当前位置:文档之家› Wavelength dependence of linear polarization in the

Wavelength dependence of linear polarization in the

Wavelength dependence of linear polarization in the
Wavelength dependence of linear polarization in the

Wavelength dependence of linear polarization in the

visible and near infrared domain for large levitating grains

(PROGRA2instruments)

J.-B.Renard a,n,E.Hadamcik b,B.Coutéa,M.Jeannot a,A.C.Levasseur-Regourd c

a LPC2E-CNRS/Universitéd'Orléans,3A avenue de la recherche scientifique,F-45071Orléans cedex2,France

b UPMC LATMOS/IPSL,11boulevard d'Alembert,Guyancourt F-78280,France

c UPMC(Univ.Pierre et Marie Curie),UMR8190,LATMOS,4place Jussieu,75005Paris,France

a r t i c l e i n f o

Article history:

Received15October2013

Received in revised form

13January2014

Accepted20February2014

Available online20March2014

Keywords:

Polarization

Dust

Wavelength

Solar system

a b s t r a c t

Remote sensing measurements of light scattered by dust in solar system objects can

provide clues on their physical properties.Databases obtained in the laboratory with

numerous samples are necessary to interpret these measurements.We present here first

studies of the wavelength dependence of the linear polarization between545nm and

1.5μm,using the imaging polarimeters PROGRA2for large levitating compact grains

(PROGRA2-VIS in the visible domain,and the new instrument PROGRA2-IR in the near

infrared).The measurements are conducted in microgravity conditions during parabolic

flights for glass beads,quartz,sands,silicon carbides,anthracite,and lunar and Martian

https://www.doczj.com/doc/e912693575.html,parison between measurements on glass beads and Mie calculations with

glass spheres provides an assessment of the quality of the instruments.The dependence of

the polarization on the wavelength is related to the complex refractive index of the

particles,i.e.to their composition and to the size of the grains.More laboratory

measurements will be necessary,in particular with smaller grains in aggregates,to better

reproduce the remote sensing observations of solar system bodies.

&2014Elsevier Ltd.All rights reserved.

1.Introduction

Remote sensing observations(Earth-or space-based)of

the linear polarization of scattered light provide clues to

some physical properties of solid particles in different media,

such as their average size and size distribution,their struc-

ture and porosity,their complex refractive index,and their

albedo.In the case of irregular grains,the variation of

the degree(in percent)of the linear polarization(hereafter

called polarization)with the phase angle exhibits a bell

shaped curve,which can be described by a series of

different parameters:the minimum in polarization and the

corresponding phase angle,the“inversion angle”where

polarization changes sign and the slope at the inversion

angle,and finally the maximum in polarization and the

corresponding phase angle[1].In the visible and near

infrared domains(up to$2μm),where thermal infrared

emission is still negligible,the polarization phase curves are

often noticed to be wavelength dependent.This dependence

may be due to some particle size effect but also due to the

variation of the real and complex parts of the particles

refractive index with the wavelength.

Numerous wavelength dependences in polarization

observations have been reported for solar system bodies;

some general trends may thus be suggested.The polariza-

tion generally increases with the wavelength for comets

and C-type asteroids[2–7].The opposite trend is detected

for S-type asteroids and sometimes for specific cometary

Contents lists available at ScienceDirect

journal homepage:https://www.doczj.com/doc/e912693575.html,/locate/jqsrt

Journal of Quantitative Spectroscopy&

Radiative Transfer

https://www.doczj.com/doc/e912693575.html,/10.1016/j.jqsrt.2014.02.024

0022-4073/&2014Elsevier Ltd.All rights

reserved.

n Corresponding author.

E-mail address:jean-baptiste.renard@cnrs-orleans.fr(J.-B.Renard).

Journal of Quantitative Spectroscopy&Radiative Transfer146(2014)424–430

observations of, e.g.,the inner coma,an impact event, or a disruption[8–10].The variation of polarization with wavelength,up to approximately0.85μm,as observed for asteroids of different taxonomic classes,is well described by a linear trend,mainly attributed to the regolith compo-sition[6].For the interplanetary dust,the dependence of polarization with wavelength seems to be neutral in the visible domain,but is more difficult to assess since line-of-sight observations correspond to the observation of dust particles at different phase angles and solar distances [11,12].In Earth atmosphere studies,the wavelength dependence of polarization is used to constrain the size distribution of liquid aerosols(with the Mie theory)or to distinguish between liquid and solid aerosols[13,14]. Laboratory measurements of light scattering are necessary to interpret these measurements and to better understand the origin of the variation of polarization with wavelength.

For such studies,the particles can be deposited on surfaces or be in levitation.We will consider here only levitating particles,such as those found in planetary atmospheres,in cometary coma and tails,in the interpla-netary dust cloud,and on very low-mass asteroids.Data-bases presenting a large number of samples are available in the spectral domains below1μm,typically in the green, red and far-red spectral ranges[15–18].On the other hand,the near infrared domain,between$1and $2μm,is poorly documented.Thus,we present here the first laboratory measurements at 1.5μm of the light scattered by different samples of levitating irregular com-pact grains,obtained with the PROGRA2-IR instrument. The levitation is provided by microgravity during parabolic flights.The results are compared to previous measure-ments on the same samples conducted in the visible domain with the PROGRA2-VIS instrument at544and 633nm,to tentatively search for some tendencies in the wavelength dependence of the scattered light.

2.PROGRA2-IR instrument

The PROGRA2-IR instrument(French acronym for PRopriétés Optiques des GRains Astronomiques et Atmosphériques–Infra Rouge)relies on the same princi-ple of measurements as PROGRA2-VIS(VIS for visible)[15], as shown in Fig.1.The light source is a white lamp with a depolarizer filter,instead of randomly polarized lasers used in the past with PROGRA2-VIS.An optical fiber carries the light to the vial in which the particles are contained and lifted.The particles scatter the light when they cross the light beam.A polarizing beam splitter cube splits the scattered light in its components parallel and perpendi-cular to the scattering plane;they are recorded by two cameras having the same field of view.The vial and a third camera are mounted on a rotation device;the incident light beam and the vial rotate to change the phase angle in the10–1601range,the detection system being in a fixed position.This system allows us to minimize the optical misalignment that can occur during the parabolic flights. The third camera,on the rotation device,records the scattered light at a constant phase angle of901,and acts as a reference camera.

We used the CamIR1550cameras manufactured by the Applied Scintillation Technologies Company.These cameras offer the best compromise between the cost,the robustness(needed for parabolic flight campaigns)and the sensitivity.The spectral response of the cameras is between1.5and1.6μm;thus no additional filter is needed. We have verified that the cameras are indeed insensitive to other wavelengths by using different wavelength filters in the visible and in the near infrared domains.We have also verified that the cameras and their lenses do not modify the scattered polarization components.

