当前位置:文档之家› 砷的性质

砷的性质

砷的性质
砷的性质

一、砷元素的形态及其特性

砷(As)是一个广泛存在并且具有准金属特性的元素,呈灰色斜方六面体结晶,有金属光泽,既不溶解于水又不溶解于酸,为非人体必需元素。克拉克值为5×10-4,宇宙丰度为4.0。除发现少量的天然砷外,已知有150多种含砷矿物。最普通的矿物是:砷化物矿,硫化物矿,氧化物矿,砷酸盐矿。砷的毒性与它的化学性质和价态有关。长期饮用高砷水,会引起花皮病或皮肤角质化等皮肤病,黑脚病,神经病,血管损伤,以及增加心脏病发病。天然水中的砷来源于农业和林业使用砷化合物药剂,还来源于冶金、化工、化学制药、制革、纺织、木材加工、玻璃、油漆颜料和陶瓷等工业废水对天然水体的污染。

近年来,由于采煤及其它工业污染,使地下水中砷的浓度不断增加,砷污染已经成为一个潜在的公共卫生问题,亚洲地区特别是孟加拉国地下水的砷污染问题已经受到国际社会特别的关注。由于饮用水中含有的砷超过一定限量会引起慢性中毒,因此世界卫生组织规定生活饮用水安全标准为每升含砷不超过0.05毫克。2001年1月,EPA提出一个新的标准,即生活饮用水标准每升含砷不超过0.01毫克,并决定从2006年起实施,欧盟也计划实行这一标准。

据卫生部的统计,我国目前有11个省的部分地区受到地下水中砷的污染,内蒙古、新疆、台湾等地饮水中含砷量高达0.2-2.0mgAs/l,严重超过我国现行饮水卫生标准<0.05mgAs/l(饮用水新标准GB5749-2006的砷标准值为<0.01mgAs/l),导致地方性砷中毒,饮用水除砷是防治地方性砷中毒的关键措施,所以,安全、有效、经济的饮水除砷方法的研究显得尤为重要。

二、除砷技术和方法

(1)介质过滤法

研究表明,利用介质过滤对As(Ⅴ)的去除效果明显好于As(Ⅲ)。所以在除砷过程中常对所处理的水进行预氧化,把三价As(Ⅲ)氧化为五价As(Ⅴ)。然后,通过填充无烟煤、石英砂的滤层进行截留。

介质过滤方法对于高砷水的去除效果优于低砷水,较难达到饮用水新标准要求。

(2)吸附过滤法

吸附法是一种简单容易的水处理技术,一般适合于处理量大、浓度较低的水处理体系。该方法是以具有高比表面积、不溶性的固体材料作吸附剂,通过物理吸附作用、化学吸附作用或离子交换作用等机制将水中的砷污染物固定在自身的表面上,从而达到除砷的目的。主要的除砷吸附剂有F.F复合分子筛、活性氧化铝、活性炭、骨炭以及天然或合成的金属氧化物及其水合氧化物等。

在复合分子筛除砷技术的应用上,一些水处理人士投入了较多精力,但真正成功实施的案例很少,在国内仍停留在试验阶段。其它方法如:小颗粒活性氧化铝、骨炭、活性炭等,则存在价格贵、难再生或无法再生、易饱和、使用寿命短、易造成铝或氨氮超标等相关问题出现。

(3)离子交换法

离子交换是利用阴阳离子交换树脂的选择性交换,除去水中的部分离子的过程。离子交换树脂能够从电解质溶液中吸取某种阳离子或者阴离子,而把自身所含的另外一种带相同电荷符号的离子等量地交换出来,并释放到溶液中去。按照所交换离子的种类,离子交换剂可分为阳离子交换剂和阴离子交换剂两大类。水中砷的存在是以阴阳两种价态存在的,可针对采取复合床或混合床离子交换的办法去除。曾经有过相关文献报道,利用离子交换法可以测量水中砷的含量。

离子交换在除去砷时,会首先脱除水中的其他电性较强的电解质,同时使出水含盐量降低,再生成本增加,不适合用于单纯除砷的场合。

(4)膜分离法处理

膜分离技术简单说就是超微过滤技术。对除砷而言,最为有效的膜法处理手段是反渗透(Reverse Osmosis)。利用反渗透技术,我们可以用压力使溶质与溶剂分离。反渗透膜中有众多的微孔,这些微孔的直径为0.0005微米,与水分子的直径相当,水分子可以通过。大于这一孔径的细菌、病毒和大部分分子、离子均被截留而与纯水分离。

