当前位置:文档之家› ch3-1单电子原子的定态薛定谔方程解

ch3-1单电子原子的定态薛定谔方程解

定态薛定谔方程讲义

定态薛定谔方程 一、定态Schr?dinger 方程 2 2(,)[()](,)2i r t V r r t t m ψψ?=-?+? (1) 在一般情况下,从初始状态ψ(r,0)求 ψ(r,t)是不容易的。以下,我们考虑一个很重要的特殊情形——假设势场V 不显含时间 t (在经典力学中,在这种势场中运动的粒子,其机械能守恒),此时薛定谔方程(1)可以用分离变量数法求其特解。 ()V r 与t 无关时,可以分离变量 令(,)()()r t r f t ψψ= 代入(1)式 2 2()1[()]()()()2i df t V r r f t dt r m ψψ=-?+ E = 其中E 是即不依赖于t ,也不依赖于r 的常量,这样 ()()df t i Ef t dt = (2) 2 2[()]()()2V r r E r ψψμ -?+= (3) ——定态薛定谔方程 由(2)解得 Et i ce t f -=)( 其中c 为任意常数。把常数c 放到()E r ψ 里面去,则 (,)()i Et E r t r e ψψ-= (4) 这个波函数与时间的关系是正弦式的,其角频率是ω=Ε/?按照德布罗意关系E=h ν=?ω,E 就是该体系处于这个波函数所描写状态时的能量。由此可见,当体系处于(4)式所描写状态时,能量具有确定值E ,所以这种状态称为定态,波函数ψ(r,t)称为定态波函数。 定态有两个含义:1、(,)()i Et E r t r e ψψ-= ;2、E 具有确定值;(判断是否为定态的依 据) 空间波函数()E r ψ 可由方程 2 2[()]()()2E E V r r E r m ψψ-?+= 和具体问题()E r ψ 应满足的边界条件得出。方程(3)称为定态Schr?dinger 方程,()E r ψ 也可

第二章原子结构与性质§氢原子和类氢原子的薛定谔方程及其

第二章 原子结构 ?性质 §2.1.氢原子和 ?氢原子的 ?定谔方程 ?其解 2.1.1.单电子原子?的 定谔方?程 H 原子和H ?e +、Li 2+ 等 氢离子?是单原子,它们的核电?荷数为Z ,若把原子的?质量中心 ?在坐标原 ?上,绕核运动的?电子离核的?距离为r ,电子的电荷?为-e ,其静电作 ?势能为: r Ze V 0 2 4πε-= 将势能代 ? 定谔方程?: 得 0)(2 2282 =ψ+ + ψ?r Ze h m E π 或ψ=ψ- ?- E r Ze m h ][2 2 2 2 8π 为了解题方?便,将x 、y 、z 变量换 ?极坐标变量?r 、θ、φ。 其关系:φθcos sin r x = φθsin sin r y = φcos r z = 2222 z y x r ++= 2 1 ) /(cos 2 22z y x Z ++=θ x y tg /=φ })(sin )({2 222 sin 1sin 121 2 φθθθ θθ ??????????++= ? r r r r 代 定谔?方程: )()(sin )(2 2 22 222228sin 1 1sin 1121=ψ+ + ++???ψ??????? r Ze h m r r r r r E r πφθθθ θθ 2.1.2.分离变量§法:

上述的方程?是含三个 ?量的偏微分?方程,要解这个方?程可 数?分离法将其?化为三个分?别只含一个? 量的常微?分方程求解?。 含:)()()(),,(φθθΦΘ=Φψr R r 代 方程:并乘以ΘΦR r θ 22sin 移项 可 得: ) (s )(s )(228s i 2s i n 1222 2 2V E r r h u d d d d dr dR dr d R d d ---- =ΘΘΦΦθθ πθθ θθφ左边不含r ?、θ,右边不含 ?,欲左右两边?相等必等 ?同一个常数?(-m 2 ) Φ-=Φ 222m d d φ , 而右边可为?:(除以sin ?θ) )(sin )()(sin 1sin 821 22 2 2θ θ θθ πθ d d d d m h ur dr dR dr d R V E r ΘΘ-= -+ 则有: K d d d d m =-ΘΘ)(sin sin 1sin 22 θ θ θ θθ K E r r Ze h ur dr dR dr d R =++)()(2 2 2 2821 π 2.1. 3.方程解的 ?果 2.1.3.1.Φ(φ)方程的解 022 2=Φ+Φ m d d φ 这是一个常?系数二阶 ?次线性方程?,有两个复 ?数的独立解?。 |)|(]exp[m m im A m ±==Φφ Φ符合波 ?数品优条 ?:连续、单值、电子边界条? (归一) 1]exp[]exp[202 20 *=-A =ΦΦ?? φφφφπ πd im im d m m π21=A ]exp[][21φπ im m =Φ α、φ周期变化?,Φm 值不变 )2()(πφ φ+Φ=Φm m

