当前位置:文档之家› 年产30万吨乙酸乙酯的工艺设计

年产30万吨乙酸乙酯的工艺设计

年产30万吨乙酸乙酯的工艺设计
年产30万吨乙酸乙酯的工艺设计

年产30万吨乙酸乙酯的工艺设计

摘要

乙酸乙酯是重要的精细化工原料。它是一种具有优异溶解性能和快干性能的溶剂,已广泛应用于生产中。目前,乙酸乙酯的工业生产方法已趋于成熟,而乙醛缩合法因其具有原料来源广泛、绿色、环保等优点在众多生产方法中脱颖而出最具发展前景。

本设计采用乙醛缩合法,对工艺中的主要设备进行物料与能量衡算,并对乙酸乙酯的精馏塔、反应器进行了设计选型。根据设计要求对设备进行选型。就脱乙醇塔而言,塔体压力为常压,回流比取3,操作条件:X D=99%、X W=0.01。计算出塔板数为46块,塔高22.4m。对塔体的主要尺寸设计:精馏段:算得堰长为0.72m,出口堰高为0.045m,堰宽为0.106m,降液管底隙高度为0.028m;提馏段:算得堰长为1.2,出口堰高为0.049m,堰宽为0.176m,降液管底隙高度为0.027m。对于反应器选择连续型搅拌反应釜:算得筒体高度4.8m,筒体和封头直径3m,内筒筒体厚度为10mm。设计中,首先根据工艺操作的要求和特点,参照相关工艺的资料,绘制工艺流程图,然后根据工艺计算结构设计的最终数据画出主要设备图。设计满足安全生产要求,而且经济合理。

关键词:乙酸乙酯,乙醛缩合法,物料衡算,精馏塔,工艺流程图

PRODUCTION DESIGN WITH AN ANNUAL

OUTPUT OF 300 THOUSANDS TONS OF

ETHYL ACETATE

ABSTRACT

Ethyl acetate is an important fine chemical raw material. It is a kind of excellent solubility and fast-drying solvent, has been widely used in production. At present, the industrial production of ethyl acetate have been more and more mature, and the condensation of acetaldehyde because of its wide raw material sources, green, environmental protection and other advantages stand out from ma ny production methods in the most development prospect.

The condensation of acetaldehyde had been used in the design, material and energy balance calculation of the main process equipment, and distillation tower, reactor for ethyl acetate were design selection. According to the design requirements, we selected the suitable equipment. As far as alcohol tower, the tower body was at atmospheric pressure, reflux ratio was 3, the operating conditions: X D=99%, X W=0.01. We could calculate that the plate number was 46, the height of the tower was 22.4m. The main dimensions design of tower body: rectifying section: the length of the weir was 0.72m, the outlet height of the weir was 0.045m, the width was 0.106m, the down comer height of the bottom clearance was 0.028m; stripping section: the length of weir was 1.2mr, the outlet height of the weir was 0.049m, the width was 0.176m, the down comer height of the bottom clearance was 0.027m. The reactor was selected continuous stirred tank reactor: the height of cylinder was 4.8m by calculation, the diameter of cylinder and head was 3m, the thickness of the inner cylinder was 10mm. In the design, according to the process requirements and characteristics, reference to the related process data, we

could draw a process flow diagram, then according to the process of structure design and calculation of the final data to draw the main equipment. The design satisfied the requirement of safe production, and reasonable in economy.

KEY WORDS: ethyl acetate, acetaldehyde, material balance, distillation, process flow diagram

符号说明

符号意义单位

A 传热面积m2

A f弓形降液管面积m2

A T塔截面积m2

C 气体负荷系数m/s

C P定压比热容kJ/(kg·℃)

D 精馏塔直径m

d0阀孔直径m

E 液流收缩系数

E T全塔效率

e v雾沫夹带量kg液/kg气F 原料液流量kmol/h

H 塔高m

H B塔底空间高度m

H D塔顶空间高度m

H d降液管内清液层高度m

H F进料板处高度m

h c干板阻力m液柱

h l板上充气液层阻力m液柱

h p气相通过浮阀塔板的压降m液柱

出口堰高m

h

w

h

堰上液层高度m o w

传热系数W/(m2·℃) K

L 精馏塔液相流量kmol/h

堰长m

l

w

A物质的分子量

M

A

N 实际塔板数块

P 操作压力KPa

ΔP p单层塔板压降Pa

t 物料温度℃

t?平均温度差℃m

u 速度m/s V 精馏塔气相流量kmol/h W

弓形降液管宽度m d

Ws 破沫区宽度m x馏出液中易挥发组分摩尔分数

d

x原料液中易挥发组分摩尔分数

f

x釜残液中易挥发组分摩尔分数

W

α相对挥发度

θ液体在降液管中停留时间s

ρL液相密度kg/m3

ρv气相密度kg/m3

t 孔心距m μl粘度Pa s?

目录

摘要...................................................I 前言 (9)

第1章工艺流程的确定 (16)

§1.1 本课题设计的内容和要求 (16)

§1.1.1 设计要求 (16)

§1.1.2 具体设计内容 (16)

§1.2 设计方案的确定 (16)

§1.2.1 设计原理 (17)

§1.2.2 工艺流程 (18)

第2章物料衡算 (20)

§2.1 数据采集 (20)

§2.1.1 全流程的工艺数据 (20)

§2.1.2 催化剂的配方 (20)

§2.1.3 操作条件 (20)

§2.1.4 原料和产品的控制指标 (21)

§2.2 一步缩合反应釜的物料衡算 (22)

§2.3 二步缩合反应釜的物料衡算 (23)

§2.4 单效蒸发器的物料衡算 (24)

§2.5 脱乙醛塔的物料衡算 (26)

§2.6 脱乙醇塔的物料衡算 (27)

§2.7 脱重组分塔物料衡算 (28)

第3章热量衡算 (30)

§3.1 基本数据 (30)

§3.2 一步缩合反应釜的热量衡算 (31)

§3.3 二步缩合釜热量衡算 (32)

§3.4 单效蒸发器的热量衡算 (32)

§3.5 冷凝器的热量衡算 (34)

§3.6 脱乙醛塔的热量衡算 (35)

§3.6.1 再沸器的热负荷 (35)

§3.6.2 冷凝器的冷凝量 (36)

§3.7 脱乙醇塔的热量衡算 (36)

§3.7.1 再沸器的热负荷 (36)

§3.7.2 冷凝器的冷凝量 (37)

§3.8 脱重组分精馏塔的热量衡算 (37)

§3.8.1 再沸器的热负荷 (37)

§3.8.2 冷凝器的冷凝量 (38)

第4章设备选型及车间布置经济核算 (39)

§4.1 缩合釜的设计 (39)

§4.1.1 缩合釜体的设计 (39)

§4.1.2 搅拌装置的设计 (41)

§4.2 单效蒸发器的设计与选型 (42)

§4.2.1 蒸发器的选择理由 (42)

§4.2.2 蒸发器计算与设计 (42)

§4.3 脱乙醛塔的设计与计算 (45)

§4.3.1 基础数据 (45)

§4.3.2 塔径的确定 (49)

§4.3.3 塔板结构设计 (49)

§4.3.4 塔板布置 (51)

§4.3.5 流体力学验算 (52)

§4.3.6 塔高的确定 (55)

§4.4 脱乙醇塔的设计 (56)

§4.4.1 基础数据 (56)

§4.4.2 塔径的确定 (59)

§4.4.3 塔板结构设计 (60)

§4.4.4 塔板布置 (62)

§4.4.5 流体力学验算 (63)

§4.4.6 塔高的确定 (65)

§4.5 脱重组分塔的选型与计算 (66)

§4.5.1 相关计算 (66)

§4.5.2 塔体结构 (67)

§4.6 辅助设备的选型 (68)

§4.6.1 泵的选型 (68)

§4.6.2 再沸器的选型 (68)

§4.6.3 冷凝器选型 (69)

§4.6.4 工艺设备一览表 (69)

§4.7 车间布置的基本原则和要求 (70)

§4.7.1 车间布置的基本原则 (70)

§4.7.2 车间布置的要求 (71)

§4.8 本设计的生产车间布置 (74)

§4.9 建设项目投资 (74)

§4.9.1固定资产投资估算 (75)

§4.9.2 建设期贷款利息 (75)

§4.9.3 流动资金估算 (75)

§4.10 生产成本估算 (76)

§4.10.1 直接材料费 (76)

§4.10.2 生产人员工资及福利 (76)

§4.10.3 制造费用 (76)

§4.11 经济效益 (77)

§4.12 投资回收年限 (78)

§4.13 核算总结 (78)

第5章总结 (79)

§5.1 乙酸乙酯的生产流程 (79)

§5.2 生产设备设计 (79)

参考文献 (80)

致谢 (82)

附录 (83)

外文资料译文及原文 (84)

前言

乙酸乙酯(EA),又名醋酸乙酯,英文名称:Ethyl acetate。分子式为:C2H8O4。它是一种无色透明具有流动性并且是易挥发的可燃性液体[1],呈强烈清凉菠萝香气和葡萄酒香味。乙酸乙酯能很好的溶于乙醇、氯仿、乙醚、甘油、丙二醇、和大多数非挥发性油等有机溶剂中,稍溶于水(25℃时,1mL乙酸乙酯可溶于10mL 水中),而且在碱性溶液中易水解成乙酸和乙醇。水分能使其缓慢分解而呈酸性。乙酸乙酯与水和乙醇皆能形成二元共沸混合物,与水形成的共沸混合物沸点为