The sensitivity response of this kind of camera is not linear;a$1.4power law must be applied on the recorded flux to retrieve the linearity.In fact,this corrective factor can slightly change from one camera to another,and strongly affect the polarization retrievals.We have recali-brated the power law correction for the three cameras by using neutral filters with various extinctions(two cameras follow a1.41power law,and the third one follows a1.39 power law).Finally,we have shown that no residual polarization is present by performing measurements at a phase angle of1801where the light beam is directly injected in the cameras,using different neutral filters.

Since images of the field of view were available,data corresponding to the presence of too many grains and thus possibly aggregates producing multiple scattering have been rejected.Because it is impossible to obtain a perfect synchronization of the images with such cameras,the recorded flux on each image(during1/25e s)is spatially integrated to produce a single polarized component value, as would be obtained with a photodiode.As a conse-quence,the polarization as a function of the grains'size cannot be directly measured on the polarization images as with PROGRA2-VIS.Then we consider the total scattered light from an ensemble of particles over a given period of time at a constant phase angle.

3.Conditions of measurements and data analysis

The measurements were conducted in microgravity conditions during parabolic flights funded by the French space agency CNES and the European space agency ESA, and managed by the Novespace Company.The parabolic flights provide an easy levitation of a cloud of grains larger than typically20μm with random orientations.A parabola lasts22s;31parabolas are conducted per flight and3 flights are performed during a campaign.To test first PROGRA2-IR and then to obtained first series of results,5 campaigns were conducted from2010to2013.

The measurements were performed at a fixed phase angle during each parabola,the particles randomly cross-ing the light beam.The phase angle was changed between two consecutive parabolas.The images were recorded from the beginning of the parabola,with grains not yet in the field of view,to the end of the parabola.

The recorded flux is integrated on each image provided by the three cameras.This flux is the addition of the light scattered by grains and of an offset acting as a baseline. The offset comes from the contributions of the electronic noise and of the stray light contamination.This baseline is determined when no grains are in the field of view,which

J.-B.Renard et al./Journal of Quantitative Spectroscopy&Radiative Transfer146(2014)424–430425

occurs several times during the parabola,and is then subtracted from the raw data.The remaining signal corre-sponds to the polarized components from the two first cameras and to the reference brightness from the third one.At a given phase angle,the brightness B is calculated using formula (1),where the polarized components (I 1)and (I 2)are respectively perpendicular and parallel to the scattering plane and where (I 3)is the reference brightness.The polarization P is calculated by formula (2).B erelative units T?eI 1tI 2T=I 3e1TP e%T?100eI 1–I 2T=eI 1tI 2T

e2T

The errors on the polarization values are approximately of 75%,instead of 72%for measurements in the visible domain with PROGRA2-VIS,due to the correction of the non-linearity of the cameras.From formula (1),the error bars on the brightness values are quite high,between 20%and 50%,of the value,depending on the brightness of the particles at 901phase angle.

To assess the performance and the accuracy of PRO-GRA2-IR,measurements have been conducted with glass beads of 100μm mean diameter (already used with PROGRA2-VIS).Following the general procedure already described,images where multiple scattering occurs,from a large number of grains in the field of view and the

presence of aggregates,are removed.On such images,the polarization decreases and the brightness estimation is biased.The measurements are compared to Mie calcula-tions (Fig.2)with perfect spheres,the best fit being obtained with a refractive index of (1.50ti3.5?10à4),very close to the (1.52ti7?10à4)value obtained pre-viously in the visible domain,and in good agreement with the values obtained by a polar nephelometer [19,20].The size distribution used for the calculations was the one retrieved from the PROGRA2images in the visible domain:mean value of 100μm and standard deviation of 1.2(similar values were found with SEM electro-microscopy).The peak in polarization at 201is very well reproduced by the measurements,as well as the secondary maximum at 801.The brightness phase curve is relatively close to the Mie curve,with some discrepancies mainly in the 30–501range PROGRA2is mainly dedicated to polarization mea-surements;the brightness measurements are only given here to illustrate the shape of scattering phase curve.All together,measurements with the glass beads provide an assessment of the quality of the data.

4.Wavelength dependence for different samples We present here the wavelength dependence for 10different samples that have been observed with both

Phase angle

Vial +

ultrasonic device

Bean-splitter

cube

camera

camera

White lamp +

depolarization filter +collimator

Optical fiber

Rotating platform

Reference camera

Fig.1.PROGRA2-IR principle of measurement.

J.-B.Renard et al./Journal of Quantitative Spectroscopy &Radiative Transfer 146(2014)424–430

426

PROGRA2-VIS and PROGRA2-IR:quartz,sands,silicon car-bides,crushed anthracite,and lunar and Martian simulants (PROGRA2-VIS brightness data are available only for sand,the other measurements being performed before the use of the third camera).As for glass bead,large aggregates have been removed for the analysis.The size distribution given here was determined from the PROGRA2-VIS measurements.The refractive indices given here are taken from [21]for silicon carbide and from the following web sites:

https://www.doczj.com/doc/e912693575.html,/HITRAN/HITRAN2012/Aero sols/ascii/https://www.doczj.com/doc/e912693575.html,/.4.1.Quartz and sands

The quartz grains have a Gaussian size distribution with a mean diameter of 200μm (s ?70μm).The refractive index is almost constant between 550nm and 1.5μm (real part,1.54–1.55,with a close to zero imaginary part).Fig.3shows that no wavelength dependence is detected for the polarization.

Two different sands have been studied:sand from French Atlantic coast (Dune de Pyla,South-West of

France)

Fig. https://www.doczj.com/doc/e912693575.html,parison between PROGA2-IR measurements at 1.5μm on glass beads of 100-μm mean diameter and Mie calculations on perfect glass spheres,assuming a refractive index of 1.50ti3.5?10à4.Top:polarization and bottom:

brightness.

https://www.doczj.com/doc/e912693575.html,parison between near infrared domain and visible domain measurements for quartz grains having a mean diameter of $200μ

m.

https://www.doczj.com/doc/e912693575.html,parison between near infrared domain and visible domain measurements for sand grains (French Atlantic coast);top:polarization and bottom:brightness (the curves are normalized to be close to one another).

