当前位置:文档之家› PWM控制的基本原理及相关概念

PWM控制的基本原理及相关概念

PWM控制的基本原理及相关概念
PWM控制的基本原理及相关概念

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

1.PWM控制的基本原理

理论基础:

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。

图1形状不同而冲量相同的各种窄脉冲

面积等效原理:

分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图2 冲量相同的各种窄脉冲的响应波形

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

图3 用PWM波代替正弦半波

要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。

PWM波形可等效的各种波形:

直流斩波电路:等效直流波形

SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。

2. PWM相关概念

占空比:就是输出的PWM中,高电平保持的时间与该PWM的时钟周期的时间之比

如,一个PWM的频率是1000Hz,那么它的时钟周期就是1ms,就是1000us,如果高电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空比就是200:1000,也

就是说PWM的占空比就是1:5。

分辨率也就是占空比最小能达到多少,如8位的PWM,理论的分辨率就是1:255(单斜率),16位的的PWM理论就是1:65535(单斜率)。

频率就是这样的,如16位的PWM,它的分辨率达到了1:65535,要达到这个分辨率,T/C 就必须从0计数到65535才能达到,如果计数从0计到80之后又从0开始计到80.......,那么它的分辨率最小就是1:80了,但是,它也快了,也就是说PWM的输出频率高了。

双斜率 / 单斜率

假设一个PWM从0计数到80,之后又从0计数到80....... 这个就是单斜率。

假设一个PWM从0计数到80,之后是从80计数到0....... 这个就是双斜率。

可见,双斜率的计数时间多了一倍,所以输出的PWM频率就慢了一半,但是分辨率却是1:(80+80) =1:160,就是提高了一倍。

假设PWM是单斜率,设定最高计数是80,我们再设定一个比较值是10,那么T/C从0计数到10时(这时计数器还是一直往上计数,直到计数到设定值80),单片机就会根据你的设定,控制某个IO口在这个时候是输出1还是输出0还是端口取反,这样,就是PWM 的最基本的原理了。

《自动控制原理》名词解释、填空

第一章: 1、自动控制: 指在无人直接参与的情况下,通过控制器使被控制对象或过程自动地按照预定的要求运行。 2、人工控制:在人直接参与的情况下,利用控制装置使被控制对象和过程按预定规律变化的过程, 3、系统的分类 (一)按数学描述形式分类: 1).线性系统和非线性系统 (1)线性系统:用线性微分方程或线性差分方程描述的系统。 (2)非线性系统:用非线性微分方程或差分方程描述的系统。 2).连续系统和离散系统 (1)连续系统(2)离散系统 (二)按给定信号分类: (1)恒值控制系统(2)随动控制系统(3)程序控制系统 (三)按控制方式分:开环控制、反馈控制、复合控制 (四)按元件类型:机械系统、电气系统、机电系统、液压系统、气动系统、生物系统(五)按系统共用:温度控制、压力控制、位置控制 4、自动控制系统的常用术语 1)输入量(激励) 作用于一个元件、装置或系统输入端的量,可以是电量,也可以是非电量, 一般是时间的函数(确定函数或随机函数),如给定电压。 2)输出量(响应) 指确定被控对象运动状态的量,它是输出端出现的量,可以是电量或非电量,它是系统初始状态和输入量的函数。 3)被控制量 制被控对象所要求自动控制的量。它通常是决定被控对象工作状态的重要变量。例如,火箭、导弹、飞船的方向、速度和轨道参数,电动机的转速,发电机的电压、频率,轧钢机的钢板厚度和化学反应器内的相对密度等,它往往是控制系统的一部分输出量。当被控对象只要求实现自动调节,即要求某些参数保持给定数值或按一定规律变化时,被控制量就是被调节量(被调量)。 4)控制量(控制作用) 指控制器的输出量。当把控制器看成调节器时,控制量即调节量(调节作用)。 5)反馈 把系统的输出送回到输入,以增强或减弱输入信号的效应称为反馈。使输入信号增强者为正反馈,使输入信号减弱者称为负反馈。反馈信号与系统输出量成比例者称为硬反馈或刚性反馈(比例反馈),反馈信号为输出量的导数者称为软反馈或柔性反馈。 6)干扰(扰动) 除控制量之外,引起被控制量变化的所有变量,以及影响各部件输出量变化的因素都可视为干扰。 干扰产生在系统内部称为内扰;干扰产生在系统外部称为外扰。有效的自动控制系统应具有补偿内外干扰的能力,使被控对象始终处于良好的工作状态。 7)自动调节系统 能使被控对象的被控制量维持在规定值或按一定规律变化的控制系统称为自动控制系统。

