当前位置:文档之家› 线性代数 第四章 相似矩阵 习题

线性代数 第四章 相似矩阵 习题

线性代数 第四章  相似矩阵 习题
线性代数 第四章  相似矩阵 习题

第四章 相似矩阵

1.试用施密特法把下列向量组正交化:

(1) ?????

??=931421111),,(321a a a ; (2) ????

??

? ??---=011101110111),,(321a a a 解 (1) 根据施密特正交化方法: 令?

???? ??==11111a b ,[][]????

?

??-=-=101,,1112122b b b a b a b ,

[][][][]????

? ??-=--=12131,,,,222321113133b b b a b b b b a b a b ,故得: ?

?????

??

??

--=311132

013111),,(321b b b .

2.下列矩阵是不是正交阵:

(1) ?????

??

? ??

---

12

13

12

1121312

11; (2) ???????

? ??------

97949

4949198949891.

解 (1) 第一个行向量非单位向量,故不是正交阵.

(2) 该方阵每一个行向量均是单位向量,且两两正交,故为正交阵.

3.设A 与B 都是n 阶正交阵,证明AB 也是正交阵. 证明 因为B A ,是n 阶正交阵,故A A T =-1,B B T =-1

E AB A B AB A B AB AB T T T

===--11)()(,故AB 也是正交阵.

4.求下列矩阵的特征值和特征向量:

(1)???? ??-4211; (2)?????

??633312321; (3)())0(,121

21≠?

???

??? ??a a a a a a a n n .

并问它们的特征向量是否两两正交? 解 (1) ① )3)(2(42

11--=---=

-λλλ

λλE A

故A 的特征值为3,221==λλ. ② 当21=λ时,解方程0)2(=-x E A ,由

???? ?????? ??--=-00112211)2(~E A 得基础解系????

??-=111P 所以)0(111≠k P k 是对应于21=λ的全部特征值向量. 当32=λ时,解方程0)3(=-x E A ,由

???? ?????? ??--=-00121212)3(~E A 得基础解系???? ??-=1212P 所以)0(222≠k P k 是对应于33=λ的全部特征向量.

③ 023

121)1,1(],[2121≠=???? ??--==P P P P T 故21,P P 不正交.

(2) ① )9)(1(6333123

2

1-+-=---=-λλλλ

λλλE A 故A 的特征值为9,1,0321=-==λλλ. ② 当01=λ时,解方程0=Ax ,由

????? ????

??? ??=000110321633312321~A 得基础解系????

?

??--=1111P 故)0(111≠k P k 是对应于01=λ的全部特征值向量. 当12-=λ时,解方程0)(=+x E A ,由

????? ????

?

??

??=+000100322733322322~E A 得基础解系????

?

??-=0112P 故)0(222≠k P k 是对应于12-=λ的全部特征值向量; 当93=λ时,解方程0)9(=-x E A ,由

????? ??--????? ?

?---=-000211011133338232

89~E A 得基础解系?????

??

??

??=121213P

故)0(333≠k P k 是对应于93=λ的全部特征值向量.

③ 0011)1,1,1(],[2121=????

?

??---==P P P P T

,012121)0,1,1(],[3232=????????? ??-==P P P P T ,

012121)1,1,1(],[3131=?????

??

? ??--==P P P P T ,所以321,,P P P 两两正交.

(3) λ

λλ

λ---=

-2

2

1

22

21212121n n n n n a a a a a a a a a a a a a a a E A

=)(2

22211n n n a a a +++-- λλ

[]

)(2

22211n n a a a +++-=- λλ

∑==+++=∴n

i i n

a a a a 1

2222

2

1

1 λ, 032====n λλλ

当∑==n

i i a 1

21λ时,()E A λ-

??

??

?

?

?

?

?------------=-21222121222321121212

2322n n n n n

n

n a a a a a a a a a a a a a a a a a a a a a 初等行变换~????????

?

?----00

00000000121

n n

n

n a a a a a a 取n x 为自由未知量,并令n n a x =,设112211,,--===n n a x a x a x .

故基础解系为????

??? ??=n a a a P 211

当032====n λλλ 时,

()??