J.-B.Renard et al./Journal of Quantitative Spectroscopy &Radiative Transfer 146(2014)424–430427

having a pale yellow color and a size distribution centered at300μm(s?75μm),and sand from Tunisia desert (Sahara),having an ocher color and a size distribution centered at150μm(s?25μm)[22].Since the composition of the samples is heterogeneous,it is difficult to provide an accurate refractive index.Nevertheless,some values can be proposed:for a mixture of quartz and hematite,Longtin et al.[23]have found that the real part of the refractive index decreases from 1.66to 1.63and the imaginary part decreases from5?10à3to4?10à7with increasing wavelength from550nm to 1.5μm.For Saharan sand, Wagner et al.[24]have shown that the real part of the index is constant,at 1.53,while the imaginary part of the index decreases with increasing wavelength (550nm–1μm),from[6?10à3,1?10à2]range to [2?10à3,6?10à3]range,depending on the location of the collected samples.

Fig.4presents the results for the Atlantic coast grains; similar curves are obtained for the Sahara sand grains.The polarization curve in the green domain is slightly below the red one,by less than2%,in agreement with the Volten et al.trend of less than4%in the442–633nm spectral domain[16].Nevertheless,for the two studied samples,no obvious wavelength effect is detected towards the infrared taking into account the errors bars,although the refractive index could slightly change with wavelength.If this effect is present,it is below5%between600nm and1.5μm. Also,no obvious wavelength dependence is found for the brightness.

4.2.Silicon carbide

Measurements on silicon carbide have been conducted for4size ranges,35μm,45μm,88μm and150μm.The real part of the refractive index decreases with the wavelength, having values of2.66,2.63and2.57at545nm,632nm and 1.5μm respectively(no values are available for the imaginary part)[21].Fig.5presents the polarization curves at the three wavelengths for the150μm sized grains.There is a strong wavelength effect,which can be attributed to a change in the refractive index.On the other hand,the angle of maximum polarization seems to be constant,in the110–1201phase angle range.

Only red and infrared measurements are available for smaller grains.Fig.6shows an increase of the polarization with increasing size of the grains in the visible domain already noticed by PROGRA2-VIS[25],together with a similar trend in the near infrared.The“saturation”where polarization is at its maximum even if the size increases occurs when the refracted light inside the particle is completely absorbed.For silicon carbide,it seems that the saturation occurs for smaller sizes in the near infrared than in the visible domain,at$50μm and above$150μm respectively.All these results suggest an increase of the imaginary part of the refractive index with increasing wavelength.

The wavelength dependence between470and937nm was also studied by West et al.for grains in the0.7–7μm size range[18].No wavelength effect was found,

taking

https://www.doczj.com/doc/e912693575.html,parison between near infrared domain and visible domain

measurements for silicon carbide grains of approximately150μ

m.

Fig. 6.Variation of the maximum of polarization with size at two

wavelengths for silicon carbide

grains.

https://www.doczj.com/doc/e912693575.html,parison between near infrared domain and visible domain

measurements for anthracite grains smaller than250μm(maximum of

the size distribution at around50μm).

J.-B.Renard et al./Journal of Quantitative Spectroscopy&Radiative Transfer146(2014)424–430

428

into account the measurement uncertainties of 5%.Such result could be in agreement with the PROGRA2results if we interpolate the trend for grains smaller than 50μm.4.3.Anthracite

Anthracite is a bituminous coal with a composition that may differ from one sample to the next.Measurements have been conducted for anthracite grains smaller than 250μm,having a size distribution that peaks at around 50μm.In the visible domain,the real part of its refractive index is in the range 1.64–1.68;however,the imaginary part and the wavelength dependence are poorly known.

Fig.7presents the polarization curves for the three wavelengths.The polarization is smaller in the red domain than in the green domain,and is higher in the near infrared.This variation is well above the measurements uncertainties.The difference could be correlated to the trend of the refractive index variations,as for some amorphous carbon where the absorption may be higher in green than in red,and where an important increase may exist in the infrared.As an example,the indices for some amorphous carbon are 2.35ti0.8at 545nm,2.43ti0.7at 633nm,and 3.34ti1.6at 1.5mm [26].This first result shows that the optical properties of carbon grains are of high interest and need new measurements.4.4.Lunar and Martian simulants

The JSC-1Moon and Mars simulants were developed to closely match the mechanical properties,mineralogy,chemical composition,reflectance spectrum,grain size distribution,density,and porosity of the lunar and Martian soils [27,28].For both bodies,remote-sensing polarization shows that the surfaces exhibit a polarization lower in the red than in the green at large phase angles [29–31].This trend is also found for simulants'measurements in the visible domain (Figs.8and 9),although the polarization values can (slightly)differ when the grains are in levitation or are deposited on surfaces;in the last case,multiple

scattering between the grains exists but the variation in polarization with the wavelength follows similar trends [32].On the other hand,infrared measurements do not follow this trend,with increasing polarization values.The Gehrels 1960lunar measurements [30]show that indeed the decrease of polarization stops at around 1μm but no data are available for higher wavelengths.

All these variations in polarization are related to the absorbance of the different minerals as a function of wavelength.Lunar and Martian soil optical properties depend on their location on the object,and the polariza-tion values are highly dependent on the albedo.Thus,this result will need further investigations on the spectral absorbance of the two samples.Nevertheless,these first PROGRA2measurements show that adding the infrared may help to disentangle some materials'properties by the color variation of polarization.5.Discussion and conclusion

The PROGRA2-IR concept has allowed us to explore the polarization in the near infrared at 1.5μhttps://www.doczj.com/doc/e912693575.html,bined with the PROGRA2-VIS instrument,these new measurements confirm that the wavelength dependence of the polariza-tion is sensitive to the variations of the real and imaginary parts of the refractive index,extended to the near infrared.Nevertheless,general trends are difficult to be established at present,considering the limited amount of samples already studied.New measurements,for smaller grains and their aggregates with different porosities,and mix-tures of different materials as analogs of solar system particles will be conducted to better interpret the wave-length dependence of the polarization of solar system dust.In particular,the study of carbonaceous particles (compact and fluffy grains)will be of the highest interest.These new measurements will be necessary since diffe-rent behaviors of the wavelength dependence have been detected here.

To reduce the errors bars and to better document the polarization dependence between the visible and the

near

https://www.doczj.com/doc/e912693575.html,parison between near infrared domain and visible domain measurements for JSC-1lunar

simulant.

https://www.doczj.com/doc/e912693575.html,parison between near infrared domain and visible domain measurements for JSC-1Martian simulant.

J.-B.Renard et al./Journal of Quantitative Spectroscopy &Radiative Transfer 146(2014)424–430429

infrared domains(typically around1μm),instrumental improvements will be conducted.A new version of the instrument will be available mid-2014,using a more sensitive new generation of numerical cameras,with an extension of the spectral range to the0.9–2μm domain.