70.4℃,其中含水量为 6.1%(质量分数)。与乙醇形成的共沸混合物的沸点为

71.8℃。还与7.8%的水和9.0%的乙醇形成三元共沸混合物,其沸点为70.2℃。下表为乙酸乙酯的一些物化参数。

表1 乙酸乙酯的物化参数[2]

熔点(℃) -83.6 临界温度(℃) 250.1 折光率(20℃) 1.3708-1.3730 临界压力(MPa) 3.83

辛醇/水分配系数的对数

0.73

沸点(℃) 77.06

对密度(水=1) 0.894-0.898 闪点(℃) 7.2 相对蒸气密度(空气=1) 3.04 引燃温度(℃) 426 饱和蒸气压(kPa) 13.33(27℃) 爆炸上限%(V/V) 11.5

燃烧热(kJ/mol) 2244.2 爆炸下限%(V/V) 2.0 室温下的分子偶极距 6.555×10-30

一、乙酸乙酯的用途

乙酸乙酯是重要的精细化工原料,是醋酸的一种重要的中下游产品。它是一种具有优异溶解性能和快干性能的溶剂,已广泛应用于化工、医药、纺织、染料、橡胶、涂料、油墨、胶粘剂的生产中,或作为原料、或作为工艺溶剂、萃取剂、稀释剂等等;由于它具有天然水果香味,因此还可作为调香剂组分,应用于香料、食品工业中;也可作为粘合剂用于印刷油墨、人造珍珠等的生产;作为提取剂用

于医药、有机酸的产品的生产等;此外还可用作生产菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的原料。

二、乙酸乙酯的产量及消费情况

国外乙酸乙酯的消费结构与我国有所不同,美国和欧洲国家乙酸乙酯最大的应用领域是涂料,其中美国涂料方面的消费量约占总消费量的60%,欧洲在涂料行业的消费量约占总消费量的50%。日本主要应用在涂料,油墨方面,分别约占总消费量的40%和30%。而我国主要应用于涂料,粘合剂和制药领域[3]。

近年来,世界乙酸乙酯的生产能力不断增加。2001年全球乙酸乙酯的生产能力只有125.0万吨/年,2006年生产能力增加到222.0万吨/年,2001~2006年生产能力的年均增长率高达12.2%。其中英国BP化学公司是目前世界上最大的乙酸乙酯生产厂家,生产能力为22.0万吨/年,约占世界总生产能力的9.91%。其次是中国江苏索普集团公司,生产能力为20.0万吨/年,约占9.01%。

在涂料方面,乙酸乙酯涂料被水性和高固相含量涂料、粉末涂料和双组分涂料夺取了市场额。乙酸乙酯市场仍然保持持续增长。东南亚地区开始成为全球最重要的乙酸乙酯的产地和消费地。大部分投资于乙酸乙酯的资金开始将目标投向乙酸乙酯需求量增长迅速的亚洲和中国。

三、我国乙酸乙酯的产量及消费情况

我国乙酸乙酯的生产始于20世纪50年代,近年来,随着我国化学工业和医药工业的快速发展,乙酸乙酯的生产发展很快。生产能力已经从2001年的37.0万吨/年增加到2006年的约90.0万吨/年。目前,我国乙酸乙酯的生产厂家有20多家,生产企业主要集中在华南和华东地区。其中国内最大的乙酸乙酯生产企业江苏索普集团产能达到20.0万吨/年,约占国内总生产能力的22.2%,与乙酸产品实现了上下游一体化,产品竞争力较强,80%的乙酸乙酯用于出口;其次是山东金沂蒙集团公司,生产能力为16.0万吨/年,约占国内总生产能力的13.3%。

随着生产能力的不断增加,我国乙酸乙酯的产量也不断增加[4]。2001年我国乙酸乙酯的产量只有17.9万吨,2006年进一步增加到63.0万吨,比2005年增长约22.19%,2001~2006年产量的平均增长率高达15.09%,截止到2009年10月底,我国乙酸乙酯生产能力达到约150.0万吨/年。

目前,国内乙酸乙酯主要消费地区集中在华东、中南、华北、东北地区,产品主要用于生产涂料、制药和粘合剂。我国乙酸乙酯的总需求量已达150万吨/

年,供大于求,届时消费结构将有所变化,其中在制药和粘合剂行业消费的比例将会有所下降,随着新型高档涂料的不断发展,预计涂料行业对乙酸乙酯的需求量将会有较大幅度的增加,随着油墨方面的需求量也将有所上升。 四、主要生产工艺

目前,乙酸乙酯的工业生产方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和醋酸/乙烯加成法4种。传统的醋酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要采用乙醛缩合法、乙醇脱氢法和醋酸/乙烯加成法,其中新建装置多采用醋酸/乙烯加成法,我国的乙酸乙酯则主要采用醋酸酯化法进行生产[6]。

(1)醋酸酯化法

醋酸酯化法是乙酸乙酯最常见的生产方法,是在催化剂(通常为硫酸)存在下,醋酸和乙醇发生酯化反应生成乙酸乙酯,该方法适用于拥有大量低成本乙醇的地区。传统的酯化法生产工艺技术成熟,原料供应充足,生产工艺简单,投资少,在世界范围内,尤其是在美国和西欧地区被广泛采用。由于酯化反应可逆,转化率只有约67%,为增加转化率,一般采用乙醇过量的方法,并在反应过程中不断分离出生成的水。

CH

3COOH+CH 3CH 2OH

CH 3COOC 2H 5浓硫酸

+H 2O

根据生产需要,既可采取间歇生产,也可采取连续式生产。

由于浓硫酸有酸性强、吸水性强、性能稳定、价廉等优点,而且溶于反应物料中,是均相催化反应,反应均匀,因而在全塔内都能进行催化反应。催化作用不受塔内温度限制,反应机理清楚,容易实现控制,这些优点可以使反应精馏生产装置大型化。该法存在反应温度高,乙酸利用率低,易发生副反应,产品处理困难、催化剂对设备腐蚀性强,废液污染环境以及生产成本高等缺点。

(2)乙醛缩合法

醛类在醇盐的催化作用下,可进行自身缩合为酯类[7]。如在乙醇铝的参与下,两分子的乙醛重排成一分子的乙酸乙酯:

CH 3CHO

CH 3COOC 2H 52

乙醇铝会在反应过程中被破坏,因此为使反应连续进行,须配备足够的催化剂来维持反应的进行;在低温反应条件下,乙酸乙酯的收率可达98%。

乙醛缩合法具有反应条件温和、原料消耗少、工艺简单、设备腐蚀小等特点,

因而此工艺在生产成本方面具有突出优势,同时又有较好的环境效益,发达国家多采用这种工艺。

此种工艺受原料的限制较大,适合于乙醛原料来源广泛的地区。原料乙醛一是石油路线,二是生物发酵路线。近年来,随着石油资源的逐渐减少,石油价格逐渐上升,生物资源作为一种新型、绿色、可持续能源,其前景会更加广阔。加之此种工艺的高转化率和高选择性,相对于其它工艺方法的优势地位更加明显。

(3)乙醇脱氢歧化法

乙醇脱氢歧化法有三个基本步骤[8]。在第一反应器中,乙醇脱氢生产乙醛,再进一步反应生成粗乙酸乙酯。固定床反应器装填了一种改进的铜基催化剂,反应在适中的压力和200-250℃温度下进行,催化剂每六个月在装置内再生一次,其总寿命不短于1年。

从第一反应器中产生的氢气经一个简单的分离器收集,部分氢气送第二反应器进行选择性加氢反应,在该固定床绝热反应器中,装填着一种能有效地将乙醛和在粗乙酸乙酯混乱合物中的其它羰基组分转换为当量乙醇,而又不影响乙酸乙酯收率的催化剂,反应器操作温度不超过150℃,操作压力与第一反应器基本一致,催化剂寿命在1年以上。送至最后精馏工序的产品蒸汽中含有大量的共沸组份,通过采用高低不同的双压力精馏系统,最有效地去除共沸物组份,以及最大限度地回收到高纯度(99.8%以上)乙酸乙酯。

3醋酸/乙烯加成法

醋酸/乙烯加成法是一种直接用乙烯和醋酸工业化生产乙酸乙酯的新工艺。反应系统由3个串联反应塔组成,反应塔中装填磷钨钼酸催化剂(担载于球状二氧化硅)。反应塔设置了中间冷却,反应温度维持在140-180℃,反应塔压力控制在0.44-1.0MPa。反应在担载于金属载体上的杂多酸或杂多酸盐催化下于气相或液相中进行。在水蒸气存在条件下,乙烯将发生水合反应生成乙醇,然后生成的乙醇又继续与醋酸发生酯化反应生成乙酸乙酯产物。而且,逆向的乙酸乙酯水解生成乙醇或乙酸的反应也可能发生。该工艺醋酸的单程转化率为66%,以乙烯计,酸酸乙酯的选择性约为94%。与传统的乙酸酯化法或乙醛缩合法相比,该方法产率高,原料损耗降低了35%,能耗降低了约20%,装置容易进行扩能改造,且乙酸乙酯产品质量高,纯度易于控制,因此是近年来的研究开发热点。但该工艺的缺点是装置必须设置在乙烯装置的附近。

