当前位置:文档之家› 分治法实验报告模板(完整版)

分治法实验报告模板(完整版)

分治法实验报告模板(完整版)
分治法实验报告模板(完整版)

报告编号:YT-FS-1361-17

分治法实验报告模板(完

整版)

After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.

互惠互利共同繁荣

Mutual Benefit And Common Prosperity

分治法实验报告模板(完整版)

备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。

一、实验目的及要求

利用分治方法设计大整数乘法的递归算法,掌握

分治法的基本思想和算法设计的基本步骤。

要求:设计十进制的大整数乘法,必须利用分治

的思想编写算法,利用c语言(或者c++语言)实现

算法,给出程序的正确运行结果。(必须完成)

设计二进制的大整数乘法,要求利用分治的思想

编写递归算法,并可以实现多位数的乘法(利用数组

实现),给出程序的正确运行结果。(任选)

二、算法描述

输入两个相同位数的大整数u,v

输出uv的值

判断大整数的位数i;

w=u/10^(i/2);

y=v/10^(i/2);

x=u-w*10^(i/2);

z= v-y*10^(i/2);

然后将w,x,y,z代入公式求得最后结果

uv=wy10^i+((w+x)(y+z)-wy-xz)10^(i/2)+xz

三、调试过程及运行结果

在实验中我遇到的问题:

原来以为这两个大整数的位数不同,结果题目要求是相同位数的大整数在写10的多少次方时,写的是10^(i/2),10^(i),结果不对,我就将它改成了for 循环语句

四、实验总结

在本次实验中,我知道了分治算法,以及分治算法的基本思想。我还掌握了编写大整数乘法的算法与步骤,以及如何修改在编写程序时遇到的问题。

这里填写您企业或者单位的信息

Fill In The Information Of Your Enterprise Or Unit Here

完整版有限差分方法概述.doc

有限差分法( Finite Difference Method,简称FDM)是数值方法中最经典的方法,也是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较 早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分 为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上 述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后 差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 下面我们从有限差分方法的基本思想、技术要点、应用步骤三个方面来深入了解一下有限差分方法。 1.基本思想 有限差分算法的基本思想是把连续的定解区域用有限个离散点 构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。在采用数值计算方法求解偏微分方程时,再将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即 所谓的有限差分法。 2.技术要点 如何根据问题的特点将定解区域作网格剖分;如何把原微分

差分放大电路仿真02605

苏州市职业大学实验报告姓名:学号:班级:

二、选好元器后,将所有元器件连接绘制成仿真电路(见图 1) R3 6.8k Q 三、仿真分析 1.静态工作点分析 1)调零。信号源先不接入回路中,将输入端对地短接,用万用表测量两个输出 节点,调节三极管的射极电位,使万用表的示数相同,即调整电路使左右完 全对称。测量电路及结果如图2所示 2)静态工作点调试。零点调好以后,可以用万用表测量 Q1、Q2管各电极电位, 结果如图 3 所示,测得 I B 1 15 A , I C 1 1.089mA , U CE 5.303V 。 2.测量差模放大倍数 将函数信号发生器XFG1的“ +”端接放大电路的R1输入端,“一”端接R2输入 端,COM 端接地。调节信号频率为1kHz ,输入电压10mV 调入双踪示波器,分别 接输入输出,如图4所示,观祭波形变化,示波器观祭到的差分放大电路输入、 输出波形如图5所示 R4 6.8k Q R1 ■ 酉 2 ?R6 >510 Q <3 ------- Q1 R8 12k Q 12 V 双端输入、 100Q Key=A 丄V2 -— 12 V 11 R5 5.1k 10 双端输出的长尾式差分放大电路 8 Q ■ 4 Q2 2N3903 R2 AAAr-| 2k Q 7 50% Rp1