PROGRA2studies are also involved in the Interactions in Cosmic and Atmospheric Systems(ICAPS)project onboard the International Space Station[33,34].ICAPS is dedicated to the study of the particle agglomeration processes in microgravity;polarization measurements will be conducted at different wavelengths during the pro-cesses by the Light Scattering Unit(LSU)unit.The PRO-GRA2data have helped to design the LSU,and will be used as reference data for the calibration and performance analysis of the LSU at the different wavelengths in the visible and near infrared domains.

Acknowledgments

The PROGRA2instruments were funded by the French Space Agency CNES and by contracts with the Environment-SA Company.We thank CNES,ESA and Novespace for funding and organizing the parabolic flights campaigns. References

[1]Hadamcik E,Renard J-B,Levasseur-Regourd AC,Worms https://www.doczj.com/doc/e912693575.html,bora-

tory measurements of the light scattered by clouds of solid particles by imaging technique.In:Kokhanovsky AA,editor.Light scattering review4.Springer/Praxis;2009.(p.31–70.).

[2]Brooke TY,Knacke RF,Joyce RR.The near infrared polarization and

color of comet P/Halley.Astron Astrophys1987;187:621–4.

[3]Levasseur-Regourd AC,Hadamcik E.Light scattering by irregular

dust particles in the solar system:observations and interpretation by laboratory measurements.J Quant Spectrosc Radiat Transfer 2003;79–80:903–10.

[4]Kolokolova L,Jockers K,Gustafson BAS,Lichtenberg G.Color and

polarization as indicators of comet dust properties and evolution in the near-nucleus coma.J Geophys Res Planets2001;106-E5: 10113–27.

[5]Hadamcik E,Levasseur-Regourd AC.Dust evolution of comet C/1995

O1(Hale-Bopp)by imaging polarimetric observations.Astron Astro-phys2003;403:757–68.

[6]Belskaya IN,Levasseur-Regourd AC,Cellino A,Efimov YE,Shakhovs-

koy NM,Hadamcik E,et al.Polarimetry of main belt asteroids: wavelength dependence.Icarus2009;199:97–105.

[7]Hadamcik E,Levasseur-Regourd AC,Renard J-B,Lasue J,Sen AK.

Polarimetric observations and laboratory simulations of asteroidal surfaces:the case of21Lutetia.J Quant Spectrosc Radiat Transfer 2011;112:1881–90.

[8]Levasseur-Regourd AC,Hadamcik E,Lasue J.Light scattering as

a clue to cometary dust structure.In:Engold O,editor.Highlights

of astronomy,13.Astronomical Society of the Pacific;2005.

(p.498–500).

[9]Harrington DM,Meech K,Kolokolova L,Kuhn JR,Whitman K.

Spectropolarimetry of the deep impact target comet9P/Tempel1 with HiVIS.Icarus2007;187:177–84.

[10]Kiselev NN,Jockers K,Rosenbush VK,Velichko FP,Bonev T,Karpov

N.Anomalous wavelength dependence of polarization of comet21P/ Giacobini-Zinner.Planet Space Sci2000;48:1005–9.

[11]Leinert C,Bowyer S,Haikala LK,Hanner MS,Hauser MG,Levasseur-

Regourd AC,et al.The1997reference of diffuse night sky bright-ness.Astron Astrophys Suppl1998;127:1–99.[12]Levasseur-Regourd AC,Mukai T,Lasue J,Okada Y.Physical properties

of cometary and interplanetary dust.Planet Space Sci2007;55: 1010–20.

[13]TanréD,Bréon FM,DeuzéJL,Dubovik O,Ducos F,Fran?ois P,et al.

Remote sensing of aerosols by using polarized,directional and spectral measurements within the A-Train:the PARASOL mission.

Atmos Meas Tech2011;4:1383–95.

[14]Brogniez C,Huret N,Eckermann S,Riviere ED,Pirre M,Herman M,

et al.Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on25January2000above Esrange and modeling interpretation.J Geophys Res2003;108:8332.

[15]Muňoz O,Moreno F,Guirado D,Dabrowska DD,Volten H,Hovenier

JW.The Amsterdam–Granada light scattering database.J Quant Spectrosc Radiat Transfer2012;113(7):564–74.

[16]Volten H,Muňoz O,Rol E,de Haan JF,Vassen W,Hovenier JW.

Scattering matrices of mineral aerosol particles at441.6and 632.8nm.J Geophys Res2001;106(D15):17375–401.

[17]Renard J-B,Worms J-C,Lemaire T,Hadamcik E,Huret N.Light

scattering by dust particles in microgravity:polarization and bright-ness imaging with the new version of the PROGRA2instrument.

Appl Opt2002;41(4):609–18.

[18]West RA,Doose LR,Eibl AM,Tomasko MG,Mishchenko https://www.doczj.com/doc/e912693575.html,bora-

tory measurements of mineral dust scattering phase function and linear polarization.J Geophys Res1997;102:16,871–81.

[19]Worms J-C,Renard J-B,Hadamcik E,Levasseur-Regourd AC,

Gayet J-F.Results of the PROGRA2experiment:an experimental study under microgravity conditions of light scattered by dust particles with large size parameter.Icarus1999;142:281–97. [20]Crépel O,Gayet J-F,Fournol J-F,Oshchepkov S.A new airborne Polar

Nephelometer for the measurements of optical and microphysical cloud properties.Part II:Preliminary tests.Ann Geophys1997;15: 460–70.

[21]Handbook of optics,vol.2.2nd edition.McGraw-Hill;1994.

[22]Renard J-B,Francis M,Hadamcik E,Daugeron D,CoutéB,Gaubicher

B,et al.Scattering properties of sands.2.Results for sands from different origins.Appl Opt2010;49(18):3552–9.

[23]Longtin DR,Shettle EP,Hummel JR,Pryce JD.A wind dependent

desert aerosol model:radiative properties.AFGL-TR-88-0112.Air Force Geophysics Laboratory,Hanscom;1988.

[24]Wagner R,Ajtai T,Kandler K,Lieke K,Linke C,Muller T,et https://www.doczj.com/doc/e912693575.html,plex

refractive indices of Saharan dust samples at visible and near UV wavelengths:a laboratory study.Atmos Chem Phys2012;12:2491–512.

[25]Hadamcik E,Renard J-B,Levasseur-Regourd AC,Worms https://www.doczj.com/doc/e912693575.html,bora-

tory light scattering measurements on(natural)particles with the PROGRA2experiment:an overview.J Quant Spectrosc Radiat Transfer2003;79–80:679–93.

[26]Edward D..Palik handbook of optical constants of solids II;1995.

[27]McKay DS,Carter JL,Boles WW,Allen CC,Allton JH..JSC-1:a new

lunar soil stimulant.In:Proceedings of the4th international con-ference on engineering,construction,and operations in space IV.