五、工艺改进

针对以上四种乙酸乙酯生产工艺的对比,可看出每种工艺都有他的不足之处,对于部分工艺存在的问题,国内国外的学者进行了相关的改进,包括催化剂的改进、精馏系统的改进和回收系统的改进。

(1)酯化法中催化剂的改进和精馏系统的改进

①催化剂的改进

采用超强固体酸,将原来的催化剂改为SO42-/ZrO2或SO42-/Zr(OH)4催化剂[11],在此催化剂制备中引入H

SO4,使ZrO2产生酸中心而对酯化反应产生催化

2

作用,熔烧温度和熔烧时间影响SO42-/ZrO2或SO42-/Zr(OH)4的催化活性,最佳熔烧温度和熔烧时间分别为550℃和3h。催化剂经再活化可重复使用,对乙酸乙醇的催化酯化反应的选择性为100%,酯化率为84%。另外SO42-/M n O m型超强固体酸制备方法简单,使用温度较高,易同产物分离及易再生,不易腐蚀设备等优点。其它的一些催化剂的改进还有用磷改性HZSM-5沸石分子筛为催化剂,用全氟磺酸树脂作催化剂,用HZSM-5分子筛、铌酸等作为催化剂[12]。

②精馏系统的改进

传统的精馏工艺中由于存在水-乙醇-乙酸乙酯的共沸,导致回流酯的带水能力很差,导致酯化塔和回流塔的回流比过大,结果使乙酸乙酯的生产能耗很高。在新工艺中,通过添加促进剂萃取精馏提纯[13],即向乙酸乙酯-水及乙酸乙酯-乙醇-水体系中添加促进剂,可以改变它们的互溶度,使乙酸乙酯、水得到较好的分离,同时使水相中乙酸乙酯的含量大大降低,减少其回收能耗。其它的方法还有加饱和盐水萃取脱水精制、采用有机溶剂萃取分离和添加恒沸蒸馏分离等。(2)乙醛缩合法中的工艺改进

①水与乙醇平衡的工艺优化

原三塔串联精馏工序中会出现以下问题:(1)粗乙酸乙酯中含水量达到

0.03%的标准;(2)二塔回收的乙醇含水量高,而不能作为催化剂制备的原料;(3)含水量不能有效的控制而导致催化剂不能稳定的被破坏,间接导致乙酸乙酯产品的质量。为此国内学者通过对工艺的改进解决了以上存在的问题。解决办法:将原一塔的加压操作改为常压操作;在原催化剂破坏系统中加入足量的蒸馏水,以达到催化剂的充分破坏;在一塔塔顶采出乙醇、乙酸乙酯、乙醛、水来达到脱除水和乙醛的目的,采出的顶液加入适量的水作为催化剂破坏液。通过改进

工艺,二塔和三塔的含水率达到控制,成品乙酸乙酯的含水量也下降到0.01%[15]。

②乙醇回收工艺的优化

在原工艺中,乙醛虽在一塔被大量脱除,但仍有少量乙醛进入二塔和三塔,导致乙酸乙酯产品含有过量的乙醛。在改进的工艺中[16],一塔采用侧线出料,并在一塔顶部通过使顶液全部回流及调节回流罐液位来富集乙醛,然后采取不定期采出顶液的方法来达到回收高质量分数的乙醛的目的。而且,降低了乙醛的单耗,减少了乙醛的挥发,并能使产品中的乙醛含量降低。

表2 几种方法的比较

工艺方法优点缺点

酯化法浓硫酸有酸性强、吸水性强、性能稳定、价

廉等优点,而且溶于反应物料中,是均相催

化反应,反应均匀,因而在全塔内都能进行

催化反应。催化作用不受塔内温度限制,反

应机理清楚,容易实现最优控制

设备腐蚀性大,浓硫酸易引起

磺化、炭化和聚合等的副反应,

产品纯度低,后处理过程复杂,

三废量大

乙醛缩合法反应条件温和、原料消耗少、工艺简单、设

备腐蚀小,国外工艺成熟,国内也取得重大

进展

必须在乙醛的来源广泛区,催

化剂处理上存在一定污染

乙醇脱氢法

原料利用上也较为的经济,可以副产氢气,

没有腐蚀性催化剂选择性较差,分离工段塔多,因而能耗比传统工艺还高,工艺不成熟

乙烯乙酸加成法反应有较高的选择性和转化率适合乙烯来源广的地区,乙烯价格上涨后,不利,工艺不成

③高沸点残液回收的工艺优化

原工艺中三塔塔釜得到的重组分残液中除含有乙酸乙酯外,还含有缩合反应中产生的副产物-乙缩醛,另外还有原来中带来的巴豆醛、三聚乙醛和乙酸等高沸物。该残液通常采用焚烧的方法来处理,该处理方法既浪费原料,而且焚烧残

液会给环境带来污染。国内学者通过向残液中加入水和适当的催化剂[17],并在加热的条件下使乙缩醛分解生成乙醇和乙醛,此时将残液中得到的乙醇、乙醛和乙酸乙酯回收再利用,不仅降低了乙醛和乙醇原料的单耗,而且有效的减少了环境的污染。

六、本课题研究的内容和意义

乙酸乙酯是一种重要的基本有机化工原料,其生产方法有直接酯化法和间接酯化法。该产品在酯化工艺中为最基础、也是最重要的酯化产品。研究并设计其生产工艺具有很重要的意义。

乙酸乙酯是用途广泛的重要化工产品。其主要用途有:作为工业溶剂,用于涂料、粘合剂、乙基纤维素、人造革、油毡着色剂、人造纤维等产品中;作为粘合剂,用于印刷油墨、人造珍珠的生产;作为提取剂,用于医药、有机酸等产品的生产;作为香料原料,用于菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的主要原料。用作溶剂,及用于染料和一些医药中间体的合成。是食用香精中用量较大的合成香料之一,大量用于调配香蕉、梨、桃、菠萝、葡萄等香型食用香精. 是硝酸纤维素、乙基纤维素、乙酸纤维素和氯丁橡胶的快干溶剂,也是工业上使用的低毒性溶剂。还可用作纺织工业的清洗剂和天然香料的萃取剂,也是制药工业和有机合成的重要原料

近些年来,随着世界经济的持续稳定增长,建筑、汽车等行业的迅速发展,采用高档溶剂生产涂料、油墨、粘合剂等产品已成大势所趋,进一步带动了乙酸乙酯溶剂需求的快速增长。虽然目前在国内乙酸乙酯的供大于求,但世界上乙酸乙酯的消耗主要集中在东南亚地区,从亚洲这个范围来说,乙酸乙酯还是处于供不应求地区。其次,国内约有65%以上的乙酸乙酯生产厂家是采用酯化法生产乙酸乙酯,生产技术较国外相对落后,同时针对一些缺乏市场竞争力的,工艺落后的小型装置进行淘汰。

因此,本课题采用乙醛缩合法设计一套年产30万吨乙酸乙酯且具有先进、可行、经济效益高的生产方案,不仅弥补亚洲对乙酸乙酯消耗的空缺,对提高国内乙酸乙酯在世界市场中的竞争力以及对提升我国整体技术水平是有很重要的意义。

第1章工艺流程的确定

§1.1 本课题设计的内容和要求

§1.1.1 设计要求

乙酸乙酯是一种重要的基本有机化工原料,其生产方法有直接酯化法和间接酯化法。该产品在酯化工艺中为最基础、也是最重要的酯化产品。研究并设计其生产工艺具有很重要的意义。

§1.1.2 具体设计内容

(1)查阅文献,了解该产品的性质、性能、合成、应用等。选择合理的生产原料和制备工艺,采用先进的生产设备和控制手段,编制开题报告(工艺流程方框图、开题报告);

(2)根据原料、产品和生产规模,绘制工艺流程草图,进行物料衡算和热量衡算(物料平衡图、原料消耗、能量消耗综合表);

(3)进行主体设备和辅助设备的工艺计算与设备选型,并列出设备一览表;

(4)绘制主体设备图;

(5)绘制带控制点的工艺流程图;

(6)进行生产车间布置设计(生产车间平面布置图和立面布置图);

(7)进行技术分析、经济效益分析、安全评价与环保评价。

§1.2 设计方案的确定

目前,乙酸乙酯的工业生产方法主要有乙酸/乙醇酯化法、乙醛缩合法、乙醇脱氢法和乙酸/乙烯加成4种。在世界范围内,上述四种工艺都已经投入运行,但在国内投入运行的只有酯化法、乙醛缩合法、乙醇脱氢法,乙酸/乙烯加成法在国内还不够成熟。酯化法中新研究出的催化剂造价过高,乙醇脱氢法适合在乙

醇产量高的地区或者是价格廉价的地区较合适,日本所有的乙酸乙酯都是采用乙醛缩合法,并且综合上面的概述中几种工艺的对比,本课题采用乙醛缩合法生产乙酸乙酯。

§1.2.1 设计原理

乙醛缩合法制乙酸乙酯可分为三个阶段:催化剂的制备、乙醛的缩合反应、催化剂的脱除和精馏提纯。

(1)乙醛的缩合反应

反应在两个串联的反应器中进行,第一个是釜式的反应器,第二个也是采用釜式的反应器。反应方程式为:

