数后再考查其极限是否存在,再用极限去判定原积分是否收敛。 本文以文献中相关定理为基础,并对相关的文献资料中给出的无穷积分敛散性判定方法的相关理论进行总结及一定的改进和补充,使之能够更广泛地应用于无穷积分敛散性判定中,对比了各种类型的无穷积分敛散性判定方法的应用以及在应用过程中应注意的一些巧妙方法,不仅使这些原本复杂的问题简单化,而且可避免出现错误。 1 无穷积分的敛散性 定义1 设函数)(x f 在 ),[+∞a 上有定义,且对)(,x f a b >?在上],[b a 可积,当 ()lim b a b f x dx J →+∞=? 存在,称此极限J 为函数)(x f 在区间),[+∞a 上的无穷限反常积分(简称无穷积分),记为 ()a J f x dx +∞ =? 这时称积分 ? +∞ a dx x f )(是收敛的.如果上述极限不存在,为方便起见,并称无穷积分? +∞a dx x f )(发散. 2 无穷积分敛散性的判别法 如何判断一个无穷积分的敛散性,这是无穷积分理论的重要内容之一。对此,我们首先建立一个收敛准则,然后再介绍几种常有的敛散性判别法。 柯西收敛准则 因为无穷积分 ? +∞ a dx x f )(的收敛问题即是极限? +∞→A a A dx x f )(lim 的存在问题,所以由极限的柯西收敛

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

收敛而非绝对收敛,则称?+∞ a dx x f )(条件收敛,也称f (x )在[a ,+)∞上 条件可积. 由于a A A ≥?/,,均有 |)(|/ ?A A dx x f ≤ ?/ |)(|A A dx x f 因此,由Cauchy 收敛原理,我们得到下列定理. 定理9.3如果广义积分?+∞a dx x f )(绝对收敛, 则广义积分?+∞ a dx x f )(必收敛. 它的逆命题不一定成立,后面我们将会看到这样的例子。 对其它形式的广义积分,类似地有绝对收敛及条件收敛的定义及性质. 下面我们先介绍当被积函数非负时,广义积分收敛的一些判别法. 比较判别法: 定理9.4(无限区间上的广义积分)设在[a ,+∞)上恒有 ),()(0x k x f ?≤≤(k 为正常数) 则当?+∞ a dx x )(?收敛时, ?+∞ a dx x f )(也收敛; 当? +∞ a dx x f )(发散时, ?+∞ a dx x )(?也发散. 证明:由Cauchy 收敛原理马上得结论成立. 对瑕积分有类似的结论判别法 定理9.5 设f (x ), g (x ) 均为[a ,b )上的非负函数,b 为两个函数的奇点,如存在一个正常数k, 使 ∈?≤≤x x kg x f ),()(0[a , b ), 则

毕业论文开题报告 信息与计算科学 无界函数广义积分的数值计算 一、选题的背景、意义 微积分从20世纪初开始进入中学,他作为人类文化的宝贵财富,正在武装一代又一代的新人,终将成为世人皆知的常识[1].通常谈到积分,最先想到的往往是定积分.研究函数的定积分,常常有两个比较重要的约束条件,即积分区间的有界性和被积函数的有界性[2].但在很多实际问题中往往需要突破这两个条件,考虑无穷区间上的积分或是无界函数的积分,通常也称他们为广义积分.通过以往对定积分学习,发现它可以使很多复杂的问题简单化,但是实际生活广义积分的应用更加具有实际意义.因此关于它的计算自然而然地成了很重要的研究课题,这也是本论文的研究中心. 广义积分的敛散性的判定是分析学的重要内容,有不少人对其研究,已得出了许多判定方法.有学者认为,由于积分与级数在理论上是统一的,因此有关正项级数的根式判别法可被推广以判别无穷限积分和 [3] .也有学者认为,将无穷积分及无界函数积分的被积函数运用 无穷小和无穷大比较的方法进行比较,得到了相应的反常积分敛散性极限审敛法的等价定理 [4] ,从而可运用等价定理灵活的判断反常积分的敛散性.总之,广义积分目前已有多种判别 收敛性的方法,但每个判别法都有其应用的局限性[5] ,随着广义积分理论的逐渐发展,相 信这些局限性会日趋减弱。 广义积分的敛散性的判别方法固然是很重要的问题,对于广义积分的计算的研究具有很重要的现实意义.在解析方法中,收敛的广义积分是通过用非奇异点(或有限点)代替奇异点(无穷点)并对其取极限的方法处理的 [6] .通常的积分计算直接利用公式 ()()()b a f x dx F b F a =-? 进行,但是,在实际问题中,这样往往是有困难的,有些被积函 数()f x 的原函数不能用初等函数表示成有限的形式;有些被积函数表达式很复杂;有些没有具体的解析表达式.而且,广义积分是指把积分扩展为函数在积分区间上无界或积分区间