反渗透设备具有是自动化程度高,操作维护简便的优点。缺点在于设备造价昂贵,

有10-25%浓水需要排放。

(5)离子交换+吸附过滤

利用离子交换树脂的结构和制作机理,附加特殊工艺使之改性,使之具有离子交换和吸附过滤双重功效。

与其他除砷技术和方法比较,该项技术具有交换容量大,再生周期长,成本较低,除砷针对性强,再生工艺简单等优点。目前国际和国内很多研究机构对此项技术进行研究,已经有多种牌号的除砷专用树脂用于世界各地的高砷水处理。

本工程采用的工艺为离子交换+吸附过滤。

雪崩光电二极管的特性

雪崩光电二极管的介绍 及等效电路模拟

雪崩光电二极管的介绍及等效电路模拟 [文档副标题] 二〇一五年十月 辽宁科技大学理学院 辽宁省鞍山市千山中路185号

雪崩光电二极管的介绍及等效电路模拟 摘要:PN结有单向导电性,正向电阻小,反向电阻很大。当反向电压增大到一定数值时,反向电流突然增加。就是反向电击穿。它分雪崩击穿和齐纳击穿(隧道击穿)。雪崩击穿是PN 结反向电压增大到一数值时,载流子倍增就像雪崩一样,增加得多而快,利用这个特性制作的二极管就是雪崩二极管。雪崩击穿是在电场作用下,载流子能量增大,不断与晶体原子相碰,使共价键中的电子激发形成自由电子-空穴对。新产生的载流子又通过碰撞产生自由电子-空穴对,这就是倍增效应。1生2,2生4,像雪崩一样增加载流子。 关键词:雪崩二极管等效电路 1.雪崩二极管的介绍 雪崩光电二极管是一种p-n结型的光检测二极管,其中利用了载流子的雪崩倍增效应来放大光电信号以提高检测的灵敏度。其基本结构常常采用容易产生雪崩倍增效应的Read二极管结构(即N+PIP+型结构,P+一面接收光),工作时加较大的反向偏压,使得其达到雪崩倍增状态;它的光吸收区与倍增区基本一致(是存在有高电场的P区和I区)。 P-N结加合适的高反向偏压,使耗尽层中光生载流子受到强电场的加速作用获得足够高的动能,它们与晶格碰撞电离产生新的电子一空穴对,这些载流子又不断引起新的碰撞电离,造成载流子的雪崩倍增,得到电流增益。在0.6~0.9μm波段,硅APD具有接近理想的性能。InGaAs(铟镓砷)/InP(铟磷)APD是长波长(1.3μn,1.55μm)波段光纤通信比较理想的光检测器。其优化结构如图所示,光的吸收层用InGaAs材料,它对1.3μm和1.55μn 的光具有高的吸收系数,为了避免InGaAs同质结隧道击穿先于雪崩击穿,把雪崩区与吸收区分开,即P-N结做在InP窗口层内。鉴于InP材料中空穴离化系数大于电子离化系数,雪崩区选用n型InP,n-InP与n-InGaAs异质界面存在较大价带势垒,易造成光生空穴的陷落,在其间夹入带隙渐变的InGaAsP(铟镓砷磷)过渡区,形成SAGM(分别吸收、分级和倍增)结构。 在APD制造上,需要在器件表面加设保护环,以提高反向耐压性能;半导体材料以Si 为优(广泛用于检测0.9um以下的光),但在检测1um以上的长波长光时则常用Ge和InGaAs(噪音和暗电流较大)。这种APD的缺点就是存在有隧道电流倍增的过程,这将产生较大的散粒噪音(降低p区掺杂,可减小隧道电流,但雪崩电压将要提高)。一种改进的结构是所谓SAM-APD:倍增区用较宽禁带宽度的材料(使得不吸收光),光吸收区用较窄禁带宽度的材料;这里由于采用了异质结,即可在不影响光吸收区的情况下来降低倍增区的掺杂浓度,使得其隧道电流得以减小(如果是突变异质结,因为ΔEv的存在,将使光生

铟镓砷磷InGaAsP半导体材料简介

光電子學期末報告 Introduction to InGaAsP Semiconductor Materials 指導教師:郭艷光(Yen-Kuang Kuo) 教授 學生:蔡政訓 學號:8522022 系別:物理系 班級:四年級乙班