CH3CHO Al(OC2H5)3

CH3COOC2H5

这样做的好处是,在第一个反应器之中,反应剧烈放出大量的热量,采用釜式的反应器搅拌的均匀,易于把热量移出,相对于管式的来说,温度易于控制,虽然转化率情况有所降低,但反应的可控性、安全性提高;第二个也采用釜式的反应器,是考虑到反应进行到后来,放热量已经不多,而且造价低。

图1-1 缩合工序的流程简图

(2)催化剂的脱除

图1-2 蒸发工序的流程简图

我们通过加水的方法破坏掉催化剂,然后经过蒸发器将粗乙酸乙酯蒸出,氢氧化铝残液从下面排除,残液再经过一个分离器进一步分离出氢氧化铝,液体部分可以再返回蒸发器。

(3)精馏提纯

我们采用了三塔的模式,三塔均是常压操作,一塔脱乙醛;二塔脱出乙醇,脱出的乙醇用作生产催化剂;第三塔,塔上得到产品,塔下出重组分。同时还可以设计一个小塔,用来分离第三塔得到的重组分,有效地分离较纯副产物乙缩醛,产出乙缩醛,做到了副产品的有效利用。

图1-3 精馏提纯工序的流程简图

§1.2.2 工艺流程

图1-4 乙醛缩合法生产乙酸乙酯工艺流程图

以乙醇铝作为催化剂,乙醛通过自缩合反应生成乙酸乙酯,通过向单效蒸发器中加入过量的水,将催化剂乙醇铝破坏,再经过蒸发器将生成的氢氧化铝脱除。再依次通过脱乙醛精馏塔、脱乙醇粗馏塔和脱重组分塔,分别脱除粗乙酯中的乙醛、乙醇和乙缩醛,在脱重组分精馏塔塔顶得到较纯净的乙酸乙酯产品。

第2章物料衡算

§2.1 数据采集

§2.1.1 全流程的工艺数据

(1)设计项目:乙醛在催化剂作用下生产乙酸乙酯(假定乙醛纯度为99.7%)(2)产品名称:乙酸乙酯

(3)生产规模:年产30万吨(优等品纯度=99.7%)折算为100%的年产量为29.91万吨

(4)生产时间:年工作时间330天,共7920小时

(5)生产效率:一步缩合釜中乙醛转化率86.9%,二步缩合釜中乙醛转化率89.3%,两个反应釜中主反应的选择性为99.2%。

§2.1.2 催化剂的配方

(1)催化剂的原料配比:见表2-1

表2-1 催化剂的原料配比(单位:g)

乙酸乙酯乙醇铝氯化铝氯化汞碘总计140 28 5 2 微量微量175 (2)催化剂与原料的质量比

该反应中将催化剂和纯原料的质量比控制在1:8。

§2.1.3 操作条件

(1)操作压力:全流程的操作为常压操作

(2)操作温度:一步反应缩合釜和二步反应缩合釜的操作温度都为10℃。

课程设计概念设计

课程设计概念设计 荆楚理工学院课程设计任务书 设计题目:3000吨/年乙酸乙酯项目概念设计。 教研室主任:许维秀指导教师:危想平 2019年11月 乙酸乙酯车间工艺设计 一、设计任务 1.设计任务:乙酸乙酯项目概念设计 2.产品名称:乙酸乙酯 3、设计规模:3000吨/年乙酸乙酯 4、开工时间:7000小时/年 3、原料组成:冰醋酸100%、乙醇95%、硫酸93% 4、全装置总收率,损耗分配和设备类型自定 5.产品用途:作为制造乙酰胺、乙酰乙酸酯、甲基庚烯酮、其他有机化合物、合成香料、合成药物等的原料;用于乙醇脱水、乙酸浓缩、萃取有机酸;作为溶剂广泛应用于各 种工业中;食品工业中作为芳香剂等。 二、概述 1.乙酸乙酯性质及用途 乙酸乙酯又名乙酸乙酯,乙酸醚,英文名称Ethyl Acetate或 Acetic Ether Vinegar naphtha.乙酸乙酯是具有水果及果酒芳香的无色透明液体,其沸点为77℃,熔点为-83.6℃,密度为0.901g/cm3,溶于乙醇、氯仿、乙醚和苯等有机溶剂。 乙酸乙酯的重要用途是工业溶剂,它是许多树脂的高效溶剂,广泛应用于油墨、人造革、胶粘剂的生产中,也是清漆的组份。它还用于乙基纤维素、人造革、油毡、着色纸、 人造珍珠的粘合剂、医用药品、有机酸的提取剂以及菠萝、香蕉、草莓等水果香料和威士忌、奶油等香料。此外,还用于木材纸浆加工等产业部门。对于用很多天然有机物的加工,例如樟脑、脂肪、抗生素、某些树脂等,常使用乙酸乙酯和乙醚配制成共萃取剂,它还可 用作纺织工业和金属清洗剂。 2.乙酸乙酯发展状况

(1)国内发展状况 为了改进硫酸法的缺点,国内陆续开展了新型催化剂的研究,如酸性阳离子交换树脂 ﹑全氟磺酸树脂﹑HZSM-5等各种分子筛﹑铌酸﹑ZrO2-SO42-等各种超强酸,但均未用于 工业生产。 国内还开展了乙醇一步法制取乙酸乙酯的新工艺研究,其中有清华大学开发的乙醇脱 氢歧化酯化法,化学工业部西南化工研究院开发的乙醇脱氢法和中国科学院长春应用化学 研究所的乙醇氧化酯化法。 中国科学研究院长春应用化学研究所对乙醇氧化酯化反应催化剂进行了研究,认为采 用Sb2O4-MoO3复合催化剂可提高活性和选择性。化学工业部西南化工研究院等联合开发 的乙醇脱氢一步合成乙酸乙酯的新工艺,已通过单管试验连续运行1000小时,取得了满 意的结果。现正在进行工业开发工作。 近来关于磷改性HZSM-5沸石分子筛上乙酸和乙醇酯化反应的研究表明,用HZSM-5及 磷改性HZSM-5作为乙酸和乙醇酯化反应的催化剂,乙醇转化率变化不大,但酯化反应选 择性明显提高。 使用H3PMo12O40?19H2O代替乙醇-乙酸酯化反应中的硫酸催化剂,可获得的产率为 91.48%,但是关于催化剂的剂量、反应时间和乙醇/乙酸的质量比对产品产量的研究 还在进行之中。 (2)国外发展状况 由于使用硫酸作为酯化反应的催化剂存在硫酸腐蚀性强、副反应多等缺点,近年各国 均在致力于固体酸酯化催化剂的研究和开发,但这些催化剂由于价格较贵、活性下降快等 原因,至今工业应用不多。据报道,美Davy Vekee公司和UCC公司联合开发的乙醇脱氢 制乙酸乙酯新工艺已工业化。 据报道,国外开发了一种使用Pd/silicoturgstic双效催化剂使用乙烯和氧气一步生 成乙酸乙酯的新工艺。低于180℃和在25%的乙烯转化率的条件下,乙酸乙酯的选择性为46%。催化剂中的Pd为氧化中心silicoturgstic酸提供酸性中心。 随着科技的不断进步,更多的乙酸乙酯的生产方法不断被开发,我国应不断吸收借鉴 国外的先进技术,从根本上改变我国乙酸乙酯的生产状况。 三. 乙酸乙酯的生产方案及流程 1.酯化法 酯化工艺是在硫酸催化剂存在下,乙酸与乙醇发生酯化脱水反应生成乙酸乙酯的工艺。

化学实验报告——乙酸乙酯的合成

乙酸乙酯的合成 一、 实验目的和要求 1、 通过乙酸乙酯的制备,加深对酯化反应的理解; 2、 了解提高可逆反应转化率的实验方法; 3、 熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。 二、 实验内容和原理 本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯: 243323252H SO CH COOH CH CH OH CH COOC H H O ++ 副反应: 24 32322322H SO CH CH OH CH CH OCH CH H O ???→+ 由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。为了提高酯的产率,通常都让某 一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。因为乙醇便宜、易得,本实验中乙醇过量。但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。 由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。这些共沸物的沸点都很低,不超过72 ℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。 表一、乙酸乙酯共沸物的组成与沸点 三、 主要物料及产物的物理常数 表二、主要物料及产物的物理常数

四、主要仪器设备 仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)折光仪;气相色谱仪。 试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl饱和溶液。 五、实验步骤及现象 表三、实验步骤及现象

化工设计专业课程设计

南京工业大学 《化工设计》专业课程设计 设计题目乙醛缩合法制乙酸乙酯 学生姓名胡曦班级、学号化工091017 指导教师姓名任晓乾 课程设计时间2012年5月12日-2012年6月1日 课程设计成绩 设计说明书、计算书及设计图纸质量,70% 独立工作能力、综合能力及设计过程表现,30% 设计最终成绩(五级分制) 指导教师签字