最新自动控制原理概念及定义

自控概念及定义 1.开环控制的定义:若系统的被控制量对系统的控制作用没有影响,则此系统叫开环控制 系统 2.闭环控制的定义:凡是系统的被控制信号对控制作用有直接影响的系统都叫闭环控制系 统 3.恒值控制系统的定义:如果反馈控制系统的参考输入信号为常量则称这类反馈控制系统 为恒值控制系统 4.程序控制系统的定义:系统的参考输入信号按照一定的时间函数变化则称这类反馈控制 系统为程序控制系统 5.随动控制系统的定义:闭环控制系统中,如果参考输入信号为一任意时间函数,其变化 规律无法预先予以确定,则承受这类输入信号的闭环控制系统叫做随动控制系统 6.被控对象的定义:控制系统中被控制的设备或过程 7.被控参数或输出量的定义:指被控对象中按一定规律变化的物理量,与输入信号间满足 一定的函数关系 8.扰动量的定义:所有妨碍控制量对被控量进行正常控制的因素称为扰动量 9.控制量的定义:直接加到被控对象、直接改变被控量的变量,称为控制量 10.反馈量的定义:由系统(或元件)输出端取出并反向送回系统(或元件)输入端的信号 称为反馈量 11.偏差量的定义:参考输入与主反馈信号之差 12.控制器的定义:控制系统中除了被控对象外各个部分的组合 13.负反馈控制基本原理:在反馈控制系统中,控制装置对被控对象施加的控制作用,是取 自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而实现对被控对象进行控制的任务,这就是负反馈控制的原理。 14.前向通道的定义:在闭环控制系统中,从系统输入量到系统被控量之间的通道称为前向 通道 15.反馈通道的定义:在闭环控制系统中,从被控量到输入端的反馈信号之间的通道称为反 馈通道 16.对控制系统的基本要求:稳定,精确,迅速 17.传递函数的定义:在初始条件为零时,线性定常系统或元件输出信号的拉氏变换式与输 入信号的拉氏变换式之比称为该系统或元件的传递函数 18.什么叫基本环节:一个复杂的控制系统分成的一个个小部分称为环节。从动态方程、传 递函数和运动特性的角度看不宜再分的最小环节称为基本环节 19.比例环节传递函数:G(s)=K 20.惯性环节传递函数:G(s)=1/(Ts+1) 21.积分环节传递函数:G(s)=1/s 22.振荡环节传递函数:G(s)=1/()= 23.纯微分环节传递函数:G(s)=s 24.一阶微分环节传递函数:G(s)=s+1 25.二阶微分传递函数:G(s)= 26.延迟环节传递函数:G(s)= 27.二阶系统五个性能指标:上升时间、峰值时间、最大超调量、过渡过程时间、振

《自动控制原理》

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的 MATLAB仿真 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G200 , 100 2 ) ( 2 1 1 2 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ①比例环节1 ) ( 1 = s G和2 ) ( 1 = s G; ②惯性环节 1 1 ) ( 1+ = s s G和 1 5.0 1 ) ( 2+ = s s G ③积分环节 s s G1 ) ( 1 = ④微分环节s s G= ) ( 1 ⑤比例+微分环节(PD)2 ) ( 1 + =s s G和1 ) ( 2 + =s s G ⑥比例+积分环节(PI) s s G1 1 ) ( 1 + =和s s G21 1 ) ( 2 + = 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理简答题

三.名词解释 47、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。 48、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。 49、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。 50、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。 51、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。 52、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。 53、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。 54、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。 55、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()() C z G z R z =。 56、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣ 57、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统。