內容大綱: (一)前言 (二)波長範圍與能隙(Eg)寬(三)起振條件與輸出功率:(四)各種不同結構的雷射(五)先進的半導體結構及其性能(六)結語 (七)參考書目

(一)、前言 現在是資訊時代,為了高速處理資訊社會所擁有的龐大資料,利用光和電子技術之光電業於焉誕生。應用同調(coherence)光的工業在1984年度(以光學式影像機為中心)的生產規模為6600億日元,到西元2000年,預料將以光通訊為中心,生產規模也將成長為12兆日元。其製品包括同調光通訊系統、光IC(光電子積體電路,OEIC)光電算機等。 光IC 係將光與電子的功能特性集積在一片基板上,而以砷化鋁鎵及磷砷化銦鎵系半導體技術最為先進,其與化合物半導體IC 同樣,有實現的可能。光電半導體材料之研究十分積極,已開發出砷化鎵、磷化銦、砷化鋁鎵、磷砷化銦鎵等。 至於光通訊系統方面,與傳統的有線通訊系統比較起來,光纖通訊具有較大的通訊頻寬,較小的訊號衰減,不受電磁波干擾,沒有串音、保密性高、線徑小、重量輕、可靠度高、、等優點,因此可已知道隨著資訊的暴漲,據高速大容量高品質的光纖通訊系統毫無疑問的將是未來資訊傳遞的主流。而光纖系統中最重要的關鍵性元件就是它的光源,也就是雷射二極體,本文就是要介紹在光纖系統中最常被使用的雷射:磷砷化銦鎵 ( InGaAsP) 的特性以及其結構。 (二)、波長範圍與能隙(Eg )寬 光纖通訊中最常使用的波長為1.3以及1.55微米,主要是由於光在石英光纖中的傳輸損失在這兩個波長最低,在1.3微米處約0.6dB/km ,而在1.55微米處約0.2 dB/km 。在光纖中,由於材料色散的緣故,不同波長的光在光纖中有不同的色散,因而傳輸速率的不同,會造成訊號的波形變形,而限制了傳輸的距離。波長於1.3微米附近的色散是零,因此雖然其損失比1.55微米時大,但仍然最常用來當作短距離光纖通訊的光源。 在光纖通訊所使用的長波長範圍內,最常用InP 為基板材料。為了能與InP 的晶格常數(a=5.87埃)相匹配,必須使用四元化合物InGaAsP 。當晶格與InP 相匹配時(y=2.2x ),其能隙Eg (單位是eV )的變化為 212.072.035.1y y Eg +-= 則我們由公式 : Eg 24.1=λ可知由0.92到1.65微米的整個波長範圍均被此種材料系統所涵蓋。

新一代宽禁带半导体材料

新一代宽禁带半导体材料 回顾半导体的发展历程,随着不同时期新材料的出现,半导体的应用先后出现了几次飞跃。 首先,硅材料的发现使半导体在微电子领域的应用获得突破性进展,日用家电和计算机的广泛应用都应该归功于硅材料的应用。 而后,砷化镓材料的研究则使半导体的应用进入光电子学领域。用砷化镓基材料及其类似的一些化合物半导体,如镓铝砷、磷镓砷、铟镓砷、磷化镓、磷化铟和磷砷化镓等,制备出的发光二极管和半导体激光器在光通信和光信息处理等领域起到不可替代的作用,由此也带来了VCD和多媒体等的飞速发展。 目前,人们又开始研究新一代的宽禁带半导体材料,其中最有意义的是碳化硅、氮化镓和氧化锌。这些材料的共同特点是它们的禁带宽度在3.3到3.5电子伏之间,是硅的3倍,比砷化镓的禁带宽度也大了两倍以上。由于它们的一些特殊性质和潜在应用前景使它们备受关注。 碳化硅具有高热导率(硅的3.3倍)、高击穿场强(硅的10倍)、高饱和电子漂移速率(硅的2.5倍)以及高键合能等优点。所以特别适合于制造高频、大功率、抗辐射、抗腐蚀的电子器件,并且可以在几百度高温的恶劣环境下工作。可用于人造卫星、火箭、雷达、通讯、战斗机、海洋勘探、地震预报、石油钻井、无干扰电子点火装置、喷气发动机传感器等重要领域。目前,碳化硅高频大功率器件已应用到军用雷达、卫星通讯和高清晰度电视图像的发送和传播等方面。 氮化镓和砷化镓同属III-V族半导体化合物,但氮化镓是III-V族半导体化合物中少有的宽禁带材料。利用宽禁带这一特点制备的氮化镓激光器可以发出蓝色激光,其波长比砷化镓激光器发出的近红外波长的一半还要短,这样就可以大大降低激光束聚焦斑点的面积,从而提高光纪录的密度。与目前常用的砷化镓激光器相比,它不仅可以将光盘纪录的信息量提高四倍以上,而且可以大大提高光信息的存取速度。这一优点不仅在光纪录方面具有明显的实用价值,同时在光电子领域的其他方面也可以得到广泛应用。虽然人们早就认识到氮化镓的这一优点,但由于氮化镓单晶材料制备上的困难以及难于生长出氮化镓PN结,氮化镓发光器件的研究很长时间一直没有获得突破。经过近20年的努力,1985年通过先进的分子束外延方法大大改善了氮化镓材料的性能;1989年,Akasaki等人利用电子辐照方法实现了氮化镓P型材料的生长并制备出PN结;1995年Nakamura等人制备出发蓝紫光的氮化镓发光二极管,效率达到5%,赶上了传统的磷砷化镓发光二极管的效率,寿命超过一万小时。1997年,用氮化镓基材料制备的半导体激光器也开始面世。这一飞速发展的势头反映了氮化镓材料受重视的程度。有人估计,氮化镓器件在化合物半导体市场的份额将由1997年的2%很快上升到2006年的20%,成为光电子产业中非常重要的产品。 与氮化镓材料相比,氧化锌薄膜的紫外发光是刚刚开始的新兴课题。氧化锌是一种具有六方结构的自激活宽禁带半导体材料,室温下的禁带宽度为3.36eV,特别是它的激子结合能高达60毫电子伏,在目前常用的半导体材料中首屈一指,这一特性使它具备了室温下短波长发光的有利条件;此外,氧化锌具有很高的导电性,它还和其他氧化物一样具有很高的化学稳定性和耐高温性质,而且它的来源丰富,价格低廉。这些优点使它成为制备光电子器件的优良材料,极具开发和应用的价值。1997年日本和香港科学家合作研究得到了氧化锌薄膜的近紫外受激发光,开拓了氧化锌薄膜在发光领域的应用。由于它产生的受激发射的波长比氮化镓的发射波长更短,对提高光信息的纪录密度和存取速度更加有利,而且价格便宜。目前,除了氧化锌薄膜的发光特性外,也有人发现了氧化锌薄膜的光生伏特效应,显示出用它制备太阳能电