4.607 V H-、4 -Q *: LR3 S : : ?6+BkQ : a ): >R4 :>G.?kn ............ R& '''' ---------- VA ---------- it::12W5::: 1 F ■! ■ I R1 .,,斗,- VA- :7W. . \ ■1 2M39G 3 :R2 : : 2K1: 2N39G3 -” R6 5100 : ::5C% :10QQ ::Key=A 丄V2「::二12W TV '' 图2差分放大器电路调零

三轮DES差分分析实验报告-刘杰

DES 差分分析实验报告 四大队四队五班 刘杰 一、实验目的 差分密码分析是一种选择明文攻击,是现代分组密码分析的重要方法之一,也是理论分析密码算法和算法抗攻击测试的重要依据之一。本实验通过3轮DES 简化算法的差分分析来达到加深学员对差分分析方法原理的理解和利用该原理分析实际问题的操作能力。 二、实验内容 (1)3轮DES 简化算法的差分分析; (2)通过三组明密文对(每组两个相关明文和相应密文),利用差分原理提取密钥。 明 文 密 文 748502CD38451097 03C70306D8A09F10 3874756438451097 78560A0960E6D4CB 486911026ACDFF31 45FA285BE5ADC730 375BD31F6ACDFF31 134F7915AC253457 357418DA013FEC86 D8A31B2F28BBC5CF 12549847013FEC86 0F317AC2B23CB944 三、实验原理 设DES 两个明密文对:=00m L R ***=00m L R =33c L R *** =33c L R 计算过程: (,)(,)(,)(,)=⊕=⊕=⊕⊕322312300123R L f R k R f R k L f R k f R k

(,)(,)****=⊕⊕300123R L f R k f R k 令:*'=⊕000L L L (,)(,)(,)(* **''=⊕=⊕⊕⊕⊕333001012323R R R L f R k f R k f R k f R k 观察得:在本次实验原始数据中,明文对*=00R R ,即* '=⊕=00000000000R R R 则(,)(,)** ''=⊕=⊕⊕33302323R R R L f R k f R k 同时有:=00m L R ***=00m L R =23R L ** =23R L 则可计算出:*'=⊕000L L L *'=⊕333R R R (,)(,)* ''⊕=⊕232330f R k f R k R L 则可得出: S 盒输入差:(())(())()()* *⊕⊕⊕=⊕232333E R k E R k E L E L S 盒输出差:()*-''⊕=⊕13 0D D P R L 分析过程: 令:()()*⊕=3312345678E L E L B B B B B B B B ()-''⊕=13 012345678P R L C C C C C C C C ()=312345678E L A A A A A A A A =312345678 k J J J J J J J J ()⊕=3312345678E L k X X X X X X X X *()⊕=3312345678E L k Y Y Y Y Y Y Y Y 基本思路:(分别计算12345678J J J J J J J J ) {|,()()∈=⊕⊕=⊕=i i i i i i i J T e s t x A x y B S x S y C ,,,,,,,=12345678i 对于本次实验的3个具有明文差(*,0)的明密文对,则可构造上面的3个 Test 集合,显然 ()()( )∈12 i i i i J Test Test Test t ,,,,,,,=12345678i 一种确定Ji 的直接方法: 1.建立26=64长度的数组J[64]={0}; 2.对Testi(r),r = 1,2,…,t ,若a ∈Testi(r),则 J[a] = J[a] + 1。 3.若J[b] =3,则6比特串b 就是可能的密钥比特 Ji 。 四、实验环境 Microsoft visual c++ 五、实验步骤 (1)计算简化算法第3轮S 盒输入差

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

有限差分法实验报告

工程电磁场 实验报告 ——有限差分法

用超松弛迭代法求解 接地金属槽内电位的分布 一、实验要求 按对称场差分格式求解电位的分布 已知: 给定边值:如图1-7示 图1-7接地金属槽内半场域的网格 给定初值)()(.1j 40 100 1j p 1 2j i -= --= ??? 误范围差: 510-=ε 计算:迭代次数N ,j i ,?,将计算结果保存到文件中 二、实验思想 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上? =?= V 100 ? 0 =?0 =?