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

薛定谔方程

第一章 薛定谔方程 §1.1.波函数及其物理意义 1. 波函数: 用波函数描述微观客体的运动状态。 例:一维自由粒子的波函数 推广 :三维自由粒子波函数 2. 波函数的强度——模的平方 3. 波函数的统计解释 用光栅衍射与电子衍射对比的方式理解波函数的统计解释。 t 时刻,出现在空间(x,y,z )点附近单位体积内的粒子数与总粒子数之比。 t 时刻,粒子出现在空间(x,y,z )点附近单位体积内的概率。 t 时刻,粒子在空间分布的概率密度 4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1 标准条件:一般情况下, 有关特殊情况波函数所满足的条件参看曾谨言教程。 对微观客体的数学描述: 脱离日常生活经验,避免借用经典语言引起的表观矛盾 §1.2. 薛定谔方程 是量子力学的基本假设之一,只能建立,不能推导,其正确性由实验检验。 1. 建立 (简单→复杂, 特殊→一般) 一维自由粒子的振幅方程 非相对论考虑 2. 一维定态薛定谔方程 2 |),,,(|t z y x ψ1d d d d d ||2===?=ψ???N N N N V V N N V V V . 是单值、有限、连续的ψ0)(2d )(d 222=ψ+ψx mE x x 0)()(2d )(d 222=ψ-+ψx U E m x x

3. 三维定态薛定谔方程 4. 一般形式薛定谔方程 5. 多粒子体系的薛定谔方程 讨论: 1、薛定谔方程也称波动方程,描述在势场U 中粒子状态随时间的变化规律。 2 、建立方程而不是推导方程,正确性由实验验证。薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 3、薛定谔方程是线性方程。是微观粒子的基本方程,相当于牛顿方程。 4、自由粒子波函数必须是复数形式,否则不满足自由粒子薛定谔方程。 5、薛定谔方程是非相对论的方程。 量子力学的中心任务就是求解薛定谔方程。 求解问题的思路: 1. 写出具体问题中势函数U (r )的形式代入方程 2. 用分离变量法求解 3. 用归一化条件和标准条件确定积分常数 4. 讨论解的物理意义, 薛定谔的另一伟大科学贡献 《What is life ?》 薛定谔(Schroding,1897-1961)奥地利人,因发现原子理论的有效的新形式一波动力学与狄拉克(Dirac,1902-1984)因创立相对论性的波动方程一狄拉克方程,共同分享了1933年度诺贝尔物理学奖 定态薛定谔方程 一.定态薛定谔方程条件:V (r,t )=V(r), 与t 无关。用分离变量法, 令Ψ=φ(r)f(t),代入薛定谔方程,得两个方程: 此称定态薛定谔方程 整个定态波函数形式: ),,,(),,,()],,,(2[),,,(2121212221t r r t r r V t r r m t r r t i i i i ψ+ψ?-=ψ??∑)t (Ef t )t (f i =?? Et i ce )t (f -=)r (E )r ()r (V )r (m ?=?+??-222Et i e )r ( -?=ψ

大学物理-一维定态薛定谔方程的应用

一维定态薛定谔方程 的应用 授课人: 物理科学与技术学院

势 阱 日常生活中的各种井(阱) 物理学中研究微观粒子运动状态时常用的模型,因其势能函数曲线的形状如同井而得名 水井 窨井 陷阱 U x O a U

() U x x O a ∞ ∞00()0 , x a U x x x a ≤≤?=?∞<>? 这是一个理想化的物理模型, 应用定态薛定谔方程求解波函数, 有利于进一步理解在微观系统中 能量量子化和概率密度等概念 这样的势能函数称为 一维无限深势阱