半导体的基本理论

论文题目:半导体的基本理论课程名称:功能材料概论 专业名称:应用化学 学号:1109341009 姓名: 成绩: 2014年3月30日

半导体的基本理论 摘要:半导体和绝缘体之间的差异主要来自两者的能带宽度不同。绝缘体的能带比半导体宽,意即绝缘体价带中的载流子必须获得比在半导体中更高的能量才能跳过能带,进入导带中。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物。随着时代的发展,半导体的市场需求已经步入了黄金时期。 关键词:半导体;元素半导体;磁性材料;半导体元件;能带理论 The Basic Theory of Semiconductors Abstract:Differences between the semiconductor and the insulator can be different from the width of the main two . Insulator band width than the semiconductor , an insulator means of the valence band of the carrier must be higher than the energy to jump in the semiconductor energy band into the conduction band .Many semiconductor materials, according to the chemical composition of the semiconductor elements can be divided into two categories, and compound semiconductors . Germanium and silicon is the most commonly used semiconductor element ; Ⅲfirst compound semiconductor comprises a first aromatic compound Ⅴ. With the development of the times , the needs of the semiconductor market has entered a golden age . Key words:semiconductors;element semiconductor;magnetic material;semiconductor components;energy band theory 引言 半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 1 半导体的定义