无穷限反常积分敛散性及审敛法则 一、教学目标分析 在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。让学生反常积分在一些实际问题中的应运。 二、学情/学习者特征分析 学生通过对前面课程的学习,对积分已经有了初步的了解。但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。 三、学习内容分析 1.本节的作用和地位 通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。 2.本节主要内容 1. 无穷限反常积分的定义与计算方法 2. 无穷限反常积分的性质 3. 无穷限反常积分的比较审敛法则 4. 条件收敛与绝对收敛 3.重点难点分析 教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则; 教学难点:无穷限反常积分的比较审敛法则。 4.课时要求:2课时 四、教学理念 学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。 五、教学策略 在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。

六.教学环境 网络环境下的多媒体教室与课堂互动。 七、教学过程 一、无穷限反常积分的定义 定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限 J dx x f u a u =? +∞→)(lim 则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作 dx x f J a ?+∞ =)(,并称 dx x f a ?+∞ )(收敛.如果极限J dx x f u a u =?+∞ →)(lim 不存在,亦称 dx x f a ?+∞ )(发散. 类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim )(dx x f dx x f b u u b ?? -∞ →∞ -= 对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义: ,)()()(dx x f dx x f dx x f a a ???+∞ ∞ -∞-+∞ +=其中a 为任一实数,当且仅当右边两个无穷积分都收 敛时它才是收敛的. 注: dx x f a ? +∞ )(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线 )(x f y =,直线a x =以及x 轴之间那一块向右无限延伸的阴影区域有面积J . 例1 讨论无穷积分.1) 10 2 ? +∞ +x dx ,.1)22?∞+∞-+x dx ,.)30 2 ?+∞-dx xe x 的收敛性. 例2 讨论下列无穷积分的收敛性:? +∞ 1 ) 1p x dx , ;)(ln )22?+∞p x x dx 二、无穷积分的性质 由定义知道,无穷积分 ?+∞ a dx x f )(收敛与否, 取决于积分上限函数=)(u F ?u a dx x f )(在+∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则. 定理11.1 无穷积分 ? +∞a dx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要 G u u >21,,便有 ε<= -? ? ?2 1 2 1 )()()(u u u a u a dx x f dx x f dx x f . 此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质. 性质 1 若 dx x f a )(1? +∞ 与 dx x f a )(2? +∞ 都收敛,1k ,2k 为任意常数,则

第九章 广义积分习题课 一、主要内容 1、基本概念 无穷限广义积分和无界函数广义积分敛散性的定义、绝对收敛、条件收敛。 2、敛散性判别法 Cauchy 收敛准则、比较判别法、Cauchy 判别法、Abel 判别法、Dirichlet 判别法。 3、广义积分的计算 4、广义积分与数项级数的关系 5、广义积分敛散性的判别原则和程序 包括定义在内的广义积分的各种判别法都有特定的作用对象和原则,定义既是定性的――用于判断简单的具体广义积分的敛散性,也是定量的――用于计算广义积分,其它判别法都是定性的,只能用于判断敛散性,Cauchy 判别法可以用于抽象、半抽象及简单的具体广义积分的敛散性,比较判别法和Cauchy 判别法用于不变号函数的具体广义积分和抽象广义积分判别法,Abel 判别法和Dirichlet 判别法处理的广义积分结构更复杂、更一般。 对具体广义积分敛散性判别的程序: 1、比较法。 2、Cauchy 法。 3、Abel 判别法和Dirichlet 判别法。 4、临界情况的定义法。 5、发散性判别的Cauchy 收敛准则。 注、对一个具体的广义积分敛散性的判别,比较法和Cauchy 法所起作用基本相同。 注、在判断广义积分敛散性时要求: 1、根据具体题型结构,分析特点,灵活选择方法。 2、处理问题的主要思想:简化矛盾,集中统一,重点处理。 3、重点要掌握的技巧:阶的分析方法。 二、典型例子 下述一系列例子,都是要求讨论其敛散性。注意判别法使用的顺序。 例1 判断广义积分?+∞+=0q p x x dx I 的敛散性。 分析 从结构看,主要是分析分母中两个因子的作用。 解、记?+=101q p x x dx I ,?+∞+=12q p x x dx I