目录一、设计任务3 二、概述4 2.1乙酸乙酯性质及用途4 2.2乙酸乙酯发展状况4 三. 乙酸乙酯的生产方案及流程5 3.1酯化法5 3.2乙醇脱氢歧化法7 3.3乙醛缩合法7 3.4乙烯、乙酸直接加成法9 3.5各生产方法比较9 3.5确定工艺方案及流程9 四.工艺说明10 4.1. 工艺原理及特点10 4.2 主要工艺操作条件错误!未定义书签。 4.3 工艺流程说明10 4.4 工艺流程图(PFD)错误!未定义书签。4.5物流数据表10 4.6物料平衡错误!未定义书签。 4.6.1工艺总物料平衡10 4.6.2 公共物料平衡图错误!未定义书签。 五. 消耗量19 5.1 原料消耗量19 5.2 催化剂化学品消耗量19 5.3 公共物料及能量消耗21 六. 工艺设备19 6.1工艺设备说明19 6.2 工艺设备表19 6.3主要仪表数据表19 6.4工艺设备数据表19 6.5精馏塔Ⅱ的设计19 6.6最小回流比的估算21 6.7逐板计算23 6.8逐板计算的结果及讨论23 七. 热量衡算24 7.1热力学数据收集24

7.2热量计算,水汽消耗,热交换面积26 7.3校正热量计算、水汽消耗、热交换面积(对塔Ⅱ)29 八.管道规格表24 8.1 装置中危险物料性质及特殊储运要求24 8.2 主要卫生、安全、环保说明26 8.3 安全泄放系统说明24 8.4 三废排放说明26 九.卫生安全及环保说明24 9.1 装置中危险物料性质及特殊储运要求24 9.2 主要卫生、安全、环保说明26 9.3 安全泄放系统说明24 9.4 三废排放说明26 表10校正后的热量计算汇总表34 十有关专业文件目录34 乙酸乙酯车间工艺设计 一、设计任务 1.设计任务:乙酸乙酯车间 2.产品名称:乙酸乙酯 3.产品规格:纯度99.5% 4.年生产能力:折算为100%乙酸乙酯10000吨/年 5.产品用途:作为制造乙酰胺、乙酰醋酸酯、甲基庚烯酮、其他有机化合物、合成香料、合成药物等的原料;用于乙醇脱水、醋酸浓缩、萃取有机酸;作为溶剂广泛应用于各种工业中;

富马酸二甲酯合成工艺设计

一.设计任务 1、基本数据 生产任务:年产200吨富马酸二甲酯 反应原料纯度:顺丁烯二酸 98% 甲醇 98% 硫酸 98% 生产要求:年工作日为300天,间歇生产 2、设计内容及要求 (一)内容 1、对富马酸二甲酯反应系统的物料衡算、热量衡算; 2、主体反应设备合成釜的选型计算以及辅助设备的选型计算; 3、绘制物料衡算的工艺流程图(一张); 4、绘制带控制节点的的工艺流程图(一张); 5、绘制车间平面布置图(一张); 6、编制设计说明书(一份)。 (二)具体要求 1、绘制的带控制点的工艺流程图必须符合化工制图的规范,并且字体必须工整。 2、编制的课程设计说明书应对计算过程与工艺流程的选择以及控点的确定进行详细的说明和解释。 二.产品简介 富马酸二甲酯为由甲醇与富马酸或顺丁烯二酸酐、顺丁烯二酸酯化而成,简称富马酯(DMF) ,学名反丁烯二甲酯、别名延胡索酸二甲酯,结构式 ( :CHCOOCH3) 2 ,分子式C6H8O4 ,是无色或白色鳞片晶体,熔点102~105 ℃, 常温会升华,无味,略具酯的香味,易溶于氯仿、醇、丙酮、乙酸乙酯,可溶于苯、甲苯、CCl4 ,微溶于水及热水中,对光稳定,在紫外线及阳光下72 h 基本无变化,110 ℃热 1 h 不分解,对热、碱、盐也有一定的稳定性。但其水溶液对热的酸、碱稳定性较差,对氧化剂、还原剂、蛋白质、纤维、脂肪、糖等有好的稳定性,对金属无腐蚀性,其水溶液pH 值为 6. 7~7. 3 ,所以DMF 性质稳定。富马酸二甲酯(DMF)是目前国内外研究开发的一种新型防霉防腐剂,具有良好的抑菌杀菌作用,其应用pH 值范围较广(为3~8) ,可在酸性或中性条件下使用,能抑制30 多种霉菌。其综合抗菌防腐性能优于目前常用的苯甲酸、山梨酸、丙酸及

乙酸乙酯的反应器设计流程

摘要 乙酸乙酯是一类重要的有机溶剂和有机化工基本原料,其用途非常广泛,目前我国采用传统的方法制备即乙酸和乙醇为原料,浓硫酸为催化剂直接催化合成乙酸乙酯。所以通过对乙酸乙酯的理化性质,社会用途与需求和国内外发展现状进行研究调查以及乙酸乙酯在实验室制法和工业生产各方面对比之后,为此对乙醇和乙酸的缩合进行了乙酸乙酯合成工艺的课程设计。本选题为年产量为年产5017吨乙酸乙酯的反应器的设计。对工业生产中的物料衡算,热量衡算和合成工艺的设备等方面为间歇釜式反应器的工业设计提供较为详尽的数据与图纸。本选题为年产量为年产5017吨乙酸乙酯的反应器的设计。 关键字:乙酸;乙醇;乙酸乙酯;合成工艺;间歇式反应器 Abstract Ethyl acetate is a kind of important organic solvents and basic organic chemical raw materials,

its application is very broad, our country prepared using traditional methods that acetic acid and ethanol as raw material, concentrated sulfuric acid catalyzed direct synthesis of ethyl acetate. So through the social use of physical and chemical properties of ethyl status quo needs, and conduct research and development at home and abroad as well as various aspects of ethyl acetate after comparing laboratory and industrial production system of law, for the condensation of ethanol and acetic acid were synthesis of ethyl curriculum design. The topic for the annual production of 5,017 tons annual output of ethyl reactor design. In industrial production of material balance, heat balance and synthesis process equipment to provide more detailed data and drawings for the batch tank reactor industrial design. The topic for the annual production of 5,017 tons annual output of ethyl reactor design. Key words: Acetic acid; Ethanol; Ethyl acetate; Synthesis process; Batch reactor 目录 摘要 (Ⅰ) Abstract (Ⅱ) 第一章前言 (4) 1.1 乙酸乙酯概述 (4)

乙酸乙酯

乙酸乙酯 乙酸乙酯的分子式是C4H8O2,CAS号为141-78-6.是乙酸中的羟基被乙氧基取代而生成的化合物。 无色透明液体,有水果香,易挥发,对空气敏感,能吸水分,水分能使其缓慢分解而呈酸性反应。可用作纺织工业的清洗剂和天然香料的萃取剂,也是制药工业和有机合成的重要原料。 基本信息 乙酸乙酯 Aceticether 醋酸乙酯 CH3COOC2H5 相对分子质量 有机物-酯 不管制 密封阴凉干燥保存 展开 分子结构 基本信息 中文名称:乙酸乙酯 英文名称:Ethyl acetate 中文别名:醋酸乙酯;醋酸乙脂 英文别名:Acetic acid ethyl ester; ethyl acetate B&J brand 4 L; ETHYLACETATE ULTRA RESI-ANAL.; ETHYL ACETATE CAPILLARY GRADE; Ethyl Acetate Specially Purified - SPECIFIED; Acetic Ether; RFE; acetic ester CAS号:141-78-6 分子式:C4H8O2 分子量:

物性数据 1.性状:无色澄清液体,有芳香气味,易挥发。[1] 2.熔点(℃):[2] 3.沸点(℃):[3] 4.相对密度(水=1):(20℃)[4] 5.相对蒸气密度(空气=1):[5] 6.饱和蒸气压(kPa):(20℃)[6] 7.燃烧热(kJ/mol):-2072[7] 8.临界温度(℃):[8] 9.临界压力(MPa):[9] 10.辛醇/水分配系数:[10] 11.闪点(℃):-4(CC);(OC)[11] 12.引燃温度(℃):[12] 13.爆炸上限(%):[13] 14.爆炸下限(%):[14] 15.溶解性:微溶于水,溶于乙醇、丙酮、乙醚、氯仿、苯等多数有机溶剂。[15] 16.黏度(mPa·s,20oC): 17.闪点(oC,闭口):-3 18.闪点(oC,开口): 19.燃点(oC): 20.蒸发热(KJ/mol,.): 21.熔化热(KJ/mol): 22.生成热(KJ/mol): 23.(KJ/(kg·K),,定压): 24.电导率(S/m,25oC):×10-9 25.热导率(W/(m·K),20oC): 26.体膨胀系数(K-1,20oC): 27.临界密度(g·cm-3): 28.临界体积(cm3·mol-1):286 29.临界压缩因子: 30.偏心因子: 31.溶度参数(J·cm-3): der Waals面积(cm2·mol-1):×109 der Waals体积(cm3·mol-1): 34.气相标准燃烧热(焓)(kJ·mol-1):

乙酸乙酯车间工艺设计

目录 一、设计任务 (2) 二、概述 (2) 1.乙酸乙酯性质及用途 (2) 2.乙酸乙酯发展状况 (3) 三. 乙酸乙酯的生产方案及流程 (4) 1、酯化法 (4) 2. 乙醇脱氢歧化法 (5) 3、乙醛缩合法 (6) 4、乙烯、乙酸直接加成法 (7) 5、确定工艺方案及流程 (8) 四.工艺计算 (8) 4.1. 物料衡算 (8) 4.2 初步物料衡算 (10) 五. 设备设计 (16) 5.1 精馏塔Ⅱ的设计 (16) 5.2最小回流比的估算 (18) 5.3 逐板计算 (20) 5.4 逐板计算的结果及讨论 (20) 六. 热量衡算 (21) 6.1 热力学数据收集 (21) 6.2 热量计算,水汽消耗,热交换面积 (23) 6.3 校正热量计算、水汽消耗、热交换面积(对塔Ⅱ) (26) 表10校正后的热量计算汇总表 (32)