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。 二、课程目标 (一)知识与技能 通过本课程的学习,使学员掌握自动控制原理的基本概念和基本的分析与设计方法,重点培养学生利用自动控制的基本理论分析与解决工程实际问题的思维方式和初步能力,并为学习后续相关专业课程,以及进一步学习和应用自动控制方面的新知识、新技术打下必要基础。 (二)过程与方法 通过本课程的学习,使学员掌握自动控制系统分析与设计的一般过程与基本方法。 (三)情感态度与价值观 通过本课程的学习,使学员在五个方面得到磨练与培养。 (1)实践意识:坚持一切从实际出发,不迷信书本、不迷信权威。 (2)质量意识:认认真真做好每一件事,在学习中的每一个环节都坚持质量至上的思想。 (3)协作意识:现代科学技术已经很少是一个人可以独立完成的了,所以要能与同学协同工作、协调配合。 (4)创新意识:勇于不断追求和探索新意境、新见解。 (5)坚毅意志:具有坚强的意志和顽强的精神,要敢于面对困难、善于克服困难。

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合 第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。 随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。 (1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。 (2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。 本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。 8.1 控制系统的状态空间描述 8.1.1 系统数学描述的两种基本方法 统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

自动控制原理题库(经典部分)解读

《自动控制原理》题库 一、解释下面基本概念 1、控制系统的基本控制方式有哪些? 2、什么是开环控制系统? 答:在控制器与被控对象之间只有正向控制作用而没有反馈控制作用,即系统的输出量对控制量没有影响。 3、什么是自动控制? 答:自动控制就是采用控制装置使被控对象自动地按照给定的规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按照给定的规律变化。 4、控制系统的基本任务是什么? 5、什么是反馈控制原理? 6、什么是线性定常控制系统? 7、什么是线性时变控制系统? 8、什么是离散控制系统? 9、什么是闭环控制系统? 10、将组成系统的元件按职能分类,反馈控制系统由哪些基本元件组成? 11、组成控制系统的元件按职能分类有哪几种? 12、典型控制环节有哪几个? 13、典型控制信号有哪几种? 14、控制系统的动态性能指标通常是指? 15、对控制系统的基本要求是哪几项? 16、在典型信号作用下,控制系统的时间响应由哪两部分组成? 17、什么是控制系统时间响应的动态过程? 18、什么是控制系统时间响应的稳态过程? 19、控制系统的动态性能指标有哪几个? 20、控制系统的稳态性能指标是什么? 21、什么是控制系统的数学模型? 22、控制系统的数学模型有: 23、什么是控制系统的传递函数? 24、建立数学模型的方法有? 25、经典控制理论中,控制系统的数学模型有?

26、系统的物理构成不同,其传递函数可能相同吗?为什么? 27、控制系统的分析法有哪些? 28、系统信号流图是由哪二个元素构成? 29、系统结构图是由哪四个元素组成? 30、系统结构图基本连接方式有几种? 31、二个结构图串联连接,其总的传递函数等于? 32、二个结构图并联连接,其总的传递函数等于? 33、对一个稳定的控制系统,其动态过程特性曲线是什么形状? 34、二阶系统的阻尼比10<<ξ,其单位阶跃响应是什么状态? 35、二阶系统阻尼比ξ减小时,其阶跃响应的超调量是增大还是减小? 36、二阶系统的特征根是一对负实部的共轭复根时,二阶系统的动态响应波形是什么特点? 37、设系统有二个闭环极点,其实部分别为:δ=-2;δ=-30,问哪一个极点对系统动态过程的影响大? 38、二阶系统开环增益K 增大,则系统的阻尼比ξ减小还是增大? 39、一阶系统可以跟踪单位阶跃信号,但存在稳态误差?不存在稳态误差。 40、一阶系统可以跟踪单位加速度信号。一阶系统只能跟踪单位阶跃信号(无稳态误差)可以跟踪单位斜坡 信号(有稳态误差) 41、控制系统闭环传递函数的零点对应系统微分方程的特征根。应是极点 42、改善二阶系统性能的控制方式有哪些? 43、什么是二阶系统?什么是Ⅱ型系统? 44、恒值控制系统 45、谐振频率 46、随动控制系统 47、稳态速度误差系数K V 48、谐振峰值 49、采用比例-微分控制或测速反馈控制改善二阶系统性能,其实质是改变了二阶系统的什么参数?。 50、什么是控制系统的根轨迹? 51、什么是常规根轨迹?什么是参数根轨迹? 52、根轨迹图是开环系统的极点在s 平面上运动轨迹还是闭环系统的极点在s 平面上运动轨迹? 53、根轨迹的起点在什么地方?根轨迹的终点在什么地方? 54、常规根轨迹与零度根轨迹有什么相同点和不同点? 55、试述采样定理。