数学分析第十二章数项级数积分判别法 第八讲

数学分析第十二章数项级数 定理12.9(积分判别法) 积分判别法由于比式和根式判别法的比较对象是几何级数,局限性较大,所以还需要建立一些更有效的判别法. 设[1,)f +∞为上非负减函数,+1()d f x x 与反常积分∞ ?同时收敛或同时发散. 证由假设[1,)f 为+∞上非负减函数, f 在[1, A ]上可积,于是 对任何正数A ,那么正项级数()f n ∑

数学分析第十二章数项级数-≤≤-=?1()()d (1),2,3,. n n f n f x x f n n 依次相加可得1 122 1()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?若反常积分收敛,有 111()(1)()d (1)()d . m m m n S f n f f x x f f x x +∞==≤+≤+∑?? 根据定理12.5, 级数()f n ∑收敛. 则由(12)式左边, 对任何正整数m ,

数学分析第十二章数项级数反之, 若()f n ∑为收敛级数, 一正整数m (>1)有 -≤≤=∑?11()d (). (13)m m f x x S f n S 1 0()d , 1.A n f x x S S n A n ≤≤<≤≤+?因为f (x )为非负减函数, 法, 可以证明+1()()d f n f x x 与∞∑? 是同时发散的.112 21()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?则由(12)式右边,对任故对任何正数A ,都有111.2,()d .f x x +∞ ?根据定理反常积分收敛用同样方

第九章广义积分习题课 一、主要容 1、基本概念 无穷限广义积分和无界函数广义积分敛散性的定义、绝对收敛、条件收敛。 2、敛散性判别法 Cauchy收敛准则、比较判别法、Cauchy判别法、Abel判别法、Dirichlet 判别法。 3、广义积分的计算 4、广义积分与数项级数的关系 5、广义积分敛散性的判别原则和程序 包括定义在的广义积分的各种判别法都有特定的作用对象和原则,定义既是定性的――用于判断简单的具体广义积分的敛散性,也是定量的――用于计算广义积分,其它判别法都是定性的,只能用于判断敛散性,Cauchy判别法可以用于抽象、半抽象及简单的具体广义积分的敛散性,比较判别法和Cauchy 判别法用于不变号函数的具体广义积分和抽象广义积分判别法,Abel判别法和Dirichlet判别法处理的广义积分结构更复杂、更一般。 对具体广义积分敛散性判别的程序: 1、比较法。 2、Cauchy法。

3、Abel 判别法和Dirichlet 判别法。 4、临界情况的定义法。 5、发散性判别的Cauchy 收敛准则。 注、对一个具体的广义积分敛散性的判别,比较法和Cauchy 法所起作用基本相同。 注、在判断广义积分敛散性时要求: 1、根据具体题型结构,分析特点,灵活选择方法。 2、处理问题的主要思想:简化矛盾,集中统一,重点处理。 3、重点要掌握的技巧:阶的分析方法。 二、典型例子 下述一系列例子,都是要求讨论其敛散性。注意判别法使用的顺序。 例1 判断广义积分?+∞ +=0q p x x dx I 的敛散性。 分析 从结构看,主要是分析分母中两个因子的作用。 解、记?+=1 01q p x x dx I ,?+∞+=12q p x x dx I 对1I ,先讨论简单情形。 q p =时,1