建立定态薛定谔方程并求解 假设微观粒子质量为 ,由 m 22 2d ()()()2d U x x E x m x ψψ??-+=???? x a U x 0()0≤≤=阱内( ) : 22 2d ()()2d x E x m x ψψ-= x x a U x 0 , ()<>→∞ 阱外( ): 令: 2 22mE k =得通解: ()sin() x A kx ψ?=+ 微观粒子的能量不可能达到 无穷大,所以粒子不可能在阱外出现,或者说粒子在阱外出现的概率为零。 ()0 x ψ≡222 d 0d k x ψψ+=

利用标准条件确定 和 k ?因 在整个 轴上必须连续 x ()x ψsin() 0()0 0 0 A kx x a x x x ?ψ+≤≤?=? <>?,(0)sin 0 A ψ?== a A ka ()sin()0 ψ?=+=求归一化的波函数 一维无限深势阱中 微观粒子的波函数 2220π()d sin d a n x x A x x a ψ+∞-∞=??221 A a =?= 2A a = n a x x a x a x x a π2sin 0()00 , ψ? ≤≤?=??<>?() π ()sin 1,2,3n x A x n a ψ==??, 0?=π n k a =()1,2,3n =???,

微电子学物理基础-波函数及薛定谔方程

《微电子学物理基础》 Fundamental of Microelectronics Physics 教学大纲 一、课程性质与目的 《微电子物理基础》是微电子学专业的专业选修课。该课程在普通物理、高等数学、线性代数等基础上,使学生树立起微观粒子运动的基本图像,深刻理解微观粒子运动的表述方式、基本原理及普遍规律,掌握典型微观体系的基本特征。通过该课程的学习,能够理解波函数的意义,力学量算符的概念,掌握晶体结构,晶格振动和能带理论。解决一些与专业有关的问题,为今后进一步学习有关专业基础课程奠定必要的理论基础。 二、课程内容及要求: 第一章经典物理学的困难 1、教学基本内容 1.1 经典物理学的困难 2、教学基本要求 了解:十九世纪末二十世纪初经典物理所遇到的困难 第二章波函数及薛定谔方程 1、教学基本内容 2.1波函数 2.2不确定关系 2.3薛定谔方程 2.4粒子流密度和粒子数守恒 2.5定态薛定谔方程 2.6一维无限势阱模型 2.7一维有限势阱模型 2.8一维线性谐振子 2.9势垒贯穿 2、教学基本要求 掌握:微观粒子波函数的Schr?dinger方程,定态Schr?dinger方程、无限深势阱中粒子的运动、势垒贯穿、线性谐振子等具体问题的求解过程 理解:微观粒子的波、粒二重性及其本质;微观粒子所遵循的态叠加原理 了解:不确定关系原理

第三章量子力学中的力学量 1、教学基本内容 3.1量子力学中的算符 3.2 厄米算符的本征函数的正交性和完全性 3.3 动量算符角动量算符 3.4 电子在库仑场中的运动 3.5 基本的对易关系两力学量同时确定的条件不确定关系 2、教学基本要求 掌握:力学量算符的本征值方程、本征值和本征函数的物理意义;动量、角动量等常见力学量算符的表达式,中心力场问题的求解 理解:力学量与其算符表示之间的对应关系 了解:力学量的不确定度概念,对易关系 第四章微扰理论 1、教学基本内容 4.1 非简并微扰理论 4.2 简并定态微扰 2、教学基本要求 掌握:能够用定态微扰理论求解简单的定态微扰问题 理解:简并和非简并定态微扰理论求解的实质 了解:微扰理论的概念 第五章晶体结构 1、教学基本内容 5.1晶体的共性、密堆积、晶体的周期性 5.2晶列、晶面、倒格子 5.3晶体的对称性 5.4晶格结构的分类 2、教学基本要求 掌握:堆积类型,晶格、原胞、布喇菲格子和复式格子、正格矢、晶体的周期性、倒格矢等物理概念,正格子和倒格子的关系 理解:几种常见晶体的结构类型 了解:晶体的共性,晶体的对称性,晶体结构的分类 第六章晶体的结合 1、教学基本内容 6.1 原子的电负性 6.2晶体结合的类型 6.3 结合力及结合能