的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式 )(4 1 044321004321??????????+++=?=-+++ 差分方程组的求解方法(1) 高斯——赛德尔迭代法 ][)(,)(,)(,)(,)(,2 k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 4 1 -+++=+++-+-+????? (1-14) 式中:??????=??????=,2,1,0,2,1,k j i , ? 迭代顺序可按先行后列,或先列后行进行。 ? 迭代过程遇到边界节点时,代入边界值或边界差分 格式,直到所有节点电位满足ε??<-+)(,)(,k j i l k j i 为止。 (2)超松弛迭代法 ][) (,)(,)(,)(,)(,)(,)(,k j i 2k 1j i k j 1i 1k 1j i 1k j 1i k j i 1k j i 4Fh 4 ?????α??--++++=+++-+-+ (1-15) 式中:α——加速收敛因子)21(<<α 可见:迭代收敛的速度与α有明显关系 三、程序源代码 #include #include #include double A[5][5]; void main(void) { double BJ[5][5];//数组B 用于比较电势 int s[100];//用于储存迭代次数 图1-4 高斯——赛德尔迭代法

_实验1分治法

实验一分治法 一、实验目的 1.理解分治法的方法; 2. 掌握使用分治法解决一般问题的步骤; 3. 掌握分治算法求解数组的最大值和最小值的方法。 二、实验原理 在一个给定数组中查找最大值和最小值是一类常见的问题,也是解决其他一些算法的基础。 假设给定数组为a,数组中含有n个元素,一般的算法是在数组中进行直接查找,算法伪代码如下: 1. x←a[0]; y←a[0] 2. for i←2 to n 3. if a[i]y then y←a[i] 5. end for 6. return (x,y) 上述代码在第3行和第4行涉及到元素的比较,每次循环进行2次比较,而循环的次数在算法第2行给出,为(n-2)+1=n-1次,因此,算法元素比较总次数为2(n-1)次。 现在采用分治的思想,假设数组的长度为2的整数幂,将数组分割成两半,分别为a[0…(n/2)-1]和a[n/2…n-1],在每一半中分别查找最大值和最小值,并返回这两个最小值中的最小值以及两个最大值中的最大值。 假设给定数组为a,数组的下标上界和下界分别为low和high,则其算法伪代码如下: minmax(a,low,high) 1. if high-low=1 then 2. if a[low]

差分编译码实验报告

实验十三差分编译码实验 一、实验目的 掌握差分编码/译码原理 二、实验内容 1、学习差分编译码原理 2、用示波器观察差分编码结果和译码结果 三、基本原理 差分码是一种把符号‘0’和‘1’反映在相邻码元的相对变化上的波形。比如,若以相邻码元的电位改变表示符号‘1’,而以电位不改变表示符号‘0’,如图13-1所示。当然,上述规定也可以反过来。由图可见,这种码波形在形式上与单极性或双极性码波形相同,但它代表的信息符号与码元本身电位或极性无关,而仅与相邻码元的电位变化有关。差分波形也称相对码波形,而相应地称单极性或双极性波形为绝对码波形。差分码波形常在相位调制系统的码变换器中使用。 图13-1差分码波形 组成模块如下图所示: cclk d_out 端口说明: CCLK:编码时钟输入端 DIN:编码数据输入端 Diff-OUT:差分编码结果输出端 DCLK:译码时钟输入端

Diff-IN:差分译码数据输入端 DOUT:译码结果输出端 四、实验步骤 1、实验所用模块:数字编解码模块、数字时钟信号源模块。 实验连线: CCLK:从数字时钟信号源模块引入一高频时钟,如512K。 DIN:从数字时钟信号源模块引入一低频时钟,如16K。 DIFF-OUT与DIFF-IN短接。 DCLK与CCLK短接。 2、用示波器两探头同时观测DIN与DIFF-OUT端,分析差分编码规则。 3、用示波器两探头同时观测DIN与DOUT端,分析差分译码结果。 五、实验报告要求 设信息代码为1001101,码速率为128K,差分码的编码时钟为码速率的四倍,根据实验观察得到的规律,画出差分码波形。