乙酸乙酯车间工艺设计 一、设计任务 1.设计任务:乙酸乙酯车间 2.产品名称:乙酸乙酯 3.产品规格:纯度99% 4.年生产能力:折算为100%乙酸乙酯1880吨/年 5.产品用途:作为制造乙酰胺、乙酰乙酸酯、甲基庚烯酮、其他有机化合物、合成香料、合成药物等的原料;用于乙醇脱水、乙酸浓缩、萃取有机酸;作为溶剂广泛应用于各种工业中;食品工业中作为芳香剂等。 由于本设计为假定设计,因此有关设计任务书中的其他项目如:进行设计的依据、厂区或厂址、主要技术经济指标、原料的供应、技术规格以及燃料种类、水电汽的主要来源,与其他工业企业的关系、建厂期限、设计单位、设计进度及设计阶段的规定等均从略。 二、概述 1.乙酸乙酯性质及用途 乙酸乙酯又名乙酸乙酯,乙酸醚,英文名称Ethyl Acetate或 Acetic Ether Vinegar naphtha.乙酸乙酯是具有水果及果酒芳香的无色透明液体,其沸点为77℃,熔点为-83.6℃,密度为0.901g/cm3,溶于乙醇、氯仿、乙醚和苯等有机溶剂。 乙酸乙酯的重要用途是工业溶剂,它是许多树脂的高效溶剂,广泛应用于油墨、人造革、胶粘剂的生产中,也是清漆的组份。它还用于乙基纤维素、人造革、油毡、着色纸、人造珍珠的粘合剂、医用药品、有机酸的提取剂以及菠萝、香蕉、草莓等水果香料和威士忌、奶油等香料。此外,还用于木材纸浆加工等产业部门。对于用很多天然有机物的加工,例如樟脑、

乙酸乙酯的工业制备方法研究

制备乙酸乙酯的工业方法研究 摘要:乙酸乙酯是一种重要的精细化学品应用比较广泛,世界需求量很大。其主要工业制备方法有乙酸酯化法、乙醛缩合法、乙醇脱氢法和乙烯加成法。本文介绍了四种制法的反应原理和工艺特点,结合当代社会精细化工产业的发展特点对这几种制法进行比较分析。 关键字:乙酸乙酯酯化反应反应机理乙醛缩合乙醇脱氢乙烯加成Abstract: Ethyl acetate is an important fine chemicals,it is used widely in the world and in great demand.The main industrial preparation of ethyl acetate are acid esterification,oxidation of acetaldehyde,ethanol dehydrogenation and ethylene-plus method.This article describes the principle of the reaction system of law and process characteristics.With contemporary society characterized by the development of fine chemical industry we compare these various methods . Keywords: ethyl acetate、esterification、reaction mechanis、aldehyde condensation Dehydrogenation of ethanol、Addition of ethylene 1.前言 精细化工产品(即精细化学品)是指那些具有特定的应用功能,技术密集,商品性强,产品附加值较高的化工产品。精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行业和高新技术产业的各个领域。大力发展精细化工已成为我国调整化学工业结构、提升化学工业产业能级和扩大经济效益的战略重点[1]。 乙酸乙酯( EA),又名醋酸乙酯,作为一类重要的精细化学品应用较为广泛,具有良好的溶解性、快干性,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树酯、乙酸纤维树酯、合成橡胶等生产;也可用于生产复印机用液体硝基纤维墨水;在纺织工业中用作清洗剂;食品工业中用作特殊改性酒精的香味萃取剂;香料工业中是重要的香料添加剂,可作为调香剂的组分。此外,乙酸乙酯也可用作

乙酸乙酯反应器课程设计

《反应工程》 课程设计说明书 院(部)名称化学与材料工程学院学生姓名 设计项目乙酸乙酯的反应器设计 指导教师 专业班级化学工程与工艺

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

乙酸乙酯的几种制备方法

几种工业乙酸乙酯制备方法的技术经济对比 李雄 (中国石化上海石油化工股份有限公司,200540) 乙酸乙酯是应用最广泛的脂肪酸酯之一,其制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等。相对比,乙醛缩合法生产乙酸乙酯路线投资低、成本也较低,较适合乙醛富裕地区投资生产。 关键词:乙醛乙酸乙酯技经指标成本 1 用途及市场情况介绍 乙酸乙酯(EA),又名醋酸乙酯,是应用最广泛的脂肪酸酯之一,具有优良的溶解性能,是一种快干性的、极好的工业溶剂,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树酯、乙酸纤维树酯、合成橡胶等生产;也可用于生产复印机用液体硝基纤维墨水;在纺织工业中用作清洗剂;食品工业中用作特殊改性酒精的香味萃取剂;香料工业中是最重要的香料添加剂,可作为调香剂的组分。以外,EA也可用作粘合剂的溶剂、油漆的稀释剂以及制造药物、染料的原料。 1.1 国际市场分析 乙酸乙酯由于其特殊的性能,在世界化工市场相当活跃。美国和日本是世界上最大的乙酸乙酯生产和消费国。全世界生产能力中美国占31.73%,日本占35.75%。美国的主要生产公司是Eastman公司、Hoechst Calanese及孟山都公司,总生产能力为127 kt/a。日本的主要生产公司是千叶乙酸乙酯、日本合成化学、德山石油化学及协和油化,总生产能力为193 kt/a。 在亚洲地区,乙酸乙酯的主要市场是日本、中国和东南亚。日本是该地区乙酸乙酯的净出口国,有近50%的生产能力在日本,该地区的生产缺口达70 kt/a,目前主要从美国和欧洲进口。近年来,日本的乙酸乙酯产量以每年10%的速率增长,增加量基本用于出口。 1.2 国内供需及预测 (1)生产能力 目前,我国乙酸乙酯的生产企业有30多家,年生产能力在万吨以上的仅有两家,其余均为千吨级生产装置,除上海石化采用乙醛法生产、山东临沭化肥厂是采用乙醇脱氢法生产外都是采用直接酯化法。 (2)产量和进口量

乙酸乙酯反应器设计

青海大学《化工过程设备设计Ⅱ》 设计说明书 设计题目:年产×103t乙酸乙酯反应器设计 班级:2013级化工2班 姓名:邬天贵 学号:30

前言 乙酸乙酯,又称醋酸乙酯,分子式C4H8O2。它是一种无色透明易挥发的可燃性液体,呈强烈清凉菠萝香气和葡萄酒香味。乙酸乙酯能很好的溶于乙醇、氯仿、乙醚、甘油、丙二醇和大多数非挥发性油等有机溶剂中,稍溶于水,25℃时,1ml乙酸乙酯可溶于10ml水中,而且在碱性溶液中易分解成乙酸和乙醇。水能使其缓慢分解而呈酸性。乙酸乙酯与水和乙醇都能形成二元共沸混合物,与水形成的共沸物沸点为℃,其中含水量为%(质量分数)。与乙醇形成的共沸物沸点为℃。还与%的水和%的乙醇形成三元共沸物,其沸点为℃。 乙酸乙酯应用最广泛的脂肪酸酯之一,具有优良的溶解性能,是一种较好的工业溶剂,已经被广泛应用于醋酸纤维、乙基纤维、氯化橡胶、乙醛纤维树脂、合成橡胶等的生产,也可用于生产复印机用液体硝基纤维墨水,在纺织工业中用作清洗剂,在食品工业中用作特殊改性酒精的香味萃取剂,在香料工业中是最重要的香味添加剂,可作为调香剂的组分,乙酸乙酯也可用作黏合剂的溶剂,油漆的稀释剂以

及作为制造药物、染料等的原料。 目前,国内外市场需求不断增加。在人类不断注重环保的今天,在涂料油墨生产中采用高档溶剂是大势所趋。作为高档溶剂,乙酸乙酯在国内外的应用在持续稳定的增长,在建筑、汽车等行业的迅速发展,也会带动对乙酸乙酯类溶剂的需求。 工业生产技术 目前全球乙酸乙酯工业生产方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和乙烯加成法等。传统的醋酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要采用后三种方法,其中新建装置多采用乙烯加成法。本设计采用醋酸酯化法。 醋酸酯化法 在硫酸催化剂作用下,醋酸和乙醇直接酯化生成乙酸乙酯。该工艺方法技术成熟,投资少,操作简单,但缺点是生产成本高、硫酸对设备腐蚀性强、副反应多、产品处理困难、环境污染严重。目前我国大多数企业仍采用醋酸酯化法生产乙酸乙酯。

