当前位置:文档之家› 石油压裂液高效配制技术的研究与应用

石油压裂液高效配制技术的研究与应用

石油压裂液高效配制技术的研究与应用
石油压裂液高效配制技术的研究与应用

清洁压裂液

压裂液: 地层水: 配伍性最好, 但悬砂性能差前提是支撑剂的密度降下来。最小的伤害就在于使用地层水加入添加剂,对支撑剂进行改进,利用纳米技术使得它的密度很水一样,强度还要好,那么在水中就能悬浮,这样就达到无伤害的目的。风险大 水力压裂改造技术主要机理为: 通过高压驱动水流挤入煤中原有的和压裂后出现的裂缝内,扩宽并伸展这些裂缝,进而在煤中产生更多的次生裂缝与裂隙,增加煤层的透气性。且可产生有较高导流能力的通道,有效地连通井筒和储层,以促进排水降压,提高产气速度,这对低渗透煤层中开采煤层气尤为重要. 可消除钻井过程中泥浆液对煤层的伤害,这种地层伤害可急剧降低储层内部的压降速度,使排水过程变得缓慢,影响煤层气的开采。 这种技术在煤层气生产实践中也存在一些问题: ①由于煤层具有很强的吸附能力,吸附压裂液后会引起煤层孔隙的堵塞和基质的膨胀,从而使割理孔隙度及渗透率下降,且这种降低是不可逆的,因此,目前国内外在压裂改造技术中,开始使用大量清水来代替交联压裂液,以预防其伤害,但其造缝效果受到一定的影响; ②由于煤岩易破碎,因此,在压裂施工中,由于压裂液的水力冲蚀作用及与煤岩表面的剪切与磨损作用,煤岩破碎产生大量的煤粉及大小不一的煤屑,不易分散于水或水基溶液,从而极易聚集起来阻塞压裂裂缝的前缘,改变裂缝的方向,在裂缝前缘形成一个阻力屏障。 ③对于构造煤(soft coal),采取压裂的办法行不通,因为受压煤层的透气性会更低. 构造煤主要难点:强度弱、煤岩碎、非均质强、渗透性差 清洁压裂液(ClearFRAC) 清洁压裂液的工作原理:加入的表面活性剂形成的胶束,可以在特定的盐浓度下产生,获得粘度,可以在稀释获得遇见亲油相以后通过减少胶束过流面积以后去除粘度。它一种粘弹性流体压裂液,主要成分包括长链的表面活性剂(VES)、胶束促进剂(SYN)和盐(KCl),目前国内外广泛使用是第一代VES 压裂液,主要是阳离子型季铵盐表面活性剂,它们是CTAB(十六烷基三甲基溴化铵)、Schlumberger的JB508型表面活性剂和孪生双季铵盐类表面活性剂。VES压裂液

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

国内大型压裂技术的应用与发展_张光生

第41卷第1期 辽 宁 化 工 Vol.41,No. 1 2012年1月 Liaoning Chemical Industry January,2012 收稿日期: 2011-09-19 国内大型压裂技术的应用与发展 张光生1,2,王维波1,杨冬玉1,廖 晶2,张红丽3,王雷波4,王华军1 (1. 西安石油大学石油工程学院, 陕西 西安 710065; 2. 河南油田勘探开发研究院地质实验室, 河南 南阳 473132; 3. 中国石油川庆钻探长庆钻井公司第二工程项目部, 甘肃 庆阳 745100; 4. 北京恩瑞达科技有限公司压裂套管堵漏项目部, 北京 100192) 摘 要:大型压裂在我国的应用与发展已有十余年时间,但大型压裂目前尚无明确的界定标准。国内近年来形成了低渗透薄互层油藏大型压裂、大型酸化压裂改造、大型加砂压裂、低伤害大型压裂等一系列成熟的大型压裂技术。大型压裂具有地质条件复杂多样、机组功率大、施工规模大、增产效果显著等特点,在今后很长时期内将继续担当低渗透油气层勘探试油,新井投产和油层改造的重任。 关 键 词:大型压裂;低渗;薄互层油藏;裂缝;酸化压裂 中图分类号:TE 357 文献标识码: A 文章编号: 1004-0935(2012)01-0046-05 1 中小规模压裂向大型压裂的变化 水力压裂凭借由地面向井内泵注液体的能量,使油层破裂,继而填以支撑剂,形成并保持裂缝,从而改善油气层导流能力,以达到油水井增产增注的目的。水力压裂技术是人们在认识地层、开发油气资源的长期实践中逐步总结出来的成果。 1947年7月世界第一口压裂井在美国堪萨斯州Hugoton 气田Kelpper 1井成功压裂[1] ,至今已有上百万井次的压裂作业。1954年中国开始应用水力压裂,20世纪70年代逐步对油层水力压裂基本原理、压裂工艺、压裂液、支撑剂、压裂工具、压裂设备、压裂施工中的事故预防和处理等问题进行研究和实践。五十多年来,水力压裂技术已由简单的、低液量、低排量压裂增产方法发展成为一项标准的开采工艺技术。最初的压裂作业,液量一般只有几立方米,而现代大型压裂作业液量已达几百立方米,支撑剂达上百吨。 大型压裂(Massive Hydraulic Fracturing,MHF)是相对于中小规模的压裂而言,虽然目前没有文献或者资料对大型压裂做出明确界定,但公开出版的文献中普遍将压裂液用量400 m 3 以上、加砂量50 m 3 以上、最高施工泵压60 MPa 以上,同时动用了数台较大功率机组且有较大排量和较长作业时间的压裂作业称为大型压裂。20世纪90年代国内开始实施大型压裂施工,迄今已完全具备大型、超大型压裂的技术能力。如果能制定明确的大型压裂标准,无疑将有利于行业技术实力的量化比较和品牌形象的树立。 2 国内大型压裂技术应用现状 2.1 应用现状 为研究致密气藏而发展起来的的水力压裂技术,其作业规模从小型发展到大型甚至超大型已成为压裂技术发展的一个重要方面。国内近年来将其广泛应用于油气藏增产改造,并取得良好增产效果。胜利、新疆、四川等油气田,屡屡以压裂液用量、加砂量、最高施工泵压等关键参数,不断刷新和创造国内大型压裂规模纪录。表1汇总了近年来国内部分大型压裂井况与施工参数。 大型压裂不仅应用于低渗透薄互层砂岩油藏、低孔-特低渗薄互层油藏、低渗砂砾岩油藏、潜山裂缝性变质岩油藏、火山岩油藏、致密页岩气藏、低压气藏、低渗透砂岩气藏等,而且也用于碳酸盐岩油气藏酸压改造,以及煤层气压裂[2,3] 。 2.2 主要技术的研究与开发 (1)低渗透薄互层油藏大型压裂技术 ① 二维流动的拟三维裂缝扩展模拟技术[4] 大型压裂技术的出现使人们认识到裂缝内过高的压力容易克服遮挡层岩石应力,使水力压裂的裂缝沿长、宽、高三个方向同时延伸。低渗透薄互层砂岩油藏隔层薄、强度低,裂缝的长高比往往小于4,以前只考虑流体一维流动的拟三维裂缝扩展模型就不够真实。根据低渗薄互层油藏大型压裂的特点,在适当假设的基础上,应用线弹性断裂理论,建立流体沿着裂缝高度和长度方向流动的拟三维裂缝扩展