大学物理练习题 氢原子理论 薛定谔方程

练习二十三 氢原子理论 薛定谔方程 一、选择题 1. 已知氢原子从基态激发到某一定态所需能量为10.19eV ,若氢原子从能量为?0.85eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A ) 2.56eV 。 (B ) 3.41eV 。 (C ) 4.25eV 。 (D ) 9.95eV 。 2. 氢原子光谱的巴耳末系中波长最长的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为 (A ) 9/8。 (B ) 19/9。 (C ) 27/20。 (D ) 20/27。 3. 根据氢原子理论,氢原子在n =5的轨道上的动量矩与在第一激发态的轨道动量矩之比为: (A ) 5/2。 (B ) 5/3。 (C ) 5/4。 (D ) 5。 4. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布几率将 (A ) 增大D 2倍。 (B ) 增大2D 倍。 (C ) 增大D 倍。 (D ) 不变。 5. 一维无限深势阱中,已知势阱宽度为a 。 应用不确定关系估计势阱中质量为m 的粒子的零点能量为: (A ) ?/(ma 2)。 (B ) ?2/(2ma 2)。 (C ) ?2/(2ma )。 (D ) ?/(2ma 2)。 6. 由于微观粒子具有波粒二象性,在量子力学中用波函数Ψ(x ,y ,z ,t )来表示粒子的状态,波函数Ψ (A ) 只需满足归一化条件。 (B ) 只需满足单值、有界、连续的条件。 (C ) 只需满足连续与归一化条件。 (D ) 必须满足单值、有界、连续及归一化条件。 7. 反映微观粒子运动的基本方程是 (A ) 牛顿定律方程。 (B ) 麦克斯韦电磁场方程。 (C ) 薛丁格方程。 (D ) 以上均不是。 8. 已知一维运动粒子的波函数为 ()()?? ???==?0e x cx x kx ψψ00<≥x x 则粒子出现概率最大的位置是x =

固体物理学 1-5-薛定谔方程应用举例II

薛定谔方程应用举例II---原子系统
? 氢原子 ? 电子自旋 ? 多电子原子
1

氢原子的定态薛定谔方程
?原子由一个原子核和核外电子构成,属于多粒子体系。多粒 子体系的总能量等于每一个粒子的能量与粒子间相互作用能量 之和。
?氢原子包括一个原子核和电子,库仑场是各向同性的,哈密 顿量可记作(绝热近似):
H?
=
?
h2 2me
?2
+
qeU(r)
me为电子质量,qe是电子电荷。U(r)为原子核静电场中的库 仑势,记作:
U(r) = ? Zqe = ? Z h2
4πε0r a1meqer
Z为核的电荷数,a1 = 4πε0?2/(meqe2) = 0.529?,为氢原子的第
一波尔轨道半径。
2

??? ?
h2 2me
?2
?
Zh 2 a1meqer
??ψ
?
(r)
=
E

(r)
中心力场问题,采用球坐标,薛定谔方程为:
? ?? ??
h2 2me
?
????
1 r2
? ?r
r2
? ?r
?
L?2 r2
???? ?
Zh2
?
?ψ (r,?,θ ) =
a1mer ??
E ?ψ (r,?,θ )
用分离变量法求解,令:
ψ (r,θ ,φ) = R(r) ?Y (?,θ )
分别求解径向波函数R(r)和角向波函数Y(?,θ)。
3

§16.3 一维定态薛定谔方程的建立和求解举例

§16.3 一维定态薛定谔方程的建立和求解举例 (一)一维运动自由粒子的薛定谔方程 波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程. 将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程: ψ-=?ψ?)/iE (t 即ψ=?ψ?E t i (16.3.1) ψ=?ψ ?22)/ip (x 2 ψ=ψ ?-2222p ????? ?????<<的薛定谔方程自由粒子轴运动的沿)c x (v 方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程. 请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式?. 这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明. (二)一维运动自由粒子的定态薛定谔方程?? 上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即 〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4) 将此式代入(16.3.3)式得: 22 2dx u d )t (f )m 2/(dt df )x (u i -= 两边除以ψ=uf 得: 22 2dx u d u 1)m 2/(dt df f 1i -= 此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即 ? 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版. ? 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版. ? 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.