乙酸乙酯的制备

乙酸乙酯的制备 摘要: 关键词:乙酸乙酯制备酯化 引言 [1]纯净的乙酸乙酯是无色透明有芳香气味的液体,微溶于水,溶于醇、酮、醚、氯仿等多数有机溶剂。乙酸乙酯是一种用途广泛的精细化工产品,具有优异的溶解性、快干性,用途广泛,是一种非常重要的有机化工原料和极好的工业溶剂。它特有的溶解性和快干性使其被广泛应用于工业合成有机纤维、医疗制药业和食品食用香精加工业和化妆品香料制造业,更被作为低毒有机溶剂推广于化工生产的各个领域。 一、实验目的 (1)、熟悉和掌握酯化反应的基本原理和制备方法 (2)掌握回流、洗涤、蒸馏等基本操作 二、实验原理与用品 (1)原理 本实验乙酸乙酯采用乙酸和乙醇在少量浓硫酸催化下进行制备,反应式为 CH3COOH+CH3CH2OH CH3COOCH2+H2O 酯化反应是一个可逆反应,在反应中,酯的合成与酯的水解形成一个动态平衡,采用增加醇或酸的量,蒸出酯和水的方法,可以增加酯的产率。由于酯和水能形成二元共沸混合物,比乙醇和乙酸的沸点都低,因此乙酸乙酯很容易被蒸出。制得的粗产物需要进行纯化,进一步除去其中混有的乙醇和水。 (2)用品 实验仪器:圆底烧瓶蒸馏头球形冷凝管直形冷凝管锥形瓶量筒温度计分液漏斗烧杯折射仪电热套 实验试剂: 冰醋酸浓硫酸无水乙醇饱和碳酸钠溶液饱和食盐水饱和氯化钙溶液无水硫酸镁 三实验步骤 (1)制备 在50ml圆底烧瓶中加入19ml无水乙醇、12ml冰醋酸和2ml浓硫酸,加入几粒沸石,摇匀后,装上球形冷凝管,在电热套上小火加热,回流30min后停止加热。冷却后,取下球形冷凝管,装上蒸馏头,将仪器改装成普通蒸馏装置,加热蒸馏,至流出液体积约为反应物总体积的1/2为止。 (2)纯化 馏出液中含有乙酸乙酯及少量乙醇、乙醚、水和醋酸。在摇动下,缓缓地加入饱和碳酸钠溶液约10ml,直至无二氧化碳气体逸出,然后移入分液漏斗中,充分振荡,静置后,分去下层水相,酯层用10ml饱和食盐水洗涤后,再分别用10ml饱和氯化钙溶液洗涤两次,弃去下层液,酯层自漏斗上口倒入干燥的50ml锥形瓶中,用无水硫酸钠干燥30min。 将干燥过的乙酸乙酯滤入干净的蒸馏瓶中,加入沸石后在电热套上进行蒸馏,收集73~78℃的馏分。 四、实验结果及讨论 (1)结果;本实验乙酸乙酯13ml,折射率为1.5159。

乙醛缩合法制乙酸乙酯专业课程设计报告书

《化工设计》专业课程设计 设计题目乙醛缩合法制乙酸乙酯 设计人员杨福、胡曦、王义超、常伟 指导教师姓名任晓乾 课程设计时间20 12年5月12日-20 12年6月1日 课程设计成绩

指导教师签字 目录 一、设计任务 (6) 二、概述 2.1乙酸乙酯性质及用途 (7) 2.2乙酸乙酯发展状况 (8) 三. 乙酸乙酯的生产方案及流程 3.1 酯化法 (9) 3.2乙醇脱氢歧化法 (11) 3.3乙醛缩合法 (11) 3.4乙烯、乙酸直接加成法 (13) 3.5经济指标对比 (13) 3.6讨论分析 (19) 3.7确定工艺方案及流程 (22) 3.8厂区布置说明总述 (23) 四.工艺计算 4.1物料衡算 (27) 4.2乙醛缩合法生产乙酸乙酯步骤 (28) 4.3物性数据表 (28) 4.4计算结果列表汇总 (31) 五. 设备选型 5.1 催化剂反应器选型 (38)

5.2 列管式反应器 (40) 5.3 乙醛储罐 (41) 5.4乙酸乙酯储罐 (41) 5.5精馏塔Ⅰ的设计 (42) 5.6精馏塔Ⅱ的设计 (43) 5.7精馏塔Ⅲ的设计 (44) 5.7.1精馏塔设计计算示例 (45) 5.8沉降器 (61) 5.9回流罐 (62) 5.10管口表 (62) 5.11动设备选型 (63) 5.12换热器选型 (65) 六. 控制系统设计 6.1 DCS控制系统 (68) 6.2 先进控制系统APC (70) 6.3 紧急停车系统ESD (71) 七. 供电系统 7.1 设计范围 (72) 7.2 电力负荷性质 (72) 7.3 高压供电及变电所系统设计 (72) 7.4功率因数补偿 (73) 7.5厂区高压配电及车间变电所安全设计 (73)

工业乙酸乙酯的制备方法

工业乙酸乙酯的制备方法 目前世界上工业乙酸乙酯主要制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等。传统的乙酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要是乙醛缩合法和乙醇脱氢法,在乙醛原料较丰富的地区万吨级以上的乙醛缩合法装置得到了广泛的应用。乙醇脱氢法是近年开发的新工艺,在乙醇丰富且低成本的地区得到了推广。最新的乙酸乙酯生产方法是乙烯加成法,1998年在印度尼西亚迈拉库地区采用日本昭和电工专利技术建成了50 kt/a生产装置。 (1)乙酸酯化法 乙酸酯化法是传统的乙酸乙酯生产方法,在催化剂存在下,由乙酸和乙醇发生酯化反应而得。 CH3CH2OH+CH3COOH=CH3COOCH2CH3+H2O 乙醇乙酸乙酸乙酯水 反应除去生成水,可得到高收率。该法生产乙酸乙酯的主要缺点是成本高、设备腐蚀性强,在国际上是属于被淘汰的工艺路线。 (2)乙醛缩合法 在催化剂乙醇铝的存在下,两个分子的乙醛自动氧化和缩合,重排形成一分子的乙酸乙酯。 2CH3CHO→CH3COOCH2CH3 乙醛乙酸乙酯 该方法20世纪70年代在欧美、日本等地已形成了大规模的生产装置,在生产成本和环境保护等方面都有着明显的优势。 (3)乙醇脱氢法 采用铜基催化剂使乙醇脱氢生成粗乙酸乙酯,经高低压蒸馏除去共沸物,得到纯度为99.8%以上乙酸乙酯。 2C2H5OH→CH3COOCH2CH3+H2 乙醇乙酸乙酯氢 (4)乙烯加成法

在以附载在二氧化硅等载体上的杂多酸金属盐或杂多酸为催化剂的存在下,乙烯气相水合后与气化乙酸直接酯化生成乙酸乙酯。 CH2CH2+CH3COOH=CH3COOCH2CH3 乙烯乙酸乙酸乙酯 该反应乙酸的单程转化率为66%,以乙烯计乙酸乙酯的选择性为94%。Rhone-Poulenc 、昭和电工和BP等跨国公司都开发了该生产工艺。 由于上海石化股份有限公司具有丰富的乙烯、乙酸和乙醛,故本文对乙酸酯化法、乙醛缩合法和乙烯加成法生产乙酸乙酯的技术经济指标予以对比分析。 技术经济指标对比 对于同为80 kt/a级的工业乙酸乙酯生产装置,分析其各项经济技术指标,对比如表2。表2 乙酸乙酯各工艺路线技术经济指标对照 工艺路线 乙醛缩合法 乙烯加成法 酯化法 原料单耗 /t·t-1 乙烯 - 0.355 乙醛 1.02 乙酸 0.718 0.692 乙醇 - 0.533 其他 0.005 0.01 0.005

乙酸乙酯的合成

乙酸乙酯的制备 一、实验目的 1. 掌握乙酸乙酯的制备原理及方法,掌握可逆反应提高产率的措施。 2. 掌握分馏的原理及分馏柱的作用。 3. 进一步练习并熟练掌握液体产品的纯化方法。 二、实验原理 乙酸乙酯的合成方法很多,例如:可由乙酸或其衍生物与乙醇反应制取,也可由乙酸钠 与卤乙烷反应来合成等。其中最常用的方法是在酸催化下由乙酸和乙醇直接酯化法。常用浓 硫酸、氯化氢、对甲苯磺酸或强酸性阳离子交换树脂等作催化剂。若用浓硫酸作催化剂,其 用量是醇的%即可。其反应为: H2SO4 主反应:CH3COOH + CH3CH2OH CH3COOCH2CH3 + H2O H2SC4 畐I」反应:2CH3CH2CH CH3CH2CCH2CH3 + H2C H2SC4 CH3CH2CH CH2二CH2 + H2C 酯化反应为可逆反应,提高产率的措施为:一方面加入过量的乙醇,另一方面在反应过程中不断蒸出生成的产物和水,促进平衡向生成酯的方向移动。但是,酯和水或乙醇的共沸物沸点与乙醇接近,为了能蒸出生成的酯和水,又尽量使乙醇少蒸出来,本实验采用了较长的分馏柱进行分馏。 药品及物理常数