大流量压裂液配制设备的橇装化设计

大流量压裂液配制设备的橇装化设计 刘庆1卢亚平1邱峰2徐占东2潘社卫1宫秀坤2杨春2台广锋1王振华2 (1:北京矿冶研究总院,北京100160;2:大庆钻探工程公司井下作业工程公司,松原, 138000) 摘要: 为了满足大型压裂作业的需求,设计出了大流量压裂液配制装置,配制速度达到8m3/min,实现了现场配制“即配即用”,降低了配制余量,节省了配液成本,提高了压裂施工效率,该装置在吉林油田中得到了应用,经过多年的大型压裂作业验证,设备运行稳定,达到了装置的研制效果。本文主要介绍了配液装置的配液工艺流程、装置的组成以及现场应用情况。 关键词:大流量;压裂液;连续混配;配液装置 Skid Mounted Design of Large Flow Fracturing Fluid Preparation Equipment LIU Qing1 , LU Yaping1,QIU Feng2 , XU Zhandong 2 ,PAN Shewei1,GONG Xiukong2,YANG Chun2, TAI Guangfeng1,WANG Zhenhua2 (1:Beijing General Research Institute of Mining and Metallurgy , Beijing 100160; 2:Downhole Service Engineering Company of Daqing Drilling Engineering,Songyuan,138000) ABSTRACT:In order to meet the demand of large-scale fracturing, large flow of fracturing fluid preparation equipment is developed. liquid mixing velocity reaches 8m3/min, Field liquid mixing ‘ready-to-use’ is implemented, Reduced the liquid allowance, saved the liquid mixing costs, and improved the efficiency of fracturing construction.The device has been used in jilin oilfield, after many years of verification in large-scale fracturing operation, equipment operation was stabled, development effect was achieved. This paper mainly introduces the liquid mixing process, composition and field application of this device. KEY WORDS: large flow; fracturing fluid; continuous mixing; mixing device 0 引言 现有的水力压裂工艺通常是在施工前在配液站提前配制好压裂液,采用罐车运送至现场,而如今压裂现场呈现出作业点分布广的特点,仅靠固定配液站配液的方式已不能满足大型压裂作业要求,需要开发新的配液方式,以解决压裂准备时间长、罐车拉液成本高、压裂液防腐以及残液环保处理等诸多难题。 连续混配技术在国外80年代已经开始研究使用,但多以油基浓缩液的方式配液,溶解