New York:American Society of Civil Engineers;1994.p.857–66. [28]Allen C,Jager K,Morris R,Lindstrom D,Lindstrom M,Lokwood J.

JSC1MARS-1:a Martian soil stimulant.Space1998;98:469–76. [29]Dollfus A,Bowell E.Polarimetric properties of the lunar surface and

its interpretation.Part I.Telescopic observations.Astron Astrophys 1971;10:29–53.

[30]Gehrels T.Measurements of the wavelength dependence of polar-

ization.Lowell Observ Bull1960;105(IV-17):300–1.

[31]Ingersoll AP.Polarization measurements of Mars and Mercury:Rayleigh

scattering in the Martian atmosphere.Astrophys J1971;163:121–9. [32]Worms J-C,Renard J-B,Hadamcik E,Brun-Huret N,Levasseur-

Regourd AC.Light scattering by dust particles with the PROGRA2 instrument–comparative measurements between clouds under microgravity and layers on the ground.Planet Space Sci2000;48: 493–505.

[33]Blum J.Interactions in Cosmic and Atmospheric Particle Systems

(ICAPS)–Examples of the Research Programme.In:Proceedings of the first international symposium on microgravity research and applications in physical sciences and biotechnology.ESA SP-454;

2001.p.747–53.

[34]Levasseur-Regourd AC.Cosmic dust physical properties and the

ICAPS facility on board the ISS.Adv Space Res2003;31:2599–606.

J.-B.Renard et al./Journal of Quantitative Spectroscopy&Radiative Transfer146(2014)424–430 430

无线传感器网络论文中英文资料对照外文翻译

中英文资料对照外文翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利 尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测 1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于

车载无线传感器网络监测系统设计(外文原文+中文翻译)

Wireless sensor network monitoring system design Kang yi-mei,Zhao lei,Hu jiang,Yang en-bo (Study on Beijing University of Aeronautics and Astronautics) Summary: A car wireless sensor network monitoring system based on IEEE 802.15.4 and ZigBee standards. With universal wireless sensor networks, expansion of the scope of monitoring and monitoring functions for in-car system, car data acquisition and condition monitoring of equipment status and the necessary equipment control, topology control, topology query functions. Keywords: wireless sensor networks; monitoring system Introduction In order to satisfy the people to car safety, handling and comfort requirements, vehicle integrated with more and more electronic system .At present, car electronic equipment is widely used 16 or 32-bit microprocessor control. Creating in-vehicle monitoring system based on IEEE 802.15.4 and ZigBee standard for wireless sensor networks, designed to achieve a more optimized wireless sensor networks, the progressive realization of the network of automotive systems, intelligent and controllable to provide high-Car System security. System design In this paper, the existing vehicle system, the data transmission mode is extended to the wireless transmission mode, the realization of a star network data acquisition system. And can place each data acquisition node of the acquired data is transmitted to the gateway, the gateway through the serial port to upload data to the host computer, in the host data real-time waveform display, and method of database to preserve, for the follow-up data processing. The application of system object is composed of a temperature sensor, pressure sensor, speed sensor, speed sensor, a current sensor, pressure sensor, sensor subsystem. The purpose of this design is to use a monitoring host machine end to the detection of multiple target environment, taking into account the access data throughput and software system complexity, using time-division multiplexing way, one by one on the net terminal collecting point of control and data acquisition. As shown in Figure 1, the system is divided into 3 parts: Vehicle Monitoring Center, gateway and mobile sensor node. Gateway is the whole vehicle system core, and all vehicular sensor node communication. Vehicle monitoring center to the gateway sends a control command by the gateway, the control command is converted to an RF signal and sent to the vehicle sensor node. When the vehicle sensor nodes to transmit data, gateway into the data reception state, and upload data to the monitoring center for further processing. In addition, car between sensor nodes cannot communicate with each other. The monitoring center of the monitoring software and gateway in RS232standard interface for communication. Vehicle sensor node life cycle is active and dormant periods. Nodes in the active phase of the completion of data acquisition, data sent to the gateway, receiving and

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

无线传感器网络期末试卷

2011学年第一学期高一无线传感器网络期末试卷适用班级:11计6 满分:100分考试时间:60分钟 一、单项选择题(将最合适的选项填入括号中,每小题3分,共24分) 1.下列对无线传感器网络中传感器结点的叙述错误的是()。 A.数目庞大 B.分布密集 C.易受环境干扰 D.可随意移动 2.关于传感器的现代感知方法,下列说法错误的是()。 A.使用多跳路由算法向用户报告观测结果 B.多个传感器协同完成感知区域的大观测任务 C.传感器无计算能力 D.每个传感器完成临近感知对象的观测 3.无线网络技术使用的介质是()。 A.无线电波 B.双绞线 C.光缆 D.同轴电缆 4.()是传感器结点没有的组件。 A.处理子系统和无线通信子系统 B.传感器子系统 C.一个简单的操作系统和基本的变成语言 D.传统的Web浏览界面 5.以下哪个不是对无线传感器网络技术的设计挑战?() A.驱动程序 B.有限的能源 C.可靠性 D.对Linux的支持 6.以下名词中中英文对应错误的是()? A.无线传感器网络——Wireless Sensor Network,WSN B.全球定位系统——Geographical Information System,GIS C.云计算——Cloud Computing D.智能家居——Intelligent Home 7.电饭煲中的主要传感器是() A.压力传感器 B.红外传感器 C.温度传感器 D.湿敏传感器 8.智能家居功能包括() A.家居安全监控 B.家电控制 C.门禁系统 D.以上皆是 二、填空题(每个空格1分,共21分) 1.传感器网络的主要应用领域有__________________、__________________、__________________、__________________等。 2. 无线传感器网络的三大基础技术是__________________、__________________、__________________。 3.传感器网络的协议可分为五层,从下到上可分为_________________、_________________、_________________、_________________、_________________。 4.传感器结点的物理结构是: 5.传感器网络节点的功能模块组成为: 三、简答题(共30分)

无线传感器网络中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测

1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于共享技术的原因是个人设备的大量花费。然而,大多数传感器网络研究是基于一个单一的拥有长期部署的用户,模式不利于分享。该技术管理的复杂性是另一个障碍。 大多数传感器的应用,有利于这样的共享模型。我们立足本声明认为传感器可能不需要在一个长时间单一位置的原因包括:(1)一些现象可能出现变化速度缓慢,因此小批量传感器可进行可移动部署,通过测量信号,充分捕捉物理现象(2)可能是过于密集,因此多余的传感器可被删除。(3)部署时间短。我们将会在第三节更详细的讨论。 上述所有假定的有关传感器都可以进行部署和再部署。然而有很多的无线传感器网络由于其实时监测和快速的网络功能可能被利用作为共享资源。其作为共同部署资源要求,需要一些高效的技术,包括对传感器的一些挑战,如便携性,流动频繁的传感器内的部署,这使我们在第四节将会有大的挑战。 在本文中,我们专注于作为共享的可行性设计的传感器网络。下面我们开始 阐述传感网络在孟加拉国和加利福尼亚州的水质检测中的应用。 2.无线传感网络在水质监测中的应用

