当前位置:文档之家› 几何画板迭代全解(谢辅炬)

几何画板迭代全解(谢辅炬)

几何画板迭代全解(谢辅炬)
几何画板迭代全解(谢辅炬)

几何画板迭代全解

佛山市南海区石门中学谢辅炬

目录

?迭代的基本概念以及迭代的基本操作

◆迭代的概念

◆迭代在代数、几何中的应用

◆画正多边形

◆数列的图像、前n项和与积

?迭代与分形几何

◆Sierpinski 三角形

◆Sierpinski 地毯

◆摇曳的Pythagorean Tree毕达哥拉斯树

◆分形树

◆KOCH 曲线

◆KOCH Snowflake柯克雪花

◆数学之美

◆H迭代

◆蜂巢

◆其它分形欣赏

?函数迭代:函数映射,M集,朱丽亚集

◆迭代法求方程解

◆MIRA

◆Henon-Attractor

◆Mandelbrot集合

◆Julia Sets集合

◆牛顿迭代法

?下期预告

第一章:迭代的概念和操作

迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。通俗的讲就是用自身的结构来描述自身。最典型的例子就是对阶乘运算可看作一下的定义:!(1)!(1)!(1)(2)!

n n n n n n =?--=-?- 。递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。我们先来了解下面这几个最基本的概念。

迭代:按一定的迭代规则,从原象到初象的反复映射过程。

原象:产生迭代序列的初始对象,通常称为“种子”。

初象:原象经过一系列变换操作而得到的象。与原象是相对概念。

更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。

在几何学中,迭代使一组对象产生一组新的对象。图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。

所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。那么下面我们通过例子来进一步地了解迭代以及相关的概念。

几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。我们先通过画圆的正n

边形这个例子来看一下它们的区别。

【例1】画圆的内接正7边形。

【分析】由正7边形的特征,我们知道,每一个点都相当于前面的点逆时,抓住这个规律,我们可以用迭代功能来解决。

针旋转360

7

【步骤】

1.新建圆O,在圆O上任取一点A。

2.双击圆心O作为旋转中心。选中A点,单击菜单【变换】【缩放】,旋转

参数选为选择固定角度,然后在框中输入360/7,得到B点。连接线段

AB。

第 2 步第 3 步

3.选择A点,单击【变换】【迭代】,点击B点作为初像。屏幕上显示出迭

代的像是正7边形的4条边(因为系统默认非深度迭代的迭代次数是3

次)。

4.单击迭代框的【显示】按钮,选择【增加迭代】。(或者按键盘的‘+’

或‘-’)。增加三次迭代后,我们可以看到一个完整的正7边形。此时

的迭代次数为6次,正7边形制作完成。

第 4 步第 5 步

5.单击迭代框的【显示】按钮【最终迭代】,得到的图像仅是最后一条边。

6.点击迭代框【结构】按钮,我们可以设置创建的对象,选择“仅没有点

的对象”则迭代的像只有正多边形的各条边,而没有顶点,反之则有。

选择迭代像,我们可以修改他们的属性,比如颜色和粗细等,但是细心的你会发现,线段的迭代像是不能够度量其长度的,当然也就不能取中点之类的操作。迭代的点是不能够度量他们的横纵坐标,但是我们可以得到迭代的终点,方法是选择迭代的点,然后单击【变换】【终点】,可以发现最后的那个点变成实点了,这个功能在函数映射里面会用到。

上述方法在增加后减少迭代次数时比较麻烦,而且迭代规则限定了,即每次都是旋转同样的角度。迭代次数和迭代规则能不能用带参数来控制呢?可以的,这就是深度迭代。

【例2】画圆的任意n边形

【步骤】

1.新建圆O并在圆上任取一点A。双击圆心O作为旋转中心。

2.新建参数n=7,计算360

,注意这时要带单位‘度’。

n

3.选择A点,单击菜单【变换】【旋转】,出现旋转对话框,单击计算结果

’作为标记角度,得到B点。连接线段AB。

‘360

n

第 3 步第 4 步

4.顺次选择点A和参数n,按住“shift”键不放,单击【变换】【深度迭

代I】,出现迭代对话框。单击B点作为初像,屏幕上显示出完整的正7

边形。按【迭代】完成操作。

5. 如何改变参数n 呢?有两种方法,第一种是双击参数n ,然后在对话框

中输入值。第二种是单击参数n ,按键盘的‘+’、‘-’,系统默认变

化量为1。右键单击可以修改变化量的大小。

注意:迭代时,作为迭代深度的参数n 一定要在最后面选择,这是系统的规定。

上面讲的都是迭代在几何方面的应用,下面我们来看看用迭代在画数列图像和数列求和方面的应用。

【例3】求数列12

n n a =+

(n=1,2......)的图前8项,并在平面上画出散点(,)n n a 。

【分析】由数列的表达式可知,(,)n n a 是直线y=1+0.5x 上面的点。我们

要产生两个数列,一个是作为横坐标的数列1,2,3......,一个是作为纵坐标的满足上述通项公式的数列。

【步骤】

1. 新建函数y=1+0.5x 。

2. 新建参数a=1,计算a+1,a+1-1,f(a),f(a+1)。

(计算a+1-1是为了得到f(a)对应的横坐标a 。因为迭代次数为0的时

候,f(a)=1.5,a 的值在迭代数据表中是不会显示出来的。)

3. 新建参数n =7作为迭代深度。

4. 选择a 和n ,做深度迭代,原像是a,初像是a +1。

5. 右键点击数据表,选择‘绘制表中记录’,设置x 列变量为(a+1)-1,y

列为f(a)。坐标系为直角坐标系。

第 5 步 第 6 步

6. 点击绘图,得到散点。这些点是可以度量的。但是当参数n 改变的时候,

这些点不与数据表同步,所以是不会改变的。

【例4】求数列1,3,5,7,9(n=1,2......)的前n 项和。

【分析】公差为d ,假设前n 项和为n S ,

111(1)*n n n n S S a S a n d --=+=++-,在平面上描出(n, n S )。

【步