关于水力压裂设备及技术的发展及应用

关于水力压裂设备及技术的发展及应用 【摘要】水力压裂技术经过了半个多世纪的发展,在设备和技术应用上都取得了较大的发展,在全球各地的石油开采中也发挥了关键性的作用,是目前仍在广泛应用的评价认识储层的一种重要方法,水力压裂技术也是油田煤矿等产业生产中确保安全、降低危险的重要技术。近年来,水力压裂的几部发展很快,在压裂设备材料上也有了较大突破,压裂技术在油田勘探开发应用中和其他行业的应用中的前景还是十分广阔的。 【关键词】水力压裂;发展现状;趋势 随着技术进步和应用范围的扩大,施工对压裂技术也提出了更高的要求,对压裂设备性能、压裂液等材料的要求也越来越高,不同地理环境下的压裂技术应用也有不同的需求,所以水力压裂设备和技术的研究也在不断进行,笔者在此对水力压裂技术的发展应用现状和今后的发展前景进行了展望,具体内容如下。 一、水力压裂设备技术的发展应用现状 (一)端部脱砂压裂技术 现代油气田勘探开发技术发展应用速度快,各种新技术工艺也都得到了综合运用,过去压裂设备和技术主要应用于低渗透油田,现在应用范围有了明显的扩大,在国内许多大型油田的中高渗透地层中不但应用了压裂设备和技术,且在技术上有了更大的突破。压裂技术应用于中高渗透地层时,实现短宽型的裂缝能够更好的控制油气层的开发,所以端部脱砂压裂技术应运而生,并在应用中取得了非常好的效果,近年来端部脱砂压裂技术在浅层、中深地层、高渗透以及松软地层都得到了应用,该技术的相关设备也在应用中得到了不断的改进。 (二)重复压裂技术 随着油田开发的不断深入,出现越来越多的失效井和产量下降的压裂井,二重复压裂技术正是针对该类油井改造和提高产量的有效技术措施。全球范围内各个国家对重复压裂设备和技术的研究都很重视,经过实践检验其应用效果也十分显著,重复压裂的成功率能够达到75%左右。在美国还有油田企业在应用重复压裂技术的同时还采用了先进的强制闭合技术和端部脱砂技术,取得了很好的经济效益。重复压裂技术设备能够用于改造低渗透和中渗透的油层,在直井、大斜度井以及水平井中都具有很高的应用效果,对提高产能具有很好的作用。 (三)高渗层防砂压裂技术 高渗层防砂压裂技术不但能够实现高渗透油藏的压裂,还能够同时完成充填防砂作业。传统的砾石充填防砂技术很容易造成对高渗透油层的破坏,导致导流能力下降,而高渗透防砂压裂技术是结合的端部脱砂技术,使裂缝中的支撑剂浓

压裂液

压裂液 大体作用:1、携带支撑剂到地层;2、压开裂缝;3、降低地层温度。 压裂液分类及作用 压裂液可分为: A 水基压裂液(稠化水压裂液,水冻胶压裂液,水包油压裂液,水基泡沫压裂液); B 油基压裂液(稠化油压裂液,油冻胶压裂液,油包水压裂液,油基泡沫压裂液)。 C乳化压裂液; D纯气体压裂液 1)前置液:作用是破裂地层并造成一定几何尺寸的裂缝以备后面的携砂液进入,它还起到一定的降温作用。有时为了提高前置液的工作效率,在一部分前置液中加细砂以堵塞地 2)携砂液:作用是将支撑剂带入裂缝中并将砂子放到预定位置上去。在压裂液的总量 3)顶替液:作用是打完携砂液后,用于将井筒中全部携砂液替入裂缝中。中间顶替液 压裂液的性质

④稳定性好。压裂液稳定性包括热稳定性和剪切稳定性。即压裂液在温度升高、机械剪切下粘度不发生大幅度降低,这对施工成败起关键性作用。 ⑤配伍性好,压裂液进入地层后与各种岩石矿物及流体相接触,不应产生不利于油气渗滤的物理、化学反应,即不引起地层水敏及产生颗粒沉淀。这些要求是非常重要的,往往有些井压裂后无效果就是由于配伍性不好造成的。 ⑥低残渣。要尽量降低压裂液中的水不溶物含量和返排前的破胶能力,减少其对岩石孔隙及填砂裂缝的堵塞,增大油气导流能力。 ⑦易返排。裂缝一旦闭合,压裂液返排越快、越彻底,对油气层损害越小。 ⑧货源广,便于配制,价格便宜。 常用各种类型压裂液或压裂液体系见表3-2。 注:HPG:羟丙基瓜胶;HEC:羟乙基纤维素;TQ:田菁胶;CMHEC:羧甲基羟乙基纤维素CMHPG: 羧甲基羟丙基瓜胶。 一.水基压裂液 水基压裂液是以水作溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的。主要采用三种水溶性聚合物作为稠化剂,即植物胶(瓜胶、田菁、魔芋等)、纤维素衍生物及合成聚合物。这几种高分子聚合物在水中溶胀成溶胶,交联后形成粘度极高的冻胶。具有粘度高、悬砂能力强、滤失低、摩阻低等优点。目前国内外使用的水基压裂液分以下几种类型:天然植物胶压裂液,包含如瓜胶及其衍生物羟丙基瓜胶,羟丙基羧甲基瓜胶,延迟水化羟丙基瓜胶;多糖类有半乳甘露糖胶,如田箐及其衍生物,甘露聚葡萄糖胶;纤维素压裂液,包含如羧甲基纤维素,羟乙基纤维素,羧甲基—羟乙基纤维素等;合成聚合物压裂液,包含如聚丙烯酰胺、部分水解聚丙烯酰胺、甲叉基聚丙烯酰胺及其共聚物。 水基压裂液配液过程是: 水+添加剂+稠化剂→溶胶液