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

差分方法实验报告

实验报告 课程名称:计算方法 院系:数学科学系 专业班级:数应1001 学号:1031110139 学生姓名:姚海保 指导教师:沈林 开课时间:2012至2013学年第一学期

一、学生撰写要求 按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。 学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。 二、教师评阅与装订要求 1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。 2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。 4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩; 5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的 差动放大器 图是差动放大器的结 构。它由两个元件参数相 近的基本共射放大电路组 成。 1.直流分析数据 2.直流分析仿真数据

3.交流分析数据 4.交流分析仿真数据 具有恒流源的差动放大器 图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 图3.1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻 E R ,可以进一步提高差动 放大器抑制共模信号的能 力。 1、差动电路的输入输 出方式 根据输入信号和输出信号的不同方式可以有四种连接方式,即 : (l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 、2o V 两端。 (4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 或2o V 到地。

分治法实验报告一

宁波工程学院电信学院计算机系 实验报告 课程名称:算法设计与分析实验项目:用分治法算法解 最接近点对问题 指导教师:崔迪 实验位置:软件工程实验室姓名: 班级: 学号: 日期: 2016/10/12 一、实验目的 通过上机实验,要求掌握分治法算法的问题描述、算法设计思想、程序设 计和算法复杂性分析等。 二、实验环境: Eclipse 三、实验内容:用分治法解最接近点对问题 (1)问题描述 给定平面S上n个点,找其中的一对点,使得在n(n-1)/2 个点对中,该 点对的距离最小。 (2)算法设计思想 1. n较小时直接求 (n=2). 2.将S上的n个点分成大致相等的2个子集S1和S2 3.分别求S1和S2中的最接近点对 4.求一点在S1、另一点在S2中的最近点对 5.从上述三对点中找距离最近的一对.

(3)程序设计(程序清单及说明) package closestpair; import java.util.Arrays; import https://www.doczj.com/doc/ea8621884.html,parator; import java.util.Random; import java.util.Scanner; //定义坐标点 class Point { double x; double y; public Point(double x, double y) { this.x = x; this.y = y; } } // 根据x坐标排序 class MyComparatorX implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.x < p2.x) { return -1; } else if (p1.x > p2.x) { return 1; } else { return 0; } } } // 根据Y坐标排序 class MyComparatorY implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.y < p2.y) { return -1; } else if (p1.y > p2.y) { return 1; } else {

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

一维波动方程的有限差分法

学生实验报告实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计02班 学生姓名______________ 学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年6月20日

1、三层显格式建立 由于题中h 0.1, 0.1h,x 0,1 ,t 0,2,取N 10, M 200,故令网比r 0.1,h X j j h, j 0,1,2,L 10,t k k ,k O,1L ,200 ,在内网个点处,利用二阶中心差商得到如下格式: k 1 k U J 2U J 2- k 1 U j k k U j 1 2U j h2 k U j 1 o h2 略去误差项得到: k 1 U j 其中j 1,2丄9,k 对于初始条件 2 k r U J1 1,2,L ,199,局部截断误差为 U x,0 sin U J k U j k r U j 2 o k 1 U J h2。 (3) 对于初始条件-u x,0 t x,建立差分格式为: sin x j sin Jh , J 利用中心差商,建立差分格式为: 0,1,2,L 10 (4) 对于边界条件将差分格式延拓使综上(3 )、 (4 )、 k 1 u j 其中r山o.1 1 U J 2 1 U j 0,即U1二U j1, J 0,1,2,L 10 (5) 0,t 0,2 ,建立差分格式为: U N 0,k 0,1,L ,200 k 0为内点,代入(3)得到的式子再与(5)联立消去 1 1 2 0 ’ 2 0 1 5 r U, 1 1 r U, r J 2 J J 2 (7 )得到三层显格式如下: U 0,t U 1,t k U0 (6 ) 、 2 k r U j 1 2 1 r2k 2 k U J r U J 1 k 1? U j , J U j (6) 1后整理得到: U j 1 (7) (局部截断误差为 1,2,L 9,k 1,2,L ,199 h2) 1 U j U J sin 1 2 0 2r U J 1 k U o X j k U N sin 2 0 r U j 0,k 0,1,2,L 10 Jh ,J 1 2r2u01, J 1,2,L 9 0,1L ,200 (8) 四?实验环境(所用软件、硬件等)及实验数据文件Matlab