答案 控制系统的状态空间描述 习题解答

第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 3 x 2 x 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α& ②: 3222x x x +=α&③:u x x +=333α& 输出y 为1y x du =+,得 1112223331000100 1x a x x a x u x a x ?? ?????? ????????=+???????????????????????? &&& []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++&&&&&& ;(2) u u y y -=+&&&&&&32; (3) u u y y y y 75532+=+++&&&&&&&&& 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =&,3y x =&&,则有:

1223 31231 543x x x x x x x x u y x =??=?? =---+??=?&&& 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? &&& (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 3222332()3()()() 11()12 23()232 s Y s sY s s U s U s s Y s s U s s s s s +=---==++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????-?? ?? &&& 123110 2 2x y x x ?????? =- ?????????? (3) 解 采用拉氏变换法求取状态空间表达式。对微分方程(3)在零初试条件 下取拉氏变换得: 323()2()3()5()5()7()s Y s s Y s sY s Y s s U s U s +++=+

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自动控制原理基本概念总结

68.二阶系统中,闭环零点的出现,加快了系统响应速度,克服了阻尼过大,响应速度慢的缺点。实现快速性和平稳性均提高。 69.二阶系统中,引入比例微分控制,不影响系统误差,自然频率不变。 70.在二阶系统中引入微分反馈,速度反馈使增大,振荡和超调减小,改善了系统平稳性。 71.在二阶系统中引入微分反馈,速度负反馈控制的闭环传递函数无零点,其输出平稳性优于比例——微分控制。但是,系统快速性会降低。 72.在二阶系统中引入微分反馈,系统跟踪斜坡输入时稳态误差会加大,因此应适当提高系统的开环增益. 73.高阶系统瞬态响应各分量的衰减快慢由指数衰减系数pj和ζkωnk决定。如果某极点远离虚轴,那么其相应的瞬态分量持续时间较短。对系统暂态性能的影响就小。 74.当某极点pj靠某零点zi很近,相应瞬态分量的系数就越小,极端情况下,当pj和zi重合时,该零极点为偶极子,对系统的瞬态响应没有影响。 75.在系统中,某极点距虚轴的距离小于其他所有极点距虚轴的距离的1/5,在其附近没有零点存在,则该极点为主导极点。系统的瞬态响应取决于主导极点。若主导极点为一个负实数,高阶系统近似为一阶系统;若主导极点为一对共轭复数,高阶系统近似为二阶系统。 76.必要条件:控制系统特征方程式的所有系数ai(i=0,1,2,…,n)均大于零,小于零或者等于零(缺项)系 统必不稳定。 77.充分条件:劳斯表中第一列的元素均大于零时,系统稳定;反之,如果第一列出现小于零的元素时,系 统就不稳定。第一列元素符号的改变次数,代表特征方程的正实部根的个数。第一列出现0元素,系统临 界稳定。 78.系统的相频特性是指输入、输出正弦相位差与频率的关系,幅频特性是指输入、输出正弦幅值比与频率的关系。 79.系统的稳态输出正弦的复数形式与输入正弦函数的复数形式之比是-个复数,复数的幅值就是幅频特性,复数的幅角就是相频特性。 80.由奈氏判据可知,当ω从-∞变化到+∞时,系统的开环频率特性G(jω)H(jω)按逆时针方向包围(-1, j0)点P周,P为位于s平面右半部的开环极点数目。 81.由奈氏判据可知,闭环系统稳定的充分和必要条件是:系统的开环频率特性G(jω)H(jω)不包围(-1,j0)点。 82.闭环系统稳定的充分必要条件是,当ω由0变到∞时,在开环对数幅频特性L(ω)≥0的频段内,相频特性φ(ω)穿越-180°线的次数(正穿越与负穿越次数之差)为P/2。P为s平面右半部开环极点数目。 83.系统校正的实质是,利用校正装置所引入的附加的零、极点,来改变整个系统零、极点的配置,改变根轨迹或频率特性的形状从而影响系统的稳、暂态性能。 84.开环对数幅频特性的低频段决定系统的稳态精度,中频段决定系统的暂态性能,高频段则决定系统的频宽和抗扰能力等。 85.比例元件在信号变换中起着改变增益而不影响相位的作用。 86.在串联校正中,比例校正元件只影响系统的开环增益,从而影响系统的稳态误差。显然,增大开环增益,系统将提高稳态精度,同时,剪切频率增大,系统的快速性提高。但是它又往往使系统的相角裕量减小, 所以系统的平稳性变差。 87.微分元件在信号变换中起着对信号取导数即起到加速的作用,同时使相位发生超前。但由于它对恒定信号起着阻断作用,故在串联校正中不能单独使用, 88.比例微分校正可全面改善系统稳态及暂态性能,但是对系统抗高频干扰的能力影响较大,只能用于原系统抗高频干扰的能力非常强的系统。 89.积分元件在信号变换中起着对信号进行积分即积累的作用,同时使相位发生滞后,积分控制可以提高系统的无差度,即提高系统的稳态性能。但积分控制相当于系统增加一个开环原点极点,这将不利于系统的 稳定性。