体积压裂技术的研究与应用

体积压裂技术的研究与应用 摘要:对于低渗油藏,由于此类型的储油层密度高,渗透率较低,所以就不能使用常规的压裂形成单一裂缝的增产改造措施,因为此措施不能达到商业的开采价值,因而为了提升其商业开采价值就要探索新的压裂改造技术。在国内提出了体积压裂改造超低渗油藏的设想,其根据是参考国外的页岩气体积压裂技术。国内通过体积压裂的方法在靖安油田初次实验及应用。经实践后得出,虽然低渗油藏储层致密、渗透率低,但是在经体积压裂后,其形成了复杂缝网和增大改造体积,这样不仅在初期油量产出大,而且给与后期稳产极大支持。 关键词:低渗致密增产改造体积压裂缝网 一、体积压裂作用机理 “体积压裂”顾名思义,就是指将可以进行渗流的有效储集体通过压裂的方法“打碎”,这样就形成了一个网络裂缝,通过这样的压裂方式能使储层基质与裂缝壁面的接触面积达到最大化,使得油气可以从任何方向渗流到裂缝的距离最短化,将储层整体渗透率提高到一定的程度,从而使储层可以实现长、宽、高三维立体方向的改造。在工程的施工过程中,通过(1)低猫液体(2)大液量(3)高排量这三项,加以转向技术及材料的应用的辅助,利用直井分层压裂技术和水平井分段改造技术等手段,可以将裂缝网络系统形成规模最大化,储层动用率就会相应的提高,从而提高非常规油气藏采收率。 二、体积压裂的技术特征 2.1 体积压裂改造的条件 (1)地层有天然的裂缝且发育良好;(2)岩石中硅质成分含量高,容易在高压下产生裂缝。岩石在压裂过程中容易产生剪切力破坏,不是形成单一的裂缝,而是有利于形成复杂的网状裂缝,从而提高裂缝密度增加缝隙体积;(3)较小的敏感力度,适用于大型的滑溜水压裂。较弱的水敏地层,有利于提高压裂液的用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝延展距离增加缝隙体积,扩大了改造体积。 2.2 体积压裂改造技术 国内常用的体积压裂技术是滑溜水大型压裂技术。体积压裂工艺有两个特征。第一“两大”:大排量、大液量。第二“两小”:(1)小粒径低密度支撑剂,支撑剂一般采用70/100目和40/70目陶粒;(2)低砂比,最高砂比不超过支撑剂总量的20.0%。 2.3 体积压裂液体系

压裂液返排处理

11.2 项目实施方案 11.2.1压裂返排液分析 常规压裂施工所采用的压裂液体系,以水基压裂液为主。压裂施工后所产生的压裂废液主要来源于两个方面:一是施工前后采用活性水洗井作业产生的大量洗井废水;另一个方面就是压裂施工完成后从井筒返排出来的压裂破胶液,返排的压裂废液中含有大量的胍胶、甲醛、石油类及其他各种添加剂,众多添加剂的加入使压裂液具有较高的COD值、高稳定性、高黏度等特点,特别是一些不易净化的亲水性有机添加剂,难以从废水中除去。总的来说,压裂废液具有以下特点: (1)成分复杂。返排液主要成分是胍胶和高分子聚合物等,其次是SRB菌、硫化物、硼酸根、铁离子和钙镁离子等,总铁、硼含量都很高。 (2)处理难度大。悬浮物是常规含油污水处理中最难达标的项目,压裂返排液组分的复杂性及其性质的独特性决定了其处理难度更大。 (3)处理后要求比较高。处理后的液体不仅粘度色度要达标,里面的钙镁离子、铁离子、和硼酸根离子均要去除,否则会影响后续配制压裂液的各项性能。 11.1 国内外研究现状 由于压裂废液具有粘度大、稳定性好、COD高等特点,环保达标处理难度较大。国外对压裂废液的处理主要是回收利用。根据国外报道的技术资料看,他们对压裂废液的处理技术和工艺相对简单,一般采用固液分离、碱化、化学絮凝、氧化、过滤等几个组合步骤,处理后的水用于钻井泥浆、水基压裂液、固井水泥浆等配制用水。这种处理方式不仅降低了处理压裂废液的费用支出,而且还减少了污染物的排放。 国内对早些压裂废液的处理主要采取以下一些方法: (1)废液池储存:将施工作业中产生的压裂废液储存在专门的废液池中,采用自然蒸发的方式干化,最后直接填埋。这种处理方式不仅耗时长,而且填埋的污泥块仍然会渗滤出油、重金属、醛、酚等污染物,存在严重的二次污染。 (2)焚烧:这种方式虽然可以在一定程度上控制污染物的排放,但仍然会造成大气污染。 (3)回注:将压裂废液收集,集中进行絮凝、氧化等预处理,然后按照一定比例与采油污水掺混进行再处理,处理后的水质达标后用作回注用水。