????? ??=?-221

2221

2121210n n n n n a a a a a a a a a a a a a a a E A

??

??

?

?

?

?

?000000

~21

n a a a 初等行变换 可得基础解系

???????? ??-=?

?

?

??

?

??

??-=???????? ??-=112312200,,00,00a a P a a P a a P n n

综上所述可知原矩阵的特征向量为

()??

??

?

?

?

??--=112

21

2100,,,a a a a a a a P P P n n n 5.设方阵????? ??------=12422421x A 与???

??

??-=Λ40000005y 相似,求y x ,.

解 方阵A 与Λ相似,则A 与Λ的特征多项式相同,即

E E A λλ-Λ=-λλλ

---------?12422

421x λ

λλ----=4000000

5y ??

?==?5

4

y x . 6.设B A ,都是n 阶方阵,且0≠A ,证明AB 与BA 相似.

证明 0≠A 则A 可逆 BA BA A A A AB A ==--))(()(11 则AB 与BA 相似. 7.设3阶方阵A 的特征值为1,0,1321-===λλλ;对应的特征向量依次为

????? ??=2211P ,?????

??-=1222

P ,???

?? ??--=2123P ,求A . 解 根据特征向量的性质知),,(321P P P 可逆,

得:????

?

??=-32

13211

321),,(),,(λλλP P P A P P P 可得1

32132

1321),,(),,(-?????

?

?=P P P P P P A λλλ得????

?

??-=022********A

8.设3阶对称矩阵A 的特征值6,3,3,与特征值6对应的特征向量为

)1,1,1(1T

P =,求A .

解 设?????

??=65

3

542

321

x x x x x x x x x A 由????? ??=????? ??1116111A ,知①???

??=++=++=++666653

542321x x x x x x x x x

因为3是A 的二重特征值,根据实对称矩阵的性质定理知E A 3-的秩为1,

故利用①可推出???

?

?

??--?????

??---33111

333

65

3

542

65

3

542

321~x x x x x x x x x x x x x x x 秩为1. 则存在实的b a ,使得②???-=-=)

3,,()1,1,1()

,3,()1,1,1(653542x x x b x x x a 成立.

由①②解得1,4,1564132======x x x x x x .得???

?? ??=411141114A .

9.试求一个正交的相似变换矩阵,将下列对称矩阵化为对角矩阵:

(1)???

?

?

?

?----02

0212022

; (2)????? ??----542452

222

解 (1) λ

λ

λλ-------=-202120

2

2E A )2)(4)(1(+--=λλλ 故得特征值为4,1,2321==-=λλλ.

当21-=λ时,由0220232024321=????? ??????? ??----x x x 解得???

?? ??=????? ??2211321k x x x

单位特征向量可取:????

?

?

?=3232

31

1P 当12=λ时,由0120202021321=????? ??????? ??-----x x x 解得???

??

??-=????? ??2122321k x x x

单位特征向量可取: ???

??

??-=3231322P

当43=λ时,由0420232022321=???

??

??????? ??-------x x x

解得?????

??-=?

???

? ??1223321k x x x .

单位特征向量可取: ???

?

?

??-=3132323P

得正交阵????? ??--==12221222131),,(321P P P P ,?????

??-=-4000100021

AP P

(2)???

?

?

?

?-------=-λλλ

λ54

2452

222E A )10()1(2---=λλ,

故得特征值为10,1321===λλλ

当121==λλ时,由????? ??=????? ??????? ??----000442442

221321x x x 解得???

??

??+????? ??-=????? ??10201221321k k x x x 此二个向量正交,单位化后,得两个单位正交的特征向量

????? ??-=012511P ,????? ??=????? ??---????? ??-=*

15452012540122P 单位化得?????

??=15452352P

当103=λ时,由????? ??=????? ??????? ??-------000542452228321x x x 解得???

??

??--=????

? ??2213321k x x x

单位化?????

??--=221313P :得正交阵),,(321P P P ????????

?

??---

=323

503215545131155

252

????

? ??=-1000100011

AP P .

10.(1) 设?

??? ??--=3223A ,求9

105)(A A A -=?; (2) 设???