分治算法实验(用分治法实现快速排序算法)

算法分析与设计实验报告第四次附加实验

while (a[--j]>x); if (i>=j) { break; } Swap(a[i],a[j]); } a[p] = a[j]; //将基准元素放在合适的位置 a[j] = x; return j; } //通过RandomizedPartition函数来产生随机的划分 template vclass Type> int RandomizedPartition(Type a[], int p, int r) { int i = Random(p,r); Swap(a[i],a[p]); return Partition(a,p,r); } 较小个数排序序列的结果: 测试结果 较大个数排序序列的结果:

实验心得 快速排序在之前的数据结构中也是学过的,在几大排序算法中,快速排序和归并排序尤其是 重中之重,之前的快速排序都是给定确定的轴值,所以存在一些极端的情况使得时间复杂度 很高,排序的效果并不是很好,现在学习的一种利用随机化的快速排序算法,通过随机的确 定轴值,从而可以期望划分是较对称 的,减少了出现极端情况的次数,使得排序的效率挺高了很多, 化算法想呼应,而且关键的是对于随机生成函数,通过这一次的 学习终于弄明白是怎么回事了,不错。 与后面的随机实 验和自己的 实验得分助教签名 附录: 完整代码(分治法) //随机后标记元素后的快速排序 #i nclude #in elude #inelude #include using namespacestd; template < class Type> void S &x,Type &y); // 声明swap函数 inline int Random(int x, int y); // 声明内联函数 template < class Type> int Partition(Type a[], int p, int r); // 声明 Partition 函数template int RandomizedPartition(Type a[], int p, int r); // 声明 RandomizedPartition 函数 int a[1000000]; //定义全局变量用来存放要查找的数组 更大个数排序序列的结果:

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

有限差分法

有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛

-实验1分治法

一、实验目的 1.理解分治法的方法; 2. 掌握使用分治法解决一般问题的步骤; 3. 掌握分治算法求解数组的最大值和最小值的方法。 二、实验原理 在一个给定数组中查找最大值和最小值是一类常见的问题,也是解决其他一些算法的基础。 假设给定数组为a,数组中含有n个元素,一般的算法是在数组中进行直接 循环的次数在算法第2行给出,为(n-2)+1=n-1次,因此,算法元素比较总次数为2(n-1)次。 现在采用分治的思想,假设数组的长度为2的整数幂,将数组分割成两半,分别为a[0…(n/2)-1]和a[n/2…n-1],在每一半中分别查找最大值和最小值,并返回这两个最小值中的最小值以及两个最大值中的最大值。 假设给定数组为a,数组的下标上界和下界分别为low和high,则其算法伪 接比较数组的两个元素,选出最大值和最小值,此为函数的递归终止条件;代码第7行和第8行是两个递归调用,分别在数组的下标范围[low,mid]和 [mid+1,high]查找最小值和最大值,第9行比较两个最大值取其中较大者,第10行比较两个最小值取较大者。