国内压裂技术进展

中国石油压裂酸化业务的发展综述 近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。从技术工艺来说,历经直井分层压裂、水平井分段压裂和井组整体压裂,由单纯追求裂缝长度发展到最大限度寻求被压开储层体积。 今年,一吨瓜尔胶一度高达每吨2.1万美元,两年前这一价格还仅为1950美元。作为传统压裂液,瓜尔胶身价倍增的推手正是全球如火如荼的压裂酸化业务。且不说压裂酸化在北美页岩气开发中大显身手,仅从中国石油压裂技术的发展就可窥见一斑。 时势造英雄 压裂酸化是一种旨在改善石油在地下流动环境,提高油井产量的储层改造工艺技术,虽应用年头不短,但整体发展速度相对较慢,不仅是工程技术产业链上的一块短板,而且在井下作业业务的庞大队伍中也势单力薄。 然而近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。昔日低调的角色为何成为今日的新秀? 时势造英雄。随着油气资源劣质化加剧,低渗透油气储量成为新增储量和上产主体,越来越多油气井需要储层改造。压裂酸化技术发展,不仅关系到稳定并提高单井产量“牛鼻子”工程的实施,而且影响着油气藏开发动用程度。 据统计,“十二五”期间,中国石油目标市场压裂酸化工作量需求约13.9万井次,年平均2.8万井次,2015年将比2010年增长30.5%,压裂层(段)数及加砂量将增长40%以上。 压裂酸化在建设“西部大庆”大舞台上充分证明了这一点。从“井井有油、口口不流”的“三低”油气藏,到如今“西部大庆”呼之欲出,以压裂为核心的井下技术作业,在长庆油田增储上产中起的作用不言而喻。40多年来,“吃压裂饭,过压裂年,唱压裂歌”的顺口溜无人不晓。 如今,要唱“压裂歌”的何止长庆油田一家。大庆油田薄互层水平井压裂和老井改造,川渝地区和塔里木地区的深井、高温高压储层改造及页岩气等非常规油气资源开发,都在热情地呼唤压裂酸化技术进步与更大规模应用。 在2012年勘探开发年会上,集团公司总经理周吉平把物探、钻完井及储层改造并列为三大核心工程技术。集团公司副总经理廖永远要求油田和工程技术企事业单位要“干优压裂活,吃好储改饭”。 整合出尖兵

中石油压裂液技术发展思考

【技术】中石油压裂液技术发展思考 文/程兴生卢拥军管保山王丽伟翟文明华 中石油勘探开发研究院廊坊分院 伴随着北美页岩气革命,储层改造技术正在引领全球非常规油气勘探开发的重大变革,已经成为与物探、钻井并列的三大关键工程技术。中石油60%~70%新增 储量为低渗特低渗透非常规油气资源,低渗特低透、深层高温、非常规和海洋石油等“难新”领域待开发利用。改造对象从常规储层到非常规储层,储层物性由高渗透到低渗透、超低渗,甚至为纳达西级致密储层;油藏类型由常规油气藏到致密气、致密油、页岩气、煤层气等;并伴有低压、异常高压、水敏、高温等特性,改造对象异常复杂。随着改造井数、层数、段数越来越多,储层改造呈现大排量、高泵压、大规模、工厂化作业的特点。上述变化对压裂液与储层、新工艺的适应性以及成本投入提出新的要求,有必要对中石油压裂液技术现状进行梳理,对未来发展进行思考和规划。 1 中石油压裂液技术与应用现状 压裂液的分类和命名目前没有统一的标准。按照稠化剂类型进行命名,可分为植物胶类压裂液、合成聚合物压裂液、表面活性剂压裂液、纤维素压裂液等。本文以稠化剂分类为主线,结合特色压裂液技术,介绍中石油压裂液技术及应用现状。 1.1 胍尔胶压裂液 胍尔胶压裂液是由胍尔胶原粉或其衍生物与硼或锆等交联形成的冻胶。胍尔胶原粉水不溶物含量较高18%~25%,改性后的胍尔胶不溶物2%~12%。原粉1%浓度 增黏能力187 mPa.s~351mPa.s,冻胶破胶后残渣含量高,质量分数为7%~10%。原粉在大庆油田高渗浅层有应用。胍尔胶衍生物包括羟丙基胍尔胶(HPG)、超级胍尔胶(SHPG)、羧甲基胍尔胶(CMG)、羧甲基羟丙基胍尔胶(CMHPG)等,

压裂软件的现状及发展趋势

压裂软件的现状及发展趋势 孟庆民 (中石化胜利油田分公司采油工艺研究院) 摘要:压裂是目前低渗透油田主导的增产措施,压裂相关的软件技术发展的也非常迅速。压裂软技术贯穿于从整体开发-单井设计-压后返排优化全过程,是技术人员的重要工具,通过软件,可以更加深入的认识油藏和评价施工效果。通过对常用的压裂优化软件的使用经验,分析了压裂软件的现状及发展,探讨了目前软件存在的问题,提出了下步压裂软件的发展趋势,并对压裂优化软件的发展提出了看法。 主题词:压裂软件 整体压裂 单井设计 发展趋势 1 压裂软件现状 压裂是低渗透油藏重要增产措施,压裂设计软件是优选油层改造措施和优化设计措施的基本手段。目前压裂优化软件已经形成了较为完善的体系,由区块整体压裂设计、单井压裂优化设计、施工实时监测和分析等三类组成。 目前,区块整体压裂优化设计软件主要有3种优化设计方法,即优化采收率法、净现值法和累计增产量法。优化采收率法最为科学,但是由于涉及油田开发方面的许多比较复杂的因素和问题,实际上难以做到真正的目标优化。净现值法涉及裂缝模型因素和油田开采经济分析问题,裂缝模拟的准确性和经济分析模型的可靠性均会对优化结果产生影响。累计增产量法着重分析油层内有效裂缝对增产量的影响,避开了裂缝模型、裂缝具体形状(主要指高度变化等)和经济分析因素。这类软件主要用以确定地层是否适合整体压裂改造,优选裂缝规模以及预测整体压裂效果。目前整体压裂软件主要是国内的中国石油大学和西南石油大学开发的,可以完成五点、反九点、矩形井网的优化。 单井压裂设计软件主要以国外的产品为主,如FracproPT、E-StimPlan、Terrfrac、GOHFER、Meyer,国内有西南石油大学开发的3D-HFODS软件。压裂设计软件一般包括压裂设计、酸压设计、压裂充填设计、小型压裂分析、产能预测、经济评价、液体/支撑剂库等功能。压裂裂缝模型从二维发展到了全三维,从简单的井身结构优化发展到了复杂结构的水平井优化。FracproPT软件系统是拟三维压裂软件工具,提供支撑剂和酸化压裂增产的设计、模拟、分析、执行和优化功能。FracproPT的独特技术是它的实时数据管理和分析能力;其中包括灵活的,根据裂缝分析可进行校正的裂缝模型;以及压裂处理后进行生产分析和经济优化的油藏模拟功能。FracproPT2007版本(10.4.57)支持水平井的压裂设计模拟,而且可以和油藏模拟软件作接口,模拟压裂后产能变化。E-StimPlan是由压裂专家K.G. Nolte、Mike Smith先生创建的NSI公司开发的全三维压