薛定谔方程

薛定谔方程(Schrodinger equation)是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 1定义 薛定谔方程 薛定谔方程(Schrodinger equation)又称薛定谔波动方程(Schrodinger wave equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。 2方程概述 量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。 薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当涉及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。.薛定谔提出的量子力学基本方程。建立于1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程为。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。 薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,就像牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。 3提出历史 当法国物理学家德布罗意的“微观粒子也像光一样具有波粒二象性”的假说被美国物理学家

第二章原子构与性质§21氢原子和类氢原子的薛定谔方程及其

第二章 原子结构与性质 §2.1.氢原子和类氢原子的薛定谔方程及其解 2.1.1.单电子原子的薛定谔方程 H 原子和He +、Li 2+ 等类氢离子是单原子,它们的核电荷数为Z ,若把原子的质量中心放在坐标原点上,绕核运动的电子离核的距离为r ,电子的电荷为-e ,其静电作用势能为: r Ze V 0 2 4πε-= 将势能代入薛定谔方程: 得 0)(2 2282 =ψ+ + ψ?r Ze h m E π 或ψ=ψ- ?- E r Ze m h ][2 2 2 2 8π 为了解题方便,将x 、y 、z 变量换成极坐标变量r 、θ、φ。 其关系:φθcos sin r x = φθsin sin r y = φcos r z = 2222 z y x r ++= 2 1 ) /(cos 2 22z y x Z ++=θ x y tg /=φ })(sin )({2 222 sin 1sin 121 2 φθθθ θθ ??????????++= ? r r r r 代入薛定谔方程: )()(sin )(2 2 22 222228sin 1 1sin 1121=ψ+ + ++???ψ??????? r Ze h m r r r r r E r πφθθθ θθ 2.1.2.分离变量§法:

上述的方程是含三个度量的偏微分方程,要解这个方程可用度数分离法将其化为三个分别只含一个度量的常微分方程求解。 含:)()()(),,(φθθΦΘ=Φψr R r 代入方程:并乘以ΘΦR r θ 22sin 移项 可 得: ) (sin )(sin )(228sin 2sin 12222 2V E r r h u d d d d dr dR dr d R d d ----= ΘΘΦΦθθ πθθ θθφ左边不含r 、θ,右边不含φ,欲左右两边相等必等于同一个常数(-m 2 ) Φ-=Φ 222m d d φ , 而右边可为:(除以sin θ) )(sin )()(sin 1sin 821 22 2 2θ θ θθ πθ d d d d m h ur dr dR dr d R V E r ΘΘ-= -+ 则有: K d d d d m =-ΘΘ)(sin sin 1sin 22 θ θ θ θθ K E r r Ze h ur dr dR dr d R =++)()(2 2 2 2821 π 2.1. 3.方程解的结果 2.1.3.1.Φ(φ)方程的解 022 2=Φ+Φ m d d φ 这是一个常系数二阶齐次线性方程,有两个复函数的独立解。 |)|(]exp[m m im A m ±==Φφ Φ符合波函数品优条件:连续、单值、电子边界条件(归一) 1]exp[]exp[202 20 *=-A =ΦΦ?? φφφφπ πd im im d m m π21=A ]exp[][21φπ im m =Φ α、φ周期变化,Φm 值不变 )2()(πφ φ+Φ=Φm m