?

? ??=122221212A ,求891056)(A A A A +-=?.

解 (1) ???

?

??-=3223A 是实对称矩阵.

故可找到正交相似变换矩阵?????

?

??-

=212

12121P 使得Λ=???? ??=-50011AP P 从而11,--Λ=Λ=P P A P P A k k

因此1911091055)(--Λ-Λ=-=P P P P A A A ?

1

1011050055001--???? ??-???? ??=P P P P 1

0004-???

? ??-=

P P ???? ??-???? ??-???? ??-=1111210004111121???? ??-=????

??----=111122222. (2) 同(1)求得正交相似变换矩阵

??

??????

? ?

?-

-

-=310

36312166312166

P 使得1

1,500010001--Λ=Λ=?

????

??-=P

P A AP P 891056)(A A A A +-=?)5)(()56(828E A E A A E A A A --=+-=

????? ??---????? ???Λ=-4222312130222112111

8P P ????

? ??----=422211211

2.

线性代数秩逆

线性代数秩逆

————————————————————————————————作者:————————————————————————————————日期:

一、 矩阵的秩 定义1 在一个n m ?矩阵A 中,任意选定k 行和k 列({}n m k ,m in ≤),位于这些选定的行和列的交点上的2k 个元素按原来的次序所组成的 k k ?矩阵的行列式,称为A 的一个k 阶子式。 例1 在矩阵 ?? ? ? ? ? ? ? ?-=00005000412013 1 1A 中,选第3,1行和第4,3列,它们交点上的元素所成的2阶行列式 155 013= 就是一个2阶子式。又如选第3,2,1行和第4,2,1列,相应的3阶子式就是 .105 00420111= 定义2 非零矩阵的不为零的子式的最高阶数称为该矩阵的秩,零矩阵的秩规定为0。矩阵A 的秩记为()A rank 。 例2 证明:矩阵A 与其转置矩阵T A 有相同的秩。 例3 证明:阶梯形矩阵的秩等于它的非零行的个数。 证 设A 是一个阶梯形矩阵,不为零的行数是r 。选取这r 个非零行以及各非零行第一个非零元素所在的列,由这些行和列交点上的元素所成的r 阶子式是一个上三角行列式,并且主对角线上的元素都不为零,因此它不等于零。而A 的所有阶数大于r 的子式都至少有一行的元素全为零,因而子式为零。所以()r A rank =。 由于矩阵的子式的阶数不超过矩阵的行数及列数,所以n m ?矩阵A 的秩()()n m A rank ,m in ≤。而如果()m A rank =,就称A 是行满秩的;如果 ()n A rank =,就称A 是列满秩的。此外,如果A 的所有1+r 阶子式全为 零,由行列式的定义可知,A 的2+r 阶子式也一定为零,从而A 的所有阶数大于r 的子式全都为零。因此秩有下面等价的定义: 定理1 n m ?矩阵A 的秩为r 充分必要条件是:在A 中存在一个r 阶

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值与特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都与特征值有关,在工程技术及其理论研究方面都有很重要的应用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值与特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数性质公式

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 (1.1) 这里表示对所有n阶排列求和。式(1.1)称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 4.2阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代数余子式,记为,即。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则 4.范德蒙行列式 5.抽象n阶方阵行列式公式(矩阵) 若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值和特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都和特征值有关,在 工程技术及其理论研究方面都有很重要的使用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值和特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。 当2λ=时,