压裂液混配射流器设计

压裂液混配射流器设计 发表时间:2019-06-17T11:56:33.203Z 来源:《中国西部科技》2019年第7期作者:陆燕 [导读] 针对大庆油田三次采油过程中,压裂混配液混配过程中存在“水包粉”难题,设计一种射流器混配,解决压裂混配过程中的问题,介绍其组成及其工原理,分析了工作过程及其混配优点。 青岛海旭石油泵业有限公司 1.前言 大庆油田是我国最大的油田,也是世界上为数不多的特大型砂岩油田之一,从开发至今已有近60余年的历史,在我国有举足轻重的地位。当前大庆油田处于二类油层反块区域剩余油开采阶段[1-3]。大庆油田三次采油技术在不断更新与进步中,在石油开采中由于当前地层压力低,经常出现储层渗透率降低,有油出不来的老化现象。因此压裂增产技术被引入到石油行业的生产技术中[4-6]。压裂是一种利用压力把含有高度黏性较强的液体注入井下,对石油作业层延伸裂缝,从而提升油层的渗透性,这种液体通常称为压裂液伴随着压裂技术的应用,油层的渗透性随之提高,不仅达到油田增产目的,也保证了石油资源的有效开采利用。 在压裂施工过程中,耗费工时最长的是压裂液的配制,并且对配液人员的要求也非常苛刻,且配制压裂液需要的各组分添加剂均需人为加料,这很难做到精确添加,特别是提供黏性的增稠剂。瓜胶粉的添加数量和加入时间稍有不当,就会影响压裂作业的质量[6]。在以往的配液工作中,稠化剂的添加工作时间过长,存在较高的时间工作成本。大型的压裂设备用于高效开发大规模非常规油气藏及非常规储层,所需压裂液量非常大,若按以往压裂液配置方法进行压裂液配制,专业技术人员劳动强度大,配液时间长,配制的压裂液性能不稳定[7]。一般采用的压裂液配制站与压裂施工现场较远,运输路途时间较长,压裂液长时间的放置会使粘度降低[8]。配制好的压裂液如果不能及时使用,其基液降解会影响粘度,造成不必要损失。这就造成了压裂液中包含大量"水包粉",造成粉料浪费大、混配质量差、水合粘度低,同时也会出现加料不均匀,粘度不均匀。产生溶胀速度慢,作业前需预先混配,若压裂工况改变,预先混配的压裂液难以满足新的工况,易造成浪费。同时还会污染污染环境与地层,增加生产后期处理与投入[9-10]。 2.射流器组成 射流器压裂液混配系统内,清水由工作泵提供,经全程流量计监测和流量调节阀调控,符合工况要求后,流入多级串联射流泵混配装置。动力液流经射流泵内喷嘴后形成高速射流,流体速度增加,从而使吸液腔内形成低压。液体添加剂被吸入到吸液腔,与高速的清水在喉管内混合后流入扩散管。在扩散管内将混合液的动能转化为压能后流入下一级配药装置。射流泵混配装置工作过程中自动控制系统内的计算机根据设定的工况参数对全程流量监测,并及时调节控制阀确保配药比例维持在设定的配比。 2.1动力系统 动力系统:提供混配工作过程的动力源,本设计装置主要采用三相异步电动机,以电能作为原动力。在井场或配液场电能方便且是清洁能源,不会形成二次污染,油田供电采用专用供电线路,保证工作的顺利进行。 2.2混合系统 混合系统:混合系统主要由清水泵,传输泵、发液泵、流量调节阀,电动控制阀、涡轮流量计,射流器、混合罐等组成。混合系统要有抗弱酸与弱碱的能力,管道与射流器均由不锈钢材料制成;清水泵过水管道装有过滤滤网,清水管道为碳钢制成,传输与排除管道均为不锈钢制成。 混合器是根据流体力学原理工作,专门针对胍胶等物料混配工作,工作时无论流量如何变化能保持清水压力值不变,确保混合时高压对粉体的冲击,达到设计的效果,彻底消除水包粉的现象。扩散部位能有效除去混合液中空气,进一步增强混合效果。为防止液体飞溅,外加排气口护罩。每次作业完成可以对排污和清洗装置进行彻底的排空和清洗。 2.3计量系统 粉料计量系统主要有储粉箱、粉料平台、螺旋喂入机构、过滤斗、电子测量装置等组成。储粉容积可根据粉箱实际设定,储粉箱要有防雨设施,粉料送料装置,各个装置要固定牢固合理。 储粉箱可设置振动装置,保证料粉顺利下落;螺旋输送机构转速可调,适应不同速度配液,与配液装置按比率变化,采用马达驱动,防潮、防水。 该混配装置中粉料称重采用电子秤配合螺旋输送失重法在线测量动态稠化剂的方式,计量粉量重量,动态控制物料的输出,改变按总重量投料的控制精度方式,实现连续均匀加药,加料精度达±1%,配比精度达±2%。 液体混配计量采用双流量计闭环控制系统控制,根据液体的流速或质量控制药品的流速或质量,保证均匀浓度实时混合,流速控制准确均匀。液体混配控制采用负压自吸式,采用流速与流速均匀计量浓度,实时流量输出液体物料,改变以往的不可控制总体积的混合方式,实现连续均匀混合配药,配合浓度比精度达到±1.5%。 2.4控制系统 由工业计算机、软件、电子秤、液压表、电气元件等组成,工作时根据计算机设置的水流值,水粉比调整相应的水量、粉量或液体流量,使其符合设计值。计算机采用适用野外作业,安装防震操作控制器,控制箱采用全封闭结构,仪表显示清水流量、排出流量、添加剂流量、胍胶添加量、电子秤称重、气压等参数。 因设备出口粘度高,能在三分钟内将出口黏度达到试验同等条件下最高黏度85%以上,可以将混配工作与砂车共同工作使用,混配直接供给砂车,实现现配现用,现配现压,改变传统工作模式。 3.工作特点 (1)降低了工人的作业强度,有利于保证工作人员的身体健康,提高了混配液的利用效率,节约了原材料与生产成本。(2)缩短了整体生产时间,减小了施工组织难度,提高了生产效率。 (3)避免了配液过程中产生"水包粉",提高了配液精度与配液质量,减少了对地层的伤害,保护了环境与水资源。(4)射流器混配具有先进先出的设计原则,保证混合液的粘度一致性,浓度均匀、聚合效果好。 参考文献: [1]武雯.大庆油田机械采油节能技术现状及展望[J].科学技术创新,2018(03):64-65.