p 时,由于

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或时, 和的敛散性可以产生各种不同的的情况。 +∞∫ ∞ +a dx x )(?∫ ∞ +a dx x f )(解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数。则 当收敛时也收敛; ∫∞ +a dx x )(?∫∞ +a dx x f )(当发散时也发散。 ∫∞ +a dx x f )(∫∞ +a dx x )(?证 当收敛时,应用反常积分的Cauchy 收敛原理, ∫∞+a dx x )(?0>?ε ,,a A ≥?00,A A A ≥′?: K dx x A A ε ?<∫′ )(。 于是 ≤ ∫′ A A dx x f )(ε?<∫′ A A dx x K )(, 所以也收敛; ∫∞ +a dx x f )(当发散时,应用反常积分的Cauchy 收敛原理, ∫∞ +a dx x f )(00>?ε,,a A ≥?00,A A A ≥′?: εK dx x f A A ≥∫′ )(。 于是 ≥∫′A A dx x )(?0)(1 ε≥∫′ A A dx x f K , 所以也发散。 ∫∞+a dx x )(?(2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?。则当发散时,∫也发散;但当收敛时,∫可能收敛, ∫∞ +a dx x f )(∞+a dx x )(?∫∞+a dx x f )(∞+a dx x )(?

反常积分与定积分有何区别和联系 要想得出定积分和广义积分的区别与联系,我们需要先明确两者的定义。从定义的角度出发,对其进行讨论 定积分:设函数f(x)在区间[a,b]上有界,在[a,b]任意插入n-1个分点, a=x 0a,如果极限 ?+∞→b a b f dx x lim )( 存在,则称此极限为函数f(x)在无穷区间[a,+∞)上的反常积分,记作 ?? +∞→+∞ =b b a dx x f dx x f a )(lim )( 瑕积分:设函数f(x)定义在(a,b]上,而在x=a 的任一右邻域内f(x)无界(此时称x=b 为f(x)的瑕点),若f(x)在任意[a-ε,b](0<ε

审敛法、级数收敛性 问题7.2 比值审敛法与根值审敛法两者相比,各有什么优点? [答] 虽然这两种审敛法都是基于把所考虑的正项级数与等比级数比较而得到的,但它 们又有所差别。 首先我们指出:如果极限1 lim n x n u l u +→∞= 存在,那么x l =。这个结论的证明放 在本问题的最后。 按此结论可知,能用比值审敛法判定其收敛性的正项级数,一定可以用根值审敛法判定。当1l =时,比值审敛法失效,此时根值审敛法也失效。 其次,当1lim n x n u u +→∞ 不存在时,x ()112n n n ∞---=∑,因为 ()121 12218 n n n u u -+-+??==??? 故1lim n x n u u +→∞不存在,比值审敛法不能使用。但1 2x =,由根值审敛法知该级数收敛。 总之,比值审敛法一般说来在使用上要方便些,而根值审敛法的应用范围却比比值审敛法要广一些。 此外,在比值及根值的极限不存在(或不易求出)时,也可考虑用下述方法判定正项级数的收敛性: 如果1 1n n u u ρ+≤<1ρ≤<),那么级数1 n n u ∞ =∑收敛; 如果11n n u u +≥1≥),那么级数1 n n u ∞=∑发散。这是因为:当11n n u u ρ+≤<(或1ρ≤<)时,1 1n n u u ρ -≤(或n n u ρ≤),而 1 11 n n u ρ ∞ -=∑(或 1 n n ρ ∞ =∑)收敛,由比较审 敛法知 1 n n u ∞ =∑收敛。当 1 1n n u u +≥1≥)时,有1n u u ≥(或1n u ≥),可知当n →∞时,n u 0,所以1 n n u ∞ =∑发散。 例 判定正项级数()1113 n n n n ∞ =?-?∑的收敛性。 ,当n 为奇数, ,当n 为偶数,