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

线性代数习题课练习题

《线性代数》习题课练习题 一、判断题 1.四阶行列式中含因子2311a a 的项为 42342311a a a a 和44322311a a a a . ( ) 2.设D 为6阶行列式,则162534435261a a a a a a 是D 中带负号的项。 ( ) 四阶行列式中14233241a a a a 的项前面应带负号。 ( ) 3.排列()3211 -n n 的逆序数为n . ( ) 4.排列123)1( -n n 为偶排列。 ( ) 5.若22B A =,则B A =或 B A -=。 ( ) 6.若0,≠=A AC AB ,则C B =. ( ) 7..0,2E A A A A A ===或则满足若矩阵 ( ) 8.若矩阵0,02==A A A 则满足. ( ) 9.设A 是n 阶方阵,若0≠A ,则必有A 可逆. ( ) 10.对n 阶可逆方阵B A ,,必有111 ---=B A AB ) (. ( ) 11.对n 阶可逆方阵B A ,,必有111)(---+=+B A B A . ( ) 12.设B A ,为n 阶方阵,则必有B A B A +=+ . ( ) 13.设B A ,为n 阶方阵,则必有BA AB = . ( ) 14.若矩阵A 与B 等价,则B A =. ( ) 15.设n m n m B A ??,为矩阵,则秩(B A +)≤秩)(A +秩)(B .( ) 16.设0=A ,则0)(=A R . ( ) 17.线性方程组0=AX 只有零解,则0≠A .( ) 18.若b x A =有无穷多解,则0=x A 有非零解。 ( )

19. 要使? ??? ? ??=2111ξ ,??? ?? ??-=0112ξ 都是线性方程组0=AX 的解,则系数 矩阵A 可为k ()111-. ( ) 20.若m a a ,,1线性无关,且011 =++m m a k a k 。 则01===m k k . ( ) 21.单独的一个零向量是线性相关的. ( ) 22.一个向量组若线性无关,则它的任何部分组都线性无关。( ) 23.向量组)2(,,21≥m a a a m 线性相关,则其任意部分向量组 也线性相关。( ) 24.若向量组有一个部分向量组线性无关,则原来的向量组 也线性无关. ( ) 25.向量组n ααα,,, 21线性相关,则n α必由 121,...,,-n ααα线性表示. ( ) 26.若r ααα ,,,21线性相关,那么其中每个向量都是 其余向量的线性组合。 ( ) 27.两个向量线性相关,则它们的分量对应成比例。 ( ) 28.任意n 个1+n 维向量必线性相关. ( ) 29.维向量一定线性相关 个n n 1+. ( ) 30.量组n ααα,,,21 的秩为零的充要条件是它们全为零向量。( ) 31.线性方程组的任意两个解向量之和仍为原线性方程组的解. ( ) 32.齐次线性方程组的任意两个解向量之和仍为原线性方程组的解. ( ) 33.如果B A ~那么T T B A ~。 ( ) 34. .)()(,B R A R B A =则相似与矩阵设 ( )

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数秩和逆

一、 矩阵的秩 定义1 在一个n m ?矩阵A 中,任意选定k 行和k 列({}n m k ,min ≤),位于这些选定的行和列的交点上的2k 个元素按原来的次序所组成的k k ?矩阵的行列式,称为A 的一个k 阶子式。 例1 在矩阵 ?????? ? ??-=0000500041201311A 中,选第3,1行和第4,3列,它们交点上的元素所成的2阶行列式 15501 3= 就是一个2阶子式。又如选第3,2,1行和第4,2,1列,相应的3阶子式就是 .105 004201 11= 定义2 非零矩阵的不为零的子式的最高阶数称为该矩阵的秩,零矩阵的秩规定为0。矩阵A 的秩记为()A rank 。 例2 证明:矩阵A 与其转置矩阵T A 有相同的秩。 例3 证明:阶梯形矩阵的秩等于它的非零行的个数。 证 设A 是一个阶梯形矩阵,不为零的行数是r 。选取这r 个非零行以及各非零行第一个非零元素所在的列,由这些行和列交点上的元素所成的r 阶子式是一个上三角行列式,并且主对角线上的元素都不为零,因此它不等于零。而A 的所有阶数大于r 的子式都至少有一行的元素全为零,因而子式为零。所以()r A r a n k =。 由于矩阵的子式的阶数不超过矩阵的行数及列数,所以n m ?矩阵A 的秩()()n m A rank ,min ≤。而如果()m A rank =,就称A 是行满秩的;如果()n A rank =,就称A 是列满秩的。此外,如果A 的所有1+r 阶子式全为零,由行列式的定义可知,A 的2+r 阶子式也一定为零,从而A 的所有阶数大于r 的子式全都为零。因此秩有下面等价的定义: 定理1 n m ?矩阵A 的秩为r 充分必要条件是:在A 中存在一个r 阶子式不为零,且在()()n m A rank ,min <时,矩阵A 的所有1+r 子阶式都为零。