(整理)控制系统的状态空间模型

第一章控制系统的状态空间模型 1.1 引言 工程系统正朝着更加复杂的方向发展,这主要是由于复杂的任务和高精度的要求所引起的。一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合,可能是时变的。由于需要满足控制系统性能提出的日益严格的要求,系统的复杂程度越来越大,为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算,并且要求能够方便地用大型计算机对系统进行处理。从这个观点来看,状态空间法对于系统分析是最适宜的。大约从1960年升始发展起来。这种新方法是建立在状态概念之上的。状态本身并不是一个新概念,在很长一段时间内,它已经存在于古典动力学和其他一些领域中。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。 本课程将主要涉及控制系统的基于状态空间的描述、分析与设计。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用MA TLAB进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的分析方法。第三章将给出系统的稳定性分析。第四章将给出几种主要的设计方法。 本章1.1节为控制系统状态空间分析的引言。1.2节介绍状态空间描述1.3节讨论动态系统的状态空间表达式。1.4状态空间表达式的标准形式。1.5 介绍系统矩阵的特征值基本性质.1.6讨论用MATLAB进行系统模型的转换问题。 1.2控制系统的状态空间描述 状态空间描述是60年代初,将力学中的相空间法引入到控制系统的研究中而形成的描述系统的方法,它是时域中最详细的描述方法。 特点:1.给出了系统的内部结构信息. 2.形式上简洁,便于用数字计算机计算. 1.2.1 状态的基本概念 在介绍现代控制理论之前,我们需要定义状态、状态变量、状态向量和状态空间。

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n 和0t t ≥时输入的时间函数)(t u , 则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。 4. 状态空间 以状态变量())()() (21t x t x t x n 为坐标的n 维空间。 系统在某时刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