无线传感器网络的应用研究

1武警部队监控平台架构介绍与设计 1.1监控系统的系统结构 基站监控系统的结构组成如上图所示,主要由三个大的部分构成,分别是监控中心、监控站点、监控单元。整个系统从资金、功能以及方便维护性出发,我们采用了干点加节点方式的监控方法。 监控中心(SC):SC的定义是指整个系统的中心枢纽点,控制整个分监控站,主要的功能是起管理作用和数据处理作用。一般只在市级包括(地、州)设置相应的监控中心,位置一般在武警部队的交换中心机房内或者指挥中心大楼内。 区域监控中心(SS):又称分点监控站,主要是分散在各个更低等级的区县,主要功能是监控自己所负责辖区的所有基站。对于固话网络,区域监控中心的管辖范围为一个县/区;移动通信网络由于其组网不同于固话本地网,则相对弱化了这一级。区域监控中心SS的机房内的设备配置与SC的差不多,但是不同的是功能不同以及SS的等级低于SC,SS的功能主要是维护设备和监控。 监控单元(SU):是整个监控系统中等级最低的单元了,它的功能就是监控并且起供电,传输等等作用,主要由SM和其他供电设备由若干监控模块、辅助设备构成。SU侧集成有无线传感网络微设备,比如定位设备或者光感,温感设备等等。 监控模块(SM):SM是监控单元的组成部分之一,主要作用监控信息的采集功能以及传输,提供相应的通信接口,完成相关信息的上传于接收。

2监控系统的分级管理结构及监控中心功能 基站监控系统的组网分级如果从管理上来看,主要采用两级结构:CSC集中监控中心和现场监控单元。CSC主要设置在运营商的枢纽大楼,主要功能为数据处理,管理远程监控单元,对告警信息进行分类统计,可实现告警查询和存储的功能。一般管理员可以在CSC实现中心调度的功能,并将告警信息进行分发。而FSU一般针对具体的某一个基站,具体作用于如何采集数据参数并进行传输。CSC集中监控中心的需要对FSU采集的数据参数进行报表统计和分析,自动生产图表并为我们的客户提供直观,方便的可视化操作,为维护工作提供依据,维护管理者可以根据大量的分析数据和报表进行快速反应,以最快的速度发现网络的故障点和优先处理点,将人力资源使用在刀刃上。监控中心CSC系统的功能中,还有维护管理类,具体描述如下: 1)实时报警功能 该系统的报警功能是指发现机房里的各种故障后,通过声音,短信,主界面显示的方式及时的上报给操作者。当机房内的动力环境,空调,烟感,人体红外等等发生变量后,这些数据通过基站监控终端上传到BTS再到BSC。最后由数据库进行分类整理后存储到SQLSEVRER2000中。下面介绍主要的几种报警方式: 2)声音报警 基站发生告警后,系统采集后,会用声卡对不一样的告警类别发出对应的语音提示。比如:声音的设置有几种,主要是以鸣叫的长短来区分的。为便于引起现场维护人员的重视紧急告警可设置为长鸣,不重要的告警故障设置为短鸣。这样一来可以用声音区分故障的等级,比方某地市的中心交换机房内相关告警声音设置,它的开关电源柜当平均电流达到40AH的时候,提示声音设置为长鸣,并立即发生短信告警工单。如果在夜晚机房无人值守的情况下:

无线传感器网络中文

译文 无线传感器网络的实现及在农业上的应用 1.摘要 无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统。其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息 并发送给观察者。“传感器、感知对象和观察者”构成了网络的三个要素。这里说的传感器 并不是传统意义上的单纯的对物理信号进行感知并转化为数字信号的传感器它是将传感器模块、数据处理模块和无线通信模块集成在一块很小的物理单元即传感器节点上 功能比传统的传感器增强了许多 不仅能够对环境信息进行感知而且具有数据处理及无线通信的功能。借助传感器节点中内置的形式多样的传感器件可以测量所在环境中的热、红外、声纳、雷达和地震波信号等信号。从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等等众多我们感兴趣的物质现象。无线传感器网络是一种全新的信息获取和信息处理模式。由于我国水资源已处于相当紧缺的程度,加上全国90%的废、污水未经处理或处理未达标就直接排放的水污染,11%的河流水质低于农田供水标准。水是农业的命脉,是生态环境的控制性要素,同时又是战略性的经济资源,因此采用水泵抽取地下水灌溉农田,实现水资源合理利用,发展节水供水,改善生态环境,是我国目前精确农业的关键 因此采用节水和节能的灌水方法是当今世界供水技术发展的总趋势。 2.无线传感器网络概述 2.1无线传感器网络的系统架构无线传感器网络的系统架构如图1所示 通常包括传感器节点、汇聚节点和管理节点。传感器节点密布于观测区域 以自组织的方式构成网络。传感器节点对所采集信息进行处理后 以多跳中继方式将信息传输到汇聚节点。然后经由互联网或移动通信网络等途径到达管理节点。终端用户可以通过管理节点对无线传感器网络进行管理和配置、发布监测任务或收集回传数据。 图1无线传感器网络的系统架构

无线传感网络应用论文中英文资料对照外文翻译

外文资料翻译 附件1:外文资料翻译译文 无线传感器网络的实现及在农业上的应用 1引言 无线传感器网络(Wireless Sensor Network ,WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统。其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。“传感器、感知对象和观察者”构成了网络的三个要素。这里说的传感器,并不是传统意义上的单纯的对物理信号进行感知并转化为数字信号的传感器,它是将传感器模块、数据处理模块和无线通信模块集成在一块很小的物理单元,即传感器节点上,功能比传统的传感器增强了许多,不仅能够对环境信息进行感知,而且具有数据处理及无线通信的功能。借助传感器节点中内置的形式多样的传感器件,可以测量所在环境中的热、红外、声纳、雷达和地震波信号等信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等等众多我们感兴趣的物质现象。无线传感器网络是一种全新的信息获取和信息处理模式。由于我国水资源已处于相当紧缺的程度,加上全国90%的废、污水未经处理或处理未达标就直接排放的水污染,11%的河流水质低于农田供水标准。水是农业的命脉,是生态环境的控制性要素,同时又是战略性的经济资源,因此采用水泵抽取地下水灌溉农田,实现水资源合理利用,发展节水供水,改善生态环境,是我国目前精确农业的关键,因此采用节水和节能的灌水方法是当今世界供水技术发展的总趋势。 2无线传感器网络概述 2.1无线传感器网络的系统架构