线性代数-相似矩阵

第五章相似矩阵及二次型 §1 向量的内积、长度、正交性一、向量空间的内积、长度和夹角1.内积的定义: 内积的符号:括号或方括号

: : 证(3)

二、向量空间的单位正交基 1.正交向量组定义 2.定理1 正交向量组线性无关 P113 解设a3= (x1, x2, x3), 由正交的定义, a3应满足 (a1,a3)= 0, (a2, a3)= 0 即x1 +x2 +x3 = 0, x1-2x2 +x3=0

这是一个齐次线性方程组AX= 0, 即??? ? ??=???? ? ?????? ??-00121111321x x x , 由??? ? ?????? ??-???? ??-=010101~030111~121111A , 得???=-=0231x x x ,方程组的通解为??? ??==-=c x x c x 3210,即????? ??-=????? ??101321c x x x 取c = 1, 则a3=??? ? ? ??-101即为所求。 3.正交基、规范正交基(单位正交基) 正交基——由正交向量组构成的基称为正交基。 规范正交基(单位正交基)——正交基中的向量是单位向量。 4.向量正交化 施密特方法:将基改造为正交基(P114)

例2 用施密特方法把基正交化(P114) 例3 已知 T a )1,1,1(1=,求一组非零向量32,a a ,使32,1,a a a 两两正交。 解 32,a a 应满足01 =x a T ,即 0321=++x x x 解这个齐次线性方程组得213 x x x --=,通解为 ?????--===2 13221 1c c x c x c x ,即? ?? ?? ??-+????? ??-=????? ??11010121321c c x x x ,基础解系为 ??? ? ? ??-=????? ??-=110,10121ξξ,把基础解系正交化 111212312) ,(),(,ξξξξξξξ-==a a ,于是得 ?? ???? ? ? ??--=??? ?? ??--????? ??-=????? ??-=2112110121110,101232a a 三、正交矩阵 1.定义4 因为 1A A E -= 所以 A 是正交矩阵←→1 T A A -= (充分必要) 2.正交矩阵的构造

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.; .; .; .1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关 条件 2.对实对称阵?? ? ???-=???? ??=10 01,10 01 B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特 征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。

线性代数知识点总结

第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在;

线性代数习题及解答

线性代数习题 说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||:. ||表示向量:.的长度,:.T表示向量:.的转置, 单位矩阵,A|表示方阵A的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列岀的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 a11a12 a133耳13a123a13 1.设行列式 a21a22 a23=2,则_a31_a32_a33=( ) a31932a33a21 — a31a22 — a32323 —a33 A . -6 B. -3 C. 3 D. 6 2 .设矩阵A,X为同阶方阵,且A可逆,若A (X七)=E,则矩阵X=( ) ■1 A. E +A 1 B. E-A ■1 C. E+A D. E-A 1 3?设矩阵A,B均为可逆方阵,则以下结论正确的是( ) A 1A可逆,且其逆为"< A; B 1A不可逆 I B丿丿I B丿 r B、% )A-1 C.. 可逆,且其逆为 D .. 可逆,且其逆为 I B丿