四、实验装置图 温度计水洗涤后,再每次用10ml饱和氯化钙溶液洗涤两次,弃去下层水相,酯层自漏斗上口 倒入干燥的锥形瓶中,用无水碳酸钾干燥。

将干燥好的粗乙酸乙酯小心倾入 60ml 的梨形蒸馏瓶中(不要让干燥剂进入瓶中) ,加 入沸石后在水浴上进行蒸馏,收集 73- 80C 的馏分。产品5-8g 。 七、 操作要点及说明 1、本实验一方面加入过量乙醇,另一方面在反应过程中不断蒸出产物,促进平衡向生 刺形分懈柱 温度计 五、实验流程图 10ml 乙醇 8ml 醋酸 分液漏 斗中混 合均匀 4ml 乙醇一三口瓶 5ml 浓硫酸 中混合 2粒沸石一均匀 10ml 饱 4和氯化 钙洗涤 2次- 无水 —碳酸钾 干燥 六、 实验步骤 在100ml 三颈瓶中,加入 4ml 乙醇,摇动下慢慢加入 5ml 浓硫酸,使其混合均匀,并 加入几 粒沸石。三颈瓶一侧口插入温度计, 另一侧口插入滴液漏斗, 漏斗末端应浸入液面以 下,中间口安一长的刺形分馏柱(整个装置如上图) 。 仪器装好后,在滴液漏斗内加入 10ml 乙醇和8ml 冰醋酸,混合均匀,先向瓶内滴入约 2ml 的混合液,然后,将三颈瓶在石棉网上小火加热到 110— 120C 左右,这时蒸馏管口应有 液体流出,再自滴液漏斗慢慢滴入其余的混合液, 控制滴加速度和馏出速度大致相等, 并维 持反应温度在110— 125 C 之间,滴加完毕后,继续加热 10分钟,直至温度升高到 130C 不 再有馏出液为止。 馏出液中含有乙酸乙酯及少量乙醇、 乙醚、水和醋酸等, 在摇动下,慢慢向粗产品中加 入饱和的碳酸钠溶液(约 6ml )至无二氧化碳气体放出,酯层用 PH 试纸检验呈中性。移入 分液漏斗中,充分振摇(注意及时放气! )后静置,分去下层水相。酯层用 10ml 饱和食盐 直形冷凝管 滴液漏斗 蒸馏装置 蒸懈瓶 约6ml 饱和碳酸钠 110 — 125 °C 干燥仪― 收集73 — 80 C 的馏分, 器蒸馏 称重,计算产率。 10ml 饱 ?和食盐 水洗涤

乙酸乙酯间歇反应釜课程设计

乙酸乙酯间歇反应釜 工 艺 设 计 说 明 书

目录 前言 (3) 摘要 (4) 一.设计条件和任务 (4) 二.工艺设计 (6) 1. 原料的处理量 (6) 2. 原料液起始浓度 (7) 3. 反应时间 (7) 4. 反应体积 (8) 三. 热量核算 (8) 1. 物料衡算 (8) 2. 能量衡算 (9) 3. 换热设计 (12) 四. 反应釜釜体设计 (13) 1. 反应器的直径和高度 (13) 2. 筒体的壁厚 (14) 3. 釜体封头厚度 (15) 五. 反应釜夹套的设计 (15) 1. 夹套DN、PN的确定 (15) 2. 夹套筒体的壁厚 (15) 3. 夹套筒体的高度 (16) 4. 夹套的封头厚度 (16) 六. 搅拌器的选型 (17) 1. 搅拌桨的尺寸及安装位置 (17) 2. 搅拌功率的计算 (18) 3. 搅拌轴的的初步计算 (18) 结论 (19) 主要符号一览表 (20) 总结 (21) 参考书目 (22)

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

乙酸乙酯的合成

乙酸乙酯的合成 实验五乙酸乙酯的合成 【实验目的】 1、了解以直接酯化法制备有机酸酯的一般原理及方法。 2、掌握蒸馏、分液漏斗的操作方法。 【实验原理】 醇和有机酸在酸的催化下发生酯化反应可生成酯: 这一反应为可逆反应,为了提高酯的产量,实验中采取加入过量乙醇及不断把反应中生成的酯和水蒸出的方法,在工业中,一般采用加入过量的乙酸,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元恒沸物给分离带来困难。 实验步骤: 方法一、在250ml三颈瓶中加入9ml乙醇,摇动下慢慢加入12ml浓硫酸使混合均匀,并加入几粒沸石。三颈瓶中一侧口加入温度计到液面下,另一侧口连接蒸馏装置,中间口安装滴液漏斗,漏斗末端应浸入液面以下,距瓶底约0.5,1cm。 仪器装好后,在滴液漏斗中加入由14ml乙醇和14.3ml冰醋酸组成的混合液,先向瓶内滴入3,4ml,然后用电热套加热到110,120?左右,这时蒸馏管口应有液体流出,再自滴液漏斗中慢慢滴入其余的混合液,控制滴加速度和馏出速度大致相等,并维持反应温度在110,120?左右,滴加完毕后,继续加热15分钟,直至温度升到130,132?,并不再有馏出液馏出为止。 在振摇下,慢慢向馏出液中加入饱和的碳酸钠溶液至无二氧化碳气体逸出,酯层对pH试纸实验呈中性。将混合液移至分液漏斗中,充分振摇后静置,分去下层水相。酯层用10ml饱和食盐水洗涤后,再每次用10ml饱和氯化钙溶液洗涤两次,

弃去下层液,酯层自漏斗上口倒入干燥的锥形瓶中,用无水硫酸镁干燥。将干燥后的粗乙酸乙酯滤入蒸馏瓶中,加入沸石后在水浴上进行蒸馏,收集73,78?的馏分,产量12,12g。 方法二、在100ml圆底烧瓶中加入15ml冰醋酸和23ml95,乙醇,在振摇和冷却下分次加入7.5ml浓硫酸,混合均匀,装入沸石,装上回流冷凝管,水浴加热回流30分钟。稍冷,拆去回流装置,加入沸石,改装成蒸馏装置,水浴蒸馏至不再有馏出物为止。往馏出液中加10ml饱和碳酸钠溶液,充分振摇,使有机相呈碱性或中性。将混合液移至分液漏斗中,静置后分去水相,有机相中加10ml 饱和食盐水洗涤,再用饱和氯化钙溶液洗涤两次,每次用量10ml。分出有机相于一干燥的小锥形瓶中,加入沸石,水浴加热蒸馏,收集73,78?的馏分,称重。产量约13.1,15.6g。 【注意】 1、加热温度不宜过高,否则会增加副产物乙醚的含量。滴加速度太快会使醋酸和乙醇来不及作用而被蒸出。 2、馏出液中除了酯和水外,还有少量尾反应的乙醇和乙酸等杂质,顾用碱除去其中的酸,用饱和氯化钙溶液除去其中的醇,否则会影响收率。 3、用饱和氯化钙溶液洗涤前碳酸钠必须除去,否则用饱和氯化钙溶液洗涤时,会产生絮状的碳酸钙沉淀,造成分离困难。尾减少酯在水中的溶解度,顾用饱和食盐水洗涤。

乙酸乙酯的合成

乙酸乙酯的合成工艺 1.乙酸乙酯简介 乙酸乙酯又称醋酸乙酯(分子式:C4H8O2 )。纯净的乙酸乙酯是无色透明具有刺激性气味的液体,是一种用途广泛的精细化工产品,具有优异的溶解性、快干性,用 途广泛,是一种非常重要的有机化工原料和极好的工业溶剂,被广泛用于醋酸纤维、 乙基纤维、氯化橡胶、乙烯树脂、乙酸纤维树酯、合成橡胶、涂料及油漆等的生产过 程中。 其主要用途有:作为工业溶剂,用于涂料、粘合剂、乙基纤维素、人造革、油毡 着色剂、人造纤维等产品中;作为粘合剂,用于印刷油墨、人造珍珠的生产;作为提 取剂,用于医药、有机酸等产品的生产;作为香料原料,用于菠萝、香蕉、草莓等水 果香精和威士忌、奶油等香料的主要原料。用作溶剂,及用于染料和一些医药中间体 的合成。是食用香精中用量较大的合成香料之一,大量用于调配香蕉、梨、桃、菠萝、葡萄等香型食用香精。是硝酸纤维素、乙基纤维素、乙酸纤维素和氯丁橡胶的快干溶剂,也是工业上使用的低毒性溶剂。还可用作纺织工业的清洗剂和天然香料的萃取剂,也是制药工业和有机合成的重要原料。 2.乙酸乙酯的合成方法 目前世界上工业乙酸乙酯主要制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法 和乙醇脱氢法等。传统的乙酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要 是乙醛缩合法和乙醇脱氢法,我国多采用乙酸酯化法进行生产。 2.1.乙酸乙醇酯化法 乙酸乙醇酯化法是乙酸和乙醇在浓硫酸催化作用下发生酯化反应来产乙酸乙酯, 该法在欧美被广泛采用, 如目前世界上最大生产厂商BP-Amoco公司, 采用酯化法生产EA, 其生产能力达200Kt/a。但酯化法存在硫酸腐蚀性强、副反应多、副产物处理困 难及对环境造成污染等缺点。近年来, 各国积极开发固体酸酯化催化剂来代替硫酸, 如 采用沸石分子筛固载的固体酸催化剂。但这些催化剂价格较贵, 活性下降快, 工业应用 尚不多。 2.2.乙醛酸合法 乙醛缩合法是将即两分子乙醛在乙醇(三乙氧基铝)作用下, 经反应生产乙酸乙酯。与酯化法相比, 缩合法具有原料消耗小、工艺简单、设备腐蚀小、投资少、三废排放量少等优点, 是一种比较经济的方法。但这种工艺受原料乙醛的限制, 一般应建在乙烯、

相关主题
文本预览
相关文档 最新文档