积分判别法 若在[1,∞)上f 减, 非负, 则∑f (n )收敛??∞1f 收敛. 此时?∞1f ≤∑f (n )≤?∞1f + f (1). 证 ?21f ≤f (1) = f (1), ?32f ≤f (2)≤?21f , … ,?+1n n f ≤f (n )≤?-n n f 1, 相加得?+11n f ≤∑-n k k f 1)(≤?n f 1+ f (1). 令n →∞得证. 注. 条件可改为x 充分大时f 减, 非负. 例1(p 级数)∑p n 1当且仅当p > 1时收敛. 证一. p > 0时用积分判别法; p ≤0时由必要条件. 证二 p ≤1时由n -p ≥n -1得发散, p >1时用积分判别法. *证三 p ≤1时由n -p ≥n -1得发散. p > 1时按下列方法加括号: 括号内的项数依次为1, 2, 4, 8, 16, …, 则由1141447141,21223121--=<++=<+p p p p p p p p Λ, … 及比较判别法知加括号后的级数收敛, 故p 级数也收敛. △∑∑∞=∞ =32ln ln 1 ,ln 1n p n p n n n n n , … . 备考. 设f (x ) = (x ln p x )-1 (x ≥2), 则p ≥0时显然f 减. 而p < 0时对充分大的x , f 仍减[p < 0时f ' (x ) = - (x ln p x )-2 ln p -1x (ln x + p )< 0 (x > e -p ), 故可直接应用积分判别法得∑(n ln p n )-1当p > 1时收敛, p ≤1时发散. △∑)1(~ )1(23n n n +. △)1(~ 1n n n ∑-.△)1(~ )1(q q p p n n n ∑++.△∑sin n 1 (~n 1). △∑n n 1 (n n a =n 1→0, 或n n 10) (n n a a 1+=1+n a , 或n n a =n n a ! →0). △∑n n n ! (n n a a 1+→e 1或n n a →e 1(上 册p.40.4(5)). △∑)2()1(n n n n Λ+(n n a a 1+= (1 +n 1)n 4)22)(12()1(2e n n n →+++<1). △∑n ln 1(n ln 1>n 1或1-n a n →∞). △∑p n )(ln 1(1 -n a n →∞). △∑p n n ln (p ≤1时1-n a n →∞,发散; p >1时取q 使p >q >1,, 则q n n a -→0或a n ≤n -q , 收敛). △∑(n a - 1) (a >1) (由 x a x 1-→ln a (x →0)知n a - 1 = O(n 1). p.16.1 (9)类似). *△∑2121)1ln 2(+-++n n n n n (≤n n n n n 21)2(2121≤+-). *△∑n n ln ln )(ln 1(∵x x ln )ln (ln 2→0(x → ∞), ∴n 充分大时(ln n ) ln ln n = exp(ln ln n )2 < e ln n = n , 发散). 例2. 证明: 若a n > 0, ∑a n 收敛, 则∑1+n n a a 与∑a n a n +1收敛. [与∑a n 比较]. 例3(p.16.9(4). 考察∑∞=3)ln (ln )(ln 1n q p n n n 的收敛性. 解 设f (x ) = x (ln x )p (ln ln x ) q , 则f ' (x ) = ln p -1 x (ln ln x ) q -1((ln x + p ) ln ln x + q ), x 充分大时?p , q , f ' (x ) > 0, 故可用积分判别法. ??∞∞==3ln 3ln )(u u du x f dx I q p . p >1时取r 使p >r >1, 由u r u u q p ln 1→0知I 收敛. p =1时I =?∞3ln ln q t dt , 当且仅当q >1时收敛. p <1时由u u u q p ln 1