无线传感器网络的系统架构如图1所示,通常包括传感器节点、汇聚节点和管理节点。传感器节点密布于观测区域,以自组织的方式构成网络。传感器节点对所采集信息进行处理后,以多跳中继方式将信息传输到汇聚节点。然后经由互联网或移动通信网络等途径到达管理节点。终端用户可以通过管理节点对无线传感器网络进行管理和配置、发布监测任务或收集回传数据。 图1无线传感器网络的系统架构 2.2无线传感器网络的特点 (1)自组织。由于网络所处物理环境及网络本身的不可预测因素,如:不能预先精确设定节点的位置,也不能预先知道节点之间的相邻关系,部分节点由于能量耗尽或其他原因而死亡,新的节点的加入等,使得网络的布设和展开能够无需依赖于任何预设的网络设施,节点之间通过分层协议和分布式算法协调各自的行为,节点开机后就可以快速自动地组成一个独立的网络多跳路由。 (2)多跳路由。网络中节点通信距离有限,节点只能与它的邻居直接通信,如果与其射频覆盖范围之外的节点进行通信,则需要通过中间节点进行路由。 (3)大面积的空间分布,节点密集,数量巨大。 (4)以数据为中心。在无线传感器网络中,人们通常只关心某个区域内某个观测指标的数值,而不会去具体关心单个节点的观测数据。 (5)节点能力受限。传感器节点的能量、处理能力、存储能力和通信能力等都十分有限。 ①电源能量受限。由于传感器节点的微型化,节点的电池能量有限,而且由于物理限制难以给节点更换电池,所以传感器节点的电池能量限制是整个无线传感器网络设计最关键的约束之一,它直接决定了网络的工作寿命。 ②计算和存储能力有限。廉价微型的传感器节点带来了处理器能力弱、存储器容量小的特点,使得其不能进行复杂的计算,而传统Internet网络上成熟的协议

无线传感器网络期末试卷

鼎亿网络 2011学年第一学期高一无线传感器网络期末试卷适用班级:11计6 满分:100分考试时间:60分钟 一、单项选择题(将最合适的选项填入括号中,每小题3分,共24分) 1.下列对无线传感器网络中传感器结点的叙述错误的是()。 A.数目庞大 B.分布密集 C.易受环境干扰 D.可随意移动 2.关于传感器的现代感知方法,下列说法错误的是()。 A.使用多跳路由算法向用户报告观测结果 B.多个传感器协同完成感知区域的大观测任务 C.传感器无计算能力 D.每个传感器完成临近感知对象的观测 3.无线网络技术使用的介质是()。 A.无线电波 B.双绞线 C.光缆 D.同轴电缆 4.()是传感器结点没有的组件。 A.处理子系统和无线通信子系统 B.传感器子系统 C.一个简单的操作系统和基本的变成语言 D.传统的Web浏览界面 5.以下哪个不是对无线传感器网络技术的设计挑战?() A.驱动程序 B.有限的能源 C.可靠性 D.对Linux的支持 6.以下名词中中英文对应错误的是()? A.无线传感器网络——Wireless Sensor Network,WSN B.全球定位系统——Geographical Information System,GIS C.云计算——Cloud Computing D.智能家居——Intelligent Home 7.电饭煲中的主要传感器是() A.压力传感器 B.红外传感器 C.温度传感器 D.湿敏传感器 8.智能家居功能包括() A.家居安全监控 B.家电控制 C.门禁系统 D.以上皆是 二、填空题(每个空格1分,共21分) 1.传感器网络的主要应用领域有__________________、__________________、__________________、__________________等。 2. 无线传感器网络的三大基础技术是__________________、__________________、__________________。 3.传感器网络的协议可分为五层,从下到上可分为_________________、_________________、_________________、_________________、_________________。 4.传感器结点的物理结构是: 5.传感器网络节点的功能模块组成为: 三、简答题(共30分)

基于无线传感器网络的智能家居系统的设计

基于无线传感器网络的智能家居系统的设计(硬件部分) 中文摘要 随着电子信息技术和计算机网络技术的发展,实现家庭信息化、网络化是当今智能家居系统发展的新趋势。智能家居系统能够为人类提供更加轻松、有序、高效的现代化生活方式,是未来居住模式的必然发展趋势。因此,智能家居系统逐渐成为一个新兴的研究领域。 本文针对智能家居网络特点通过对智能家居网络分析、对比和研究,采用星状网络组建智能家居网络,对智能家居网络进行了设计与实现。利用CC2430的ZigBee 模块与各种传感器设计了一种低成本、高灵活性、通用的ZigBee无线智能家居网络控制,并最后完成了实现。 主要内容如下:采用Zigbee技术,构建无线传感器网络,研究无线传感器网络的通信机理。以及设计微处理器控制模块,通信模块、检测模块等硬件。 关键词:ZigBee;智能家居;无线网络;CC2430 Design of smart home system based on wireless sensor network(hardware) Abstract With the development of electronic information technology and computer network technology,there is the new trend of the development of smart home system to realize the home informatization,and networking.Smart home system can provide more relaxed,orderly,efficient modern way of life,is the inevitable trend of the development of future residential pattern.Therefore,smart home system has gradually become a new research field. Pointing to these features of smart home system,in these paper,a method of adopting star network to establish smart home intranet by analyzing,comparing,researching the smart home network is given.The smart home networt is designed and realized,and a kind of low-cost,high-flexibility,conventional wireless intelligent networt controller is accomplished by using CC2430 ZigBee module and other sensors.As follows:build wireless sensor networks based on Zigbee technology,research communication mechanism for wireless sensor networks. And hardware design of microprocessor control module, communication module, detection module,and so on. KEY WORD:ZigBee;smart home;wireless network;CC2430 目录

《无线传感器网络》课程教学大纲

《无线传感器网络》课程教学大纲1.课程名称 中文:无线传感器网络 英文:Wireless Sensor Networks 2.课程代码 3.课程性质 学科大类专业课 选修 4.学时与学分 总学时:32(理论学时30学时、课堂作业2学时) 学分:2