薛定谔方程对氢原子的应用

(16.4.4) (16.4.5) (图16.4a )球极坐标 薛定谔方程对氢原子的应用 (一)氢原子的薛定谔方程 前一节讨论一维运动自由粒子的薛定谔方程及 其定态解.本节要讨论氢原子中电子的运动,这与 前一节有两点不同: (1)氢原子电子作三维空间运动,因此,薛定 谔方程(16.3.3)中的波函数ψ(x,t )应换成ψ(x,y,z,t ) 或ψ(r ,t ),而22x ??应换成=??+??+??222222z y x ▽2.此▽2称为拉普拉斯算符或拉氏算符. ??????<<的薛定谔方程三维运动自由粒子)c (v 222222222z y x )m 2/(t i ??+??+??=?=?ψ?-=?ψ? (16.4.1) (2)氢原子的电子不是自由粒子,它受到氢核的库仑力,此力的作用可用它们的电势能E p 表示.因此,氢原子电子的薛定谔方程可表示如下??,见〔附录16D 〕. ??????<<的薛定谔方程氢原子电子)c (v p 2p k p 22E )m 2/p (E E E E )m 2/(t i +=+=ψ+ψ?-=?ψ? (16.4.2) *(二)氢原子的定态薛定谔方程 定态解是解决氢原子各种问题的基础.参照(16.3.4)至(16.3.6)式,可把(16.4.2)式中的波函数ψ(r ,t )分离为空间部分u (r )和时间部分f (t ),并参照(16.3.10)式写出氢原子的定态薛定谔方程,见〔附录16E 〕. ψ(r ,t )=u (r )f (t ), f (t )=C /iEt e - (16.4.3) ??????<<的定态薛定谔方程氢原子电子)c (v r 4e E 0u )E E )(/m 2(u 02p p 22πε-==-+? 氢核的质量比电子的大得多,可认为氢核不动,电子绕核转动.其电势能可表成E p =-e 2/4πε0r .此势能E p 只与电子至氢核的距离r 有关,而与方向无关,即具有球对称性,应用球极坐标较为方便.如(图16.4a ),O 表氢核,e 表电子,r 为e 至O 的距离.θ为r 与z 轴的夹角,θ称天顶角或极角.?为r 在xOy 平面的投影与x 轴的夹角.故有 x=rsin θcos ?; y=rsin θsin ?; z=rcos θ (16.4.6) 拉氏算符 2222222z y x ??+??+??=?改用球坐标(r,θ,?)表示如下:?? ()() 22222222sin r 1sin sin r 1r r r r 1???θ+θ??θθ ??θ+????=?(16.4.7) 将此▽2算符代入(16.4.4)式,便得到以球坐标表示的氢原子定态薛定谔方程. ? 郭敦仁《量子力学初步》18—19,34—35页,1978年版. ? 程守洙、江之永编,王志符、朱讠永春等修订《普通物理学》第3册177—180页,1982年修订本. ? 郭敦仁《量子力学初步》35—45页,1978年版. ? 周世勋编《量子力学》59—72页,1961年版.

薛定谔方程与它的基本意义

薛定谔方程 维基百科,自由的百科全书 跳转到:导航, 搜索 汉漢▼ 量子力学 不确定性原理 入门·数学表述显示▼背景 经典力学·旧量子论·干涉 哈密顿量·狄拉克符号 显示▼基本概念 量子态·波函数·态矢量 态叠加原理·波粒二象性 量子测量·不确定性原理 泡利不相容原理·量子缠结 量子脱散·量子隧穿效应 埃伦费斯特定理 显示▼实验 双缝实验·薛定谔的猫 戴维孙-革末实验 施特恩-格拉赫实验 贝尔不等式实验 波普尔实验·量子擦除器 显示▼构想

薛定谔绘景·海森堡绘景 相互作用绘景·矩阵力学 求和的历史 显示▼方程 薛定谔方程·泡利方程 克莱因-高登方程 狄拉克方程 显示▼量子力学诠释 哥本哈根诠释·Ensemble 隐变量·交易诠释 多世界诠释·一致性历史 系综诠释·量子逻辑 显示▼进阶理论 量子场论·量子引力 万有理论 显示▼科学家 普朗克、玻尔、薛定谔、海森堡 泡利、德布罗意、埃伦费斯特、玻姆 玻恩、爱因斯坦、冯?诺伊曼 费曼、狄拉克、维恩、埃弗里特 索末菲、其他 本模板:查看? 讨论? 编辑? 历史 薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程[1],也是量子力学的一个基本假定,其正确性只能靠实验来检验。就好像牛顿定律在经典力学的地位,薛定谔方程在量子力学里占有中心的地位。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的几率幅。而几率幅的绝对值的平方,就是事件发生的几率密度。薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的

相关主题
文本预览
相关文档 最新文档