压裂液,基本知识,对储层伤害的评价

酸性交联压裂液伤害性评价实验报告 1 压裂液基础知识 水力压裂是油气层改造与油井增产的重要方法,得到广泛的应用,对于油气的生产起着不可代替的作用。几十年来,国内外油田对压裂液技术方面进行了广泛的研究。该技术发展是越来越成熟,目前压裂液体系的发展更是日新月异,国内外均出现了天然植物胶冻胶压裂液、泡沫压裂液、酸基压裂液、乳化压裂液、油基压裂液、清洁压裂液等先进的压裂液进一步为油气的勘探开发和增储上做出了重大贡献。我们对一些国内外先进的压裂液体系做了一些介绍,并了解了国内外压裂液的发展方向和概况。同时为了更清楚地认识压裂液中各种化学添加剂性能优劣对地层伤的害性,对其伤害性的评价就显得十分重要和必要了。 1.1 压裂液在压裂施工中基本的作用: (1)使用水力劈尖作用形成裂缝并使之延伸; (2)沿裂缝输送并辅置压裂支撑剂; (3)压裂后液体能最大限度地破胶与反排,减少裂缝与地层的伤害,并使储集层中存在一定长度的高导流的支撑带。 1.2 理想压裂液应满足的性能要求: (1)良好的耐温耐剪切性能。在不同的储层温度、剪切速率与剪切时间下,压裂液保持有较高的黏度,以满足造缝与携砂性能的需要。 (2)滤失少。压裂液的滤失性能主要取决于压裂液的造壁滤失特性、黏度特性和压缩特性。在其中加入降滤失水剂将大大减少压裂液的滤失量。 (3)携砂能力强。压裂液的携砂能力主要取决于压裂液的黏度与弹性。压裂液只要有较高的黏度与弹性就可以悬浮与携带支撑剂进入裂缝前沿。并形成合理的砂体分布。 一般裂缝内压裂液的黏度保持在50~100mpa*s。