线性代数矩阵相关练习题

向量组的线性相关性----习题课 如何正确理解线性相关(无关)的定义 判断下列命题是否正确。如果对,加以证明;如果错,举出反例。 (1)若有不全为0的数m λλλ,,,21Λ使 01111=+++++m m m m b b a a λλλλΛΛ 成立,则m a a ,,1Λ线性相关, m b b ,,1Λ亦线性相关. 解:错。原式可化为0)()(111=++++m m m b a b a λλΛ 取m m m b e a b e a b e a -==-==-==,,,222111Λ 其中m e e ,,1Λ为单位向量,则原式成立, 而m a a ,,1Λ;m b b ,,1Λ均线性无关。 (2)若向量组m a a a ,,,21Λ 是线性相关的,则其中每个向量都是其余向量的线性组合。 解 错。 反例1:设)0,,0,0,1(11Λ==e a ,032====m a a a Λ 满足m a a a ,,,21Λ线性相关, 但1a 不能由,,,2m a a Λ线性表示. 反例2:)0,0,1(1=a ,)0,0,12-= (a ,)1,0,0(3=a (3) 如果向量组的一个线性组合等于零向量,那么该向量组线性相关。 解:不一定。因为任何一个向量组都有一个性质: 系数全为0的线性组合一定是零向量。 若还有系数不全为零的线性组合也是零向量,则线性相关; 否则线性无关。 (4)若a 能表示为m m a a a λλ++=Λ11 则向量组a a a m ,,,1Λ线性相关. 解:正确。 (7) 若有一组不全为0的数m λλλ,,,21Λ使 0αλαλm m 11≠++Λ成立,则m a a ,,1Λ线性无关. 解:错。任何一组数满足上式才行。 (6) 若021====m λλλΛ时,有 0αλαλm m 11=++Λ成立,则m a a ,,1Λ线性无关. 解:错。将“若…… ”改为“只有……”,结论才正确。 反例:)0,0,1(1=a ,)0,1,02(=a ,)0,1,1(3=a ,线性相关; )0,0,1(b 1=,)0,1,0b 2(=,)1,0,0(b 3=,线性无关。

判定线性代数中矩阵相似关系的原理和方法

一[收稿日期]2018G09G28;一[修改日期]2018G12G04一[基金项目]国家自然科学基金青年项目(11601470);云南省高等学校卓越青年教师特殊培养计划项目(C 6152704) ;云南大学校级教改项目(WX 162072);云南大学校级本科教材建设项目(WX 162072 )一[作者简介]李源(1978-),男,硕士,副教授,从事计算数学和大学数学课程的教学和研究.E m a i l :l i y u a n @y n u .e d u .c n 第35卷第2期大一学一数一学V o l .35,?.22019年4月C O L L E G E MA T H E MA T I C S A p r .2019判定线性代数中矩阵相似关系的 原理和方法 李一源1,一郝小枝2(1.云南大学数学与统计学院,昆明650500;一2.云南中医药大学信息学院,昆明650021 )一一[摘一要]指出教育部考试中心2019版考研数学考试分析中关于矩阵相似试题解答中的一个错误. 系统梳理了高等代数和线性代数课程中关于相似矩阵刻画的角度和方法,明确了在线性代数课程体系中3类可以作出相似判定的矩阵类别及其对应的判别方法,给出不能一般判定相似关系的第4类矩阵的基本特征,并结合实例给出在特殊情形下解决第4类矩阵相似关系判定的方法.[关键词]线性代数;相似矩阵;相似对角化;特征多项式[中图分类号]O 177.5一一[文献标识码]C 一一[文章编号]1672G1454(2019)02G0122G05 1一引一一言 矩阵相似的判定是近年考研数学命题的热点问题,也是线性代数教学中的难点之一.由于所需方法 具有较高的综合性,学生在判定矩阵相似时的各种错误逻辑频现,甚至在教育部考试中心2019年版的数学考试分析中对2018年全国硕士研究生招生考试数学科考试( 数学一二二二三)中的一道试题的解答均出现疏误!为明确起见,将其摘录如下: 下列矩阵中,与矩阵110011001?è?????÷÷÷相似的为[1](一一)(A )11-1011001?è?????÷÷÷.一(B )10-1011001?è?????÷÷÷.(C )11-1010001?è?????÷÷÷.一(D )10-1010001?è????? ÷÷÷.解一易知矩阵110011001?è?????÷÷÷的特征值为λ=1(3重),其线性无关的特征向量只有1个,即ξ1=100?è????? ÷÷÷.对于选项中的4个矩阵,都是以λ=1为3重特征值的矩阵.选项(A )中的矩阵11-1011001?è?????÷÷÷只有1个线性无关的特征向量ξ1=100?è????? ÷÷÷;

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j 即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a ……… a n1 a n2…a nn 这里 n j j j 2 1 表示对所有n元排列求和.称此式为n阶行列式的完全展开式. 用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算

相关主题
文本预览
相关文档 最新文档