自动控制原理基本概念总结

《自动控制原理》基本概念总结 1.自动控制系统的基本要求是稳定性、快速性、准确性 2.一个控制系统至少包括控制装置和控制对象 3.反馈控制系统是根据被控量和给定值的偏差进行调节的控制系统 4.根据自动控制系统是否形成闭合回路来分类,控制系统可分为开环控制系统、闭环控制系统。 根据信号的结构特点分类,控制系统可分为:反馈控制系统、前馈控制系统和前馈-反馈复合控制系统。根据给定值信号的特点分类,控制系统可分为:恒值控制系统、随动控制系统和程序控制系统。 根据控制系统元件的特性分类,控制系统可分为:线性控制系统、非线性控制系统。 根据控制信号的形式分类,控制系统可分为:连续控制系统、离散控制系统。 5.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程 6.系统的传递函数完全由系统的结构和参数决定 7.对复杂系统的方框图,要求出系统的传递函数可以采用梅森公式 8.线性控制系统的特点是可以应用叠加原理,而非线性控制系统则不能 9.线性定常系统的传递函数,是在零初始条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比。 10.信号流图中,节点可以把所有输入支路的信号叠加,并把叠加后的信号传送到所有的输出支路。 11.从控制系统稳定性要求来看,系统一般是具有负反馈形式。 12.组成控制系统的基本功能单位是环节。 13.系统方框图的简化应遵守信号等效的原则。 14.在时域分析中,人们常说的过渡过程时间是指调整时间 15.衡量一个控制系统准确性/精度的重要指标通常是指稳态误差 16.对于二阶系统来说,系统特征方程的系数都是正数是系统稳定的必要条件 17.若单位反馈系统在阶跃函数作用下,其稳态误差ess为常数,则此系统为0型系统 18.一阶系统的阶跃响应无超调 19.一阶系统 G(s)= K/(Ts+1)的T越大,则系统的输出响应达到稳态值的时间越长。 20.控制系统的上升时间tr、调整时间tS等反映出系统的快速性。 21.二阶系统当0<ζ<1时,如果ζ增加,则输出响应的最大超调量将减小。 22.对于欠阻尼的二阶系统,当阻尼比ξ保持不变时,无阻尼自然振荡频率ωn越大,系统的超调量σp不变 23.在单位斜坡输入信号作用下,?II型系统的稳态误差 ess=0 24.衡量控制系统动态响应的时域性能指标包括动态和稳态性能指标。 25.分析稳态误差时,将系统分为0型系统、I型系统、II型系统…,这是按开环传递函数中的积分环节数来分类的。 26.二阶系统的阻尼系数ξ=时,为最佳阻尼系数。这时系统的平稳性与快速性都较理想。 27.系统稳定性是指系统在扰动消失后,由初始偏差状态恢复到原来的平衡状态的性能。 28.系统特征方程式的所有根均在根平面的左半部分是系统稳定的充要条件。 29.如果系统中加入一个微分负反馈,将使系统的超调量减小。 30.确定根轨迹与虚轴的交点,可用劳斯判据判断。 31.主导极点的特点是距离虚轴很近。 32.根轨迹上的点应满足的幅角条件为∠G(s)H(s)等于±(2l+1)π (l=0,1,2,…) 33.如果要求系统的快速性好,则闭环极点应距离虚轴越远越好。 34.根轨迹的分支数等于特征方程的阶数/开环极点数,起始于开环传递函数的开环极点,终止于开环传递函数的开环零点。 35. 根轨迹与虚轴相交时,在该交点处系统处于临界稳定状态,系统阻尼为0

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间 2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理试卷及答案1

自动控制原理 试题 一 填空题(每空2分,共 30 分) 1、对自动控制系统的性能评价主要有_____ _ 、 、 。 2、连续系统传递函数是指在零初始条件下, 。 3、已知系统的传递函数为2 s-6 G(S)=s 43 s ++,则零点为 、极点为 。 4、一个闭环系统里,不同输入与输出之间的传递函数分母 。 5、二阶系统的最佳阻尼比为 。 6、一个二阶系统,当阻尼比为0<§<1,则其闭环极点位于 。 7、自动控制系统的基本控制方式为 和 。 8、下图为二阶系统的单位阶跃响应曲线,从该曲线的形状可知它的阻尼 比§_______。 9、系统的扰动分为 和 。 10、线性控制系统是指 。 二 名词解释(每题 6分,共 30 分)

1、什么是闭环控制系统?闭环控制系统的特点是什么? 2、控制系统动态指标常用单位阶跃响应曲线上的t p、t s, %表示,试在图 上标出上述三个指标。 3、什么是系统的频率特性?频率特性包括什么? 4、什么是系统的稳定性?线性系统稳定的充分必要条件是什么? 5、什么是自动控制? 三计算题(每题10分,共40 分) 1、画出惯性环节 1 G(S)= 5s+1 的Bode图。 2、已知单位负反馈系统的开环传递函数为 k G(S)= s(s+1)(s+2) ,为使系 统稳定,确定K的取值范围。 3、一阶系统如图所示,试求系统的单位阶跃响应的调节时间t s(设误差 带取±2%)

c(s) G(S)= R(s)。 4、已知系统的结构图如下,求传递函数

一.填空题(每空2分,共30分) 1、稳定性、快速性、准确性; 2、输出量拉氏变换与输入量拉氏变换之比; 3、s=6; s=-1、s=-3; 4、相同; 5、0.707; 6、S平面左半平面; 7、开环控制、闭环控制; 8、§=0; 9、内部扰动、外部扰动; 10、能满足均匀性和叠加性的控制系统。 二、名词解释(每题6分,共30 分) 1、答:在一个控制系统中,系统的输出对控制器控制作用产生影响,这 样的控制系统称为闭环控制系统。也即通过检测装置获取变化的 被控参数信息,将其与给定值比较后形成误差,控制器按误差信 号的大小产生一个相应的控制信号,自动调整系统的输出,使其 误差趋向于零,这样便形成闭环反馈控制系统。 闭环控制系统的特点:对外部干扰和系统内部的参数变化不敏感, 系统能够达到较高的控制精度和较强的抗干扰能力。 2、如图所示:

(完整word版)自动控制原理概念最全整理

1.在零初始条件下,线性定常系统输出量的拉普拉斯变换与输入量的拉普拉斯 变换值比,定义为线性定常系统的传递函数。传递函数表达了系统内在特性,只与系统的结构、参数有关,而与输入量或输入函数的形式无关。 2.一个一般控制系统由若干个典型环节构成,常用的典型环节有比例环节、惯 性环节、积分环节、微分环节、振荡环节和延迟环节等。 3.构成方框图的基本符号有四种,即信号线、比较点、方框和引出点。 4.环节串联后总的传递函数等于各个环节传递函数的乘积。环节并联后总的传 递函数是所有并联环节传递函数的代数和。 5.在使用梅森增益公式时,注意增益公式只能用在输入节点和输出节点之间。 6.上升时间tr、峰值时间tp和调整时间ts反应系统的快速性;而最大超调量 Mp和振荡次数则反应系统的平稳性。 7.稳定性是控制系统的重要性能,使系统正常工作的首要条件。控制理论用于 判别一个线性定常系统是否稳定提供了多种稳定判据有:代数判据(Routh 与Hurwitz判据)和Nyquist稳定判据。 8.系统稳定的充分必要条件是系统特征根的实部均小于零,或系统的特征根均 在跟平面的左半平面。 9.稳态误差与系统输入信号r(t)的形式有关,与系统的结构及参数有关。 10.系统只有在稳定的条件下计算稳态误差才有意义,所以应先判别系统的稳定 性。 11.Kp的大小反映了系统在阶跃输入下消除误差的能力,Kp越大,稳态误差越 小; Kv的大小反映了系统跟踪斜坡输入信号的能力,Kv越大,系统稳态误差越小; Ka的大小反映了系统跟踪加速度输入信号的能力,Ka越大,系统跟踪精度越高 12.扰动信号作用下产生的稳态误差essn除了与扰动信号的形式有关外,还与扰 动作用点之前(扰动点与误差点之间)的传递函数的结构及参数有关,但与扰动作用点之后的传递函数无关。 13.超调量仅与阻尼比ξ有关,ξ越大,Mp则越小,相应的平稳性越好。反之,

自动控制原理实验报告

自动控制原理 实验报告 实验一典型系统的时域响应和稳定性分析 (2) 一、实验目的 (3) 二、实验原理及内容 (3) 三、实验现象分析 (5) 方法一:matlab程序 (5) 方法二:multism仿真 (12)

方法三:simulink仿真 (17) 实验二线性系统的根轨迹分析 (21) 一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21) 二、根据根轨迹图分析系统的闭环稳定性 (22) 三、如何通过改造根轨迹来改善系统的品质? (25) 实验三线性系统的频率响应分析 (33) 一、绘制图1. 图3系统的奈氏图和伯德图 (33) 二、分别根据奈氏图和伯德图分析系统的稳定性 (37) 三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导 出系统的传递函数 (38) 实验四、磁盘驱动器的读取控制 (41) 一、实验原理 (41) 二、实验内容及步骤 (41) (一)系统的阶跃响应 (41) (二) 系统动态响应、稳态误差以及扰动能力讨论 (45) 1、动态响应 (46) 2、稳态误差和扰动能力 (48) (三)引入速度传感器 (51) 1. 未加速度传感器时系统性能分析 (51) 2、加入速度传感器后的系统性能分析 (59) 五、实验总结 (64) 实验一典型系统的时域响应和稳定性分 析

一、 实验目的 1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、 实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:见图1 图1 (2) 对应的模拟电路图 图2 (3) 理论分析 导出系统开环传递函数,开环增益0 1 T K K = 。 (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2), s 1T 0=, s T 2.01=,R 200 K 1= R 200 K =?

相关主题
文本预览
相关文档 最新文档