代码的第2、9和10行涉及到元素的比较,第7、8行由于递归也产生元素比较,因此令算法总的元素比较次数为C(n),则有 ???>+==2 2)2/(221)(n n C n n C 若若 对递推式进行求解 2 2/3 2 2)2/( 2)2(2 2 2...22)2/(2 ... 2 48)8/(824)2)8/(2(4 2 4)4/(42)2)4/(2(22)2/(2)(1 1122111-=-+=+=+++++==+++=+++=++=++=+=∑-=-----n n C n C n C n C n C n C n C n C k k j j k k k k k 得到minmax 算法的元素比较总次数为3n/2-2,优于直接比较的性能。 三、实验内容及要求 1. 编写程序使用分治算法MINMAX 求解数组的最小值和最大值,并用实际数组对算法进行测试。 2. 要求算法中元素比较的次数为3n/2-2,在程序中元素比较的地方进行记录,并在程序末尾输出数组最大值和最小值以及元素比较次数。 四、实验步骤 1. 定义结构体类型或类,用以在函数的返回值同时返回数组的最大值和最小值。

武汉大学差动放大电路实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年12 月14 日实验名称差动放大电路实验台号实验时数3小时姓名学号年级2013班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 一、实验目的 1 、熟悉差动放大器工作原理 2、掌握差动放大器的基本测试方法 实验内容 1.计算下列差动放大器的静态工作点和电压放大 倍数电路图见5.1 信号源已替代 5.1 在图5.1的基础上画出单端输入时和共模输入时的电路图 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用表 4.TPE-A3模拟电路实验箱 3、实验步骤: 1、将电路图5.1接线 2、测量静态工作点 3、测量差模电压放大倍数 4、测量共模电压放大倍数 5、在实验台上组成单端输入的差动电路进行下列实验

三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等) 实验内容及数据记录 1、将电路图5.1接线 2、测量静态工作点 ①调零 将放大器输入端V11、V12接地,接通直流电源,调节调零电位器R P,使V O=0。 ②测量静态工作点:测量V1,V2,V3各极各地电压, 并填入表5.1中。 5.1 对地 电压 Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 测量值 6.29 6.31 -0.74 0 0 - 7.77 -0.61 -0.61 - 8.39 3)测量差模电压放大倍数 在两个输入端各自加入直流电压信号,按有5.2要求测量并记录,由测量得到的数据计算出单端和输出的电压放大倍数。接入到V11t和V12,调节Dc信号源,使其输出为0.1和-0.1. (须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 4) 测量共模电压放大倍数 将输入端b1和b2 短接,接到信号源的输入端,信号源另一端接地。DC信号先后接OUT1和OUT2 测量有关数据后填入表5.32.,由测量得到的数据计算出单端和双端输出的电压放大倍数,并进一步计算出共模抑制比。 5.2 差模输入共模输入抑制 比测量值计算值测量值计算值计算 值Uc1 Uc2 Uo双Ad1 Ad2 Ad双Uc1 Uc2 Uco双Ac1 Ac2 Ac双CMRR +0.1V 10.08 2.55 7.46 -16. 8616.8 6-33. 71 6.29 6.31 -0.02 0.00 5 0.00 5 0 186.5 -0.1V 6.29 6.31 -0.02 0.00 50.00 5 0 186.5

实验八_差分放大器实验报告

差分放大电路 实验报告 姓名:黄宝玲 班级:计科1403 学号:201408010320 实验摘要(关键信息) 实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。 实验内容与规划: 1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。 2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2) 3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。 4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。 5、计算共模抑制比Kcm R 。 最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。 实验环境(仪器用品等) 1.仪器:示波器(DPO 2012B 100MHZ 1GS/s) 直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A) 台式万用表(UT805A) 模拟电路实验箱(LTE-AC-03B)。 2、所用功能区:单管、多管、负反馈放大电路。 实验原理和实验电路 1、实验原理: 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。 概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。 A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。 差模信号Vid :即差模输入的两个输入信号之差。 B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。 共模信号Vic :即共模输入的两个输入信号的算数平均值。 C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 = D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 = E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。 =20lg| |(dB ) =| | 2、实验电路: SW1 SW-SPDT Q1 NPN Q2 NPN Q3 NPN R1 510 R2 510 R3 10k R4 10k R5 10k R6 10k R7 10k R8 5.1K R9 68K R10 36K RV1 100 R9(1) R10(2) A B C D AM FM + -

相关主题
文本预览
相关文档 最新文档