短波红外成像芯片及其形成方法与相关技术

本技术提供一种短波红外成像芯片及其形成方法,短波红外成像芯片包括短波红外二极管和读出电路,短波红外二极管包括辅助成核层、缓冲层和铟镓砷PN结,读出电路包括MOS管,MOS管的一源/漏极连接铟镓砷PN结的N极。本技术提供的短波红外成像芯片及其形成方法,其短波红外二极管具有辅助成核层和缓冲层,在辅助成核层的诱导结晶作用下可以适用于多种的衬底,由于辅助成核层以及缓冲层的作用使短波红外二极管及其形成方式可以利用多种尺寸、多种材料的衬底,降低对衬底的要求,可提高短波红外成像芯片的应用设计的灵活性;通过短波红外二极管与读出电路的连接直接集成于衬底上,可减少器件所占用的面积,从而可提高短波红外成像芯片的像素密度。 权利要求书 1.一种短波红外成像芯片,其特征在于,所述短波红外成像芯片包括: 短波红外二极管,所述短波红外二极管位于衬底上,所述短波红外二级管包括辅助成核层、缓冲层和铟镓砷PN结,所述辅助成核层用于诱导结晶,所述缓冲层设置在所述辅助成核层上,所述铟镓砷PN结设置在所述缓冲层上; 读出电路,所述读出电路位于所述衬底上,所述读出电路包括MOS管,所述MOS管的一源/漏极连接所述铟镓砷PN结的N极。 2.如权利要求1所述短波红外成像芯片,其特征在于,所述读出电路还包括浅沟道隔离结构,所述浅沟道隔离结构设置在所述MOS管的源/漏极的侧面。 3.如权利要求1所述短波红外成像芯片,其特征在于,所述短波红外二极管还包括保护层,所述保护层形成于与所述衬底相对的所述短波红外二极管的外表面,所述保护层的材料包括氧化硅、氮化硅和/或氧化铝,所述保护层的厚度为10nm~100nm。 4.如权利要求1所述短波红外成像芯片,其特征在于,所述辅助成核层为氧化钼层或钼层,所述辅助成核层的厚度为1nm~50nm;所述缓冲层为磷化铟层,所述缓冲层的厚度为50nm~500nm。 5.如权利要求1-4中任意一项所述短波红外成像芯片,其特征在于,所述铟镓砷PN结包括:铟镓砷层以及位于所述铟镓砷层上的磷化铟层,所述磷化铟层形成有磷化铟PN结。 6.一种短波红外成像芯片的形成方法,其特征在于,所述短波红外成像芯片的形成方法包括:

基于铟镓砷材料的新型太赫兹_亚毫米波探测器研究_童劲超

第43卷第10期红外与激光工程2014年10月Vol.43No.10Infrared and Laser Engineering Oct.2014基于铟镓砷材料的新型太赫兹/亚毫米波探测器研究 童劲超,黄敬国,黄志明 (中国科学院上海技术物理研究所红外物理国家重点实验室,上海200083) 摘要:对一种基于生长在半绝缘InP衬底上InGaAs外延材料的新型太赫兹室温探测器进行研究。 首先在HFSS理论计算的基础上对器件天线阻抗、驻波比、辐射方向图等特性参数进行分析。其次,通过光刻、腐蚀、溅射、点焊等工艺制作出对称金属电极天线耦合的太赫兹探测器件。结合自己搭建的 0.0375THz器件响应测试系统,得到铟镓砷太赫兹探测器件在不同偏置电流和不同调制频率下的器 件响应曲线。结果表明器件具有明显的光电信号和快的响应速度。通过利用高莱探测器进行标定,得到器件在0.0375THz时的电压灵敏度优于6V/W,器件噪声等效功率NEP优于1.6×10-9W/Hz1/2,器件响应时间优于300μs。 关键词:太赫兹;室温;铟镓砷;探测器;天线计算 中图分类号:TN215文献标志码:A文章编号:1007-2276(2014)10-3347-05 New type terahertz/sub-millimeter wave detector based on InGaAs layers Tong Jinchao,Huang Jingguo,Huang Zhiming (National Laboratory for Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai200083,China) Abstract:A brand new type of terahertz/sub-millimeter wave detector based on InGaAs material grown on semi-insulate InP substrate was proposed with an Metal-Semiconductor-Metal(MSM)structure.High Frequency Structural Simulator(HFSS)software was firstly used to characterize the metallic planar antenna by calculating its resistance,standing-wave ratio(SWR),and the radiation pattern.Detectors with symmetrical metallic antenna were fabricated by a serious of technical process mainly including photolithograph,etching,and sputtering.Photoresponse of the detector with respect to the bias current and the modulation frequency was measured by a homemade measure system with a0.0375THz Gunn oscillator terahertz source.The results show large photovoltage signal and fast respond speed(<300μs)of the device.The voltage sensitivity of the detector at0.0375THz reaching to6V/W was further obtained by the calibration of a Golay cell detector.And the noise equivalent power(NEP)at this frequency was 1.6×10-9W/Hz1/ 2. Key words:terahertz;room temperature;InGaAs;detector;antenna simulation 收稿日期:2014-02-11;修订日期:2014-03-19 基金项目:国家自然科学基金(61274138);中国科学院上海技术物理研究所创新项目(Q-DX-29) 作者简介:童劲超(1987-),男,博士生,主要从事太赫兹探测方面的研究。Email:tjc@https://www.doczj.com/doc/ea7547940.html, 导师简介:黄志明(1971-),男,研究员,博士生导师,博士,主要从事红外、太赫兹产生与探测方面的研究。 Email:zmhuang@https://www.doczj.com/doc/ea7547940.html,

相关主题
文本预览
相关文档 最新文档