5.授课对象 本课程面向电子信息工程专业学生开设。 6. 课程教学目的 无线传感器网络是由部署在监测区域内大量的微型传感器节点通过无线电通信形成的一个多跳的自组织网络系统,其目的是协作地感知、采集和处理网络覆盖区域里被监测对象的信息,并发送给观察者。无线传感器网络的研究涉及传感器技术、网络通讯技术、无线传输技术、嵌入式技术、分布式信息处理技术、微电子制造技术、软件编程技术等。无线传感器网络是继因特网之后,将对21世纪人类生活方式产生重大影响的IT技术之一。本课程的培养目标为:向学生介绍有关无线传感器网络的基本概念、理论、方法与应用进展,使学生初步了解无线传感器网络所面临的挑战,了解在现有技术条件下,设计和部署无线传感器网络解决实际问题的基本方法和技术路线,通过本课程的学习,能深化学生对信息与通信工程、通信与信息系统、计算机科学、电子传感技术等相关专业基础技术的具体认识,并通过无线传感器网络技术在不同行业的实际应用和面临的不同挑战,扩大学生知识面,提高学生分析处理实际问题的能力。为在信息与通信工程、通信与信息系统、计算机科学、电子传感技术等相关专业领域及物联网方向进行深入学习和研究打下必要的基础。 7. 教学重点与难点: 课程重点:无线传感器网络的概念、网络基础、体系结构、各层协议、应用相关性、跨层设计、拓扑管理、时钟同步、节点定位、网内信息处理等。

基于无线传感器网络的智能家居系统的设计毕业论文设计

Hefei University 毕业论文(设计)BACH ELOR DISSERTATI ON 论文题目:基于无线传感器网络的智能家居系统的设计(硬件部分) 学位类别:工学学士 学科专业:电气自动化

基于无线传感器网络的智能家居系统的设计(硬件部分) 中文摘要 随着电子信息技术和计算机网络技术的发展,实现家庭信息化、网络化是当今智能家居系统发展的新趋势。智能家居系统能够为人类提供更加轻松、有序、高效的现代化生活方式,是未来居住模式的必然发展趋势。因此,智能家居系统逐渐成为一个新兴的研究领域。 本文针对智能家居网络特点通过对智能家居网络分析、对比和研究,采用星状网络组建智能家居网络,对智能家居网络进行了设计与实现。利用CC2430的ZigBee 模块与各种传感器设计了一种低成本、高灵活性、通用的ZigBee无线智能家居网络控制,并最后完成了实现。 主要内容如下:采用Zigbee技术,构建无线传感器网络,研究无线传感器网络的通信机理。以及设计微处理器控制模块,通信模块、检测模块等硬件。 关键词:ZigBee;智能家居;无线网络;CC2430 Design of smart home system based on wireless sensor network(hardware) Abstract With the development of electronic information technology and computer network technology,there is the new trend of the development of smart home system to realize the home informatization,and networking.Smart home system can provide more relaxed,orderly,efficient modern way of life,is the inevitable trend of the development of future residential pattern.Therefore,smart home system has gradually become a new research field. Pointing to these features of smart home system,in these paper,a method of adopting star network to establish smart home intranet by analyzing,comparing,researching the smart home network is given.The smart home networt is designed and realized,and a kind of low-cost,high-flexibility,conventional wireless intelligent networt controller is accomplished by using CC2430 ZigBee module and other sensors.As follows:build wireless sensor networks based on Zigbee technology,research communication mechanism for wireless sensor networks. And hardware design of microprocessor control module, communication module, detection module,and so on. KEY WORD:ZigBee;smart home;wireless network;CC2430

无线传感器网络试卷A

中国矿业大学2012-2013学年第一学期《无线传感器网络》试卷(A卷)(考试时间:100分钟闭卷) 班级:姓名:序号:成绩: 注意:请把所有试题的答案填写在后面的答题纸上,否则成绩无效。 一、填空题(每空1分,共18分) 1. 无线传感器网络的组成模块分为:通信模块、(1)、计算模块、(2)和 电源模块。 2.在开阔空间无线信号的发散形状成(3)形。 3. 传感器网络的支撑技术包括:(4)、(5)、数据融合、(6)、(7)。 4. 传感器节点通信模块的工作模式有(8)、(9)和空闲。 5. 传感器节点的能耗主要集中在(10)模块。 6. TDOA测距方法通常采用的信号为:(11)、(12)。 7. 当前传感器网络应用最广的两种通信协议是:(13)、(14)。 8.主动反击能力是指网络安全系统能够主动地限制甚至消灭入侵者,为此需要至少具 备的能力有:入侵检测能力、(15)、(16)。 9.ZigBee主要界定了网络、安全和应用框架层,通常它的网络层支持三种拓扑结构: 星型(Star)结构、(17)、(18)。 二、名词翻译,把中文名称用英文单词或者短语表示(每小题2分,共16分) 1.信标: 2.传感器灵敏度: 3.邻居节点: 4.接收信号强度指示: 5.非视线关系: 6.测距: 7.到达时间:

8.定位精度: 三、简答题(每小题5分,共20分) 1.传感器网络有哪些限制条件? 2.无线传感器网络的路由协议具有哪些特点? 3.什么是数据融合技术,它在传感器网络中的作用是什么? 4.简述传感器网络休眠机制的过程和目的。 四、问答计算题(每小题10分,共10分) 1. 简述RSSI测距原理,和相应的理论依据。 五、翻译题(每小题12分,共36分) 1.Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of applications. Low-power wireless sensors may be many hops away from any other sensors with a priori location information. In cooperative localization, sensors work together in a peer-to-peer manner to make measurements and then form a map of the network. Various application requirements will influence the design of sensor localization systems. We describe measurement-based statistical models useful to describe time-of-arrival (TOA), angle-of-arrival (AOA), and received-signal-strength (RSS) measurements in wireless sensor networks. 2.As the network uses a hop-by-hop communication, node failure may lead to route failure. In this section,We will propose multipath routing protocol for the architecture that enables fault tolerance. Though this method the sensing data can be sent from CN to CH reliably. Multipath mentioned in this paper does not mean sending the same data on different paths simultaneously but to send the data on another path if the first one fails. As it's hard to replace those exhaust nodes, our goal is to trade-off the lifetime of network and data transmission reliability. So the routing protocol we launched is called energy-based multipath routing (EBMR) protocol. 3. Wireless Sensor Network (WSN) with large redundant nodes is suitable for target tracking because of its high self-organization. However, there still exist several challenges, such as limitation of energy, computing capability and short-distance communication. So, it is of theoretical and practical significance for studying on target tracking system of WSN. WSN topology and self-organization methods are analyzed first. Considering of the inadequacies of LEACH algorithm, a vote based cluster head election mechanism is proposed. This method insures only the nodes have more neighbors and remaining energy can be elected as cluster heads. At the same time, the cluster head number must be chosen according to network energy consumption.

相关主题
文本预览
相关文档 最新文档