(4)低摩阻。压裂液在管道中的摩阻愈小在外泵压力一定的条件下用于造缝的有效马力就愈大。一般要求压裂液的降阻率在50%以上。 (5)配伍性。压裂液进入地层后与各种岩石矿物及流体接触,不应该发生不利于油气渗率的物理或化学反应。 (6)易破胶、低残渣。压裂液快速彻底破胶是加快压裂液反排,减少压裂液在地层中的滞留时间的必然要求。降低压裂液残渣是保持支撑裂缝高导流能力,降低支撑裂缝伤害的关键因素。 (7)易反排。影响压裂液反排的因素有:压裂液的密度、压裂液的表面、界面张力和压裂液破胶液黏度。 (8)货源广、便于配制与价格便宜。随着大型压裂的发展,压裂液的需求量很大,其是压裂成本构成的主要部分,所以压裂液的可操作性和经济可行性是影响压裂液选择和压裂施工的重要因素。 2国内外先进压裂液的发展趋势与研究概况: 目前国内外压裂液的研究趋势是开展具有低残渣或无残渣、易破胶、配伍性好、低成本、低伤害等特点压裂液配方体系的研究,减小压裂液对储层的伤害成为压裂液研究的热点。 2.1清洁压裂液 粘弹性表面活性剂压裂液(VES)是在盐水中添加表面活性剂形成的一种低粘阳离子胶凝液,又被称为清洁压裂液(clear FRAC)。它由长链脂肪酸衍生的季胺盐组成,在盐水中季胺盐分子形成蚯蚓状或杆状胶束,这些胶束类似于聚合物链,能够卷曲,形成一种粘弹性的流体,其粘度是通过表面活性剂杆状胶束的相互缠绕而形成的,这与瓜胶等植物胶压裂液的粘度形成机理不一样。植物胶压裂液不耐剪切,由于分子链的断开,剪切过程中植物胶的粘度会永久的丧失。而清洁压裂液胶束的形成和相互缠绕是表面活性剂分子之间和表面活性剂聚集体之间的行为,其变化的速率远远的大于流体的流动速率,表现为清洁压裂液的表观粘度不随时间而变化以及通过高剪切后体系的粘度又能够得到恢复。当压裂液暴露到烃液中或被地层水稀释时发生破胶,无需另外添加破胶剂。清洁压裂液中不含任何高聚物,它主要

SYT51071995水基压裂液性能评价方法

SY 中华人民共和国石油天然气行业标准 SY/T 5107 -1995水基压裂液性能评价方法 1995-12-25发布1996-06-30实施 中国石油天然气总公司发布

前言 根据压裂液技术研究的发展、先进技术的引进、仪器设备的更新以及原标准实施过程中存在的—些问题,本标准对SY 5107—86《水基压裂液性能评价推荐作法》进行了修订。 本标准保留了原标准中多年实践证明适合我国压裂液性能测定方法的主要内容。但随着我国压裂液技术研究发展,压裂液性能不断的提高和改善,为了更全面地测定压裂液性能,增加了用表面张力仪测定破胶液表面张力和界面张力的测定方法、压裂液交联时间测定方法、降阻率的现场测定方法;由于试验仪器设备的更新,增加了RV20粘度计测定压裂液流变性的方法。压裂液对岩心基质渗透率损害机理的研究表明,压裂液滤液侵入,滤液在地层孔隙、喉道中发生物理化学变化,是造成压裂地层基质渗透率损害的主要原因。因此,修订了压裂液对基质渗透率损害的测定方法,删去了原标准中粉剂含水、水不溶物测定方法,还删去RV。测流变性及管路摩阻测定方法和附录中部分内容,对有的章、条内容作了补充完善和调整。本标准与原标准相比章、条内容有变动。 本标准从生效之日起,同时代替SY 5107—86。 本标准的附录A是标准的附录; 本标准的附录B、附录C、附录D都是提示的附录。 本标准由油田化学专业标准化技术委员会提出并归口。 本标准起草单位:石油勘探开发科学研究院采油工程研究所、石油勘探开发科学研究院廊坊分院压裂酸化中心。 本标准主要起草人官长质何秉兰卢拥军崔明月

目次 前言 l 范围 (1) 2 引用标 (1) 3 定义 (1) 4 仪器设备及试剂 (1) 5 压裂液试样制 (2) 6 压裂液性能测定方法 (2) 附录A(标准的附录) 压裂液性能测定结果表格式 (10) 附&B(提示的附录) 旋转粘度计与管道或裂缝中K,n,值换算………………………………1l 附录C(提示的附录) 旋转粘度计测定说明 附录D(提示的附录) 岩心渗透率损害率测定说明 (13)

无水压裂技术研究进展

Journal of Oil and Gas Technology 石油天然气学报, 2018, 40(3), 167-172 Published Online June 2018 in Hans. https://www.doczj.com/doc/eb10225604.html,/journal/jogt https://https://www.doczj.com/doc/eb10225604.html,/10.12677/jogt.2018.403080 The Advancement of Waterless Fracturing Technology Qi Teng1, Yang Zhang1, Junyan Liu1, Wei Li1, Yiliu Sun2,3 1Research Institute of Petroleum Engineering, Tarim Oilfield Company, PetroChina, Korla Xinjiang 2State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 3College of Petroleum Engineering, China University of Petroleum, Beijing Received: Dec. 28th, 2017; accepted: Jan. 28th, 2018; published: Jun. 15th, 2018 Abstract Shale gas was rich in China and its development was of great significance of energy strategy in China. At present, the technologies in shale development was mainly hydraulic fracturing, which was harmful to the shale reservoirs and in turn affected production after fracturing. Meanwhile, the shale gas reservoirs in China were widely distributed in remote west China where lacked wa-ter. Therefore, the waterless fracturing technology was urgently needed. In this paper, the four waterless fracturing technologies, including high energy gas fracturing, liquefied CO2 fracturing, foam fracturing and liquefied petroleum gas fracturing, were studied. Besides, the advantages, disadvantages, and the application status of the above 4 technologies were compared. By combin-ing the existing waterless fracturing technology with the actual geology and engineering situation, the waterless fracturing technology suitable for shale gas production in China is explored, which speeds up the commercial and efficient exploitation process of shale gas. Keywords Waterless Fracturing, High Energy Gas Fracturing, Liquefied CO2 Fracturing, Foam Fracturing, Liquefied Petroleum Gas Fracturing

相关主题
文本预览
相关文档 最新文档