指导教师:陈一虎 作者简介:陈雪静(1986-),女,陕西咸阳人,数学与应用数学专业2008级专升本1班. 无穷限广义积分的计算 陈雪静 (宝鸡文理学院 数学系,陕西 宝鸡 721013) 摘 要: 文章归纳总结了利用数学分析、复变函数、积分变换、概率论统计理论等知识计算无穷限广义积分的几种方法.在学习中运用这几种方法可开拓视野,激发学习数学的兴趣. 关键词: 广义积分;收敛;计算方法 广义积分是《高等数学》学习中的一个难点知识,广义积分的概念不仅抽象,而且计算方法灵活,不易掌握.广义积分包括两大类,一类是积分区间无穷型的广义积分,另一类是积分区间虽为有穷,但被积函数在该区间内含有有限个无穷型间断点(瑕点)的广义积分.一般的判别法是对积分区间无穷型的广义积分,先将积分限视为有限的积分区间按常义积分处理,待积分求出原函数后再考查其极限是否存在,在用此极限去判定原积分是否收敛.对于第二类广义积分,我们可将积分区间改动,使被积函数在改动后的积分区间内成为有界函数再按常义积分处理,求出原函数之后考查它在原积分区间上的极限是否收敛.但是有些被积函数的原函数不易求出或无法用初等函数表示,使得广义积分无法用常规方法计算,因此需寻求其它的计算方法.本文主要研究无穷限广义积分的计算方法,主要方法包括利用广义积分定义、参量积分、变量代换、二重积分、留数定理、级数展开、概率论知识以及拉普拉斯变换等方法. 1 无穷限广义积分的定义 定义1 设函数()f x 在区间[,)a +∞上连续,取t a >.如果极限 lim ()d t a t f x x →+∞? 存在,则称此极限为函数()f x 在无穷区间[,)a +∞上的反常积分(也称作广义积分),

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?δ, 只要0<δηη<

§6. 6 广义积分与-Γ函数 课 题:§6.6 广义积分 教学内容:两种广义积分的计算 教学目的:通过学习,使学生掌握两种广义积分的计算 教学重点:无穷去见上广义积分的计算 教学难点:无界函数广义积分的计算 教学过程: 一、无穷限的广义积分 定义1 设函数f (x )在区间[a , +∞)上连续, 取b >a . 如果极限 dx x f b a b )(lim ? +∞→ 存在, 则称此极限为函数f (x )在无穷区间[a , +∞)上的广义积分, 记作dx x f a )(?+∞ , 即 dx x f dx x f b a b a )(lim )(??+∞→+∞ =. 这时也称广义积分dx x f a )(?+∞ 收敛. 如果上述极限不存在, 函数f (x )在无穷区间[a , +∞)上的广义积分dx x f a )(?+∞ 就没有意义, 此时称广义积分dx x f a )(?+∞ 发散. 类似地, 设函数f (x )在区间(-∞, b ] 上连续, 如果极限 dx x f b a a )(lim ? -∞→ (a

第2节 无界函数的反常积分 我们知道,在[,]a b 上可积的函数都在[,]a b 上有界。下面我们考虑如果()f x 在某点[,]c a b ∈的附近无界,该怎么积分()b a f x dx ?? 如果()f x 在c 的任意邻域内都无界,则c 称为()f x 的瑕点(反常点)。分别如下3种情况。 (1)设()f x 在[,]a b 上只有唯一的瑕点b ;又设[,)t a b ?∈, ()f x 在[,]a t 上都可积。考虑极限 0()lim ()()[]b b a a f x dx f x dx A A f x a b ε ε+-→??? =???? 不存在,则称反常积分发散(不存在);存在,则称为在,上的反常积分,记为 ()lim ()b b a a f x dx A f x dx ε ε+-→==? ? 此时称()b a f x dx ?收敛。(先把积分区间缩小一点点。) 如果在[,)a b 上()F x 是()f x 的随便一个原函数,则 ()lim ()()()b b a a b f x dx F F a F x ττ- →=-=? (记住:b 是怎样代进去的?) (2)设()f x 在[,]a b 上只有唯一的瑕点a ;又设(,]t a b ?∈, ()f x 在[,]t b 上都可积。考虑极限 0()lim ()()[]b b a a f x dx f x dx A A f x a b ε ε++→??? =???? 不存在,则称反常积分发散(不存在);存在,则称为在,上的反常积分,记为 ()lim ()b b a a f x dx A f x dx ε ε++→==? ? 此时称()b a f x dx ?收敛。(先把积分区间缩小一点点。) 如果在(,]a b 上()F x 是()f x 的随便一个原函数,则

广义积分的收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

相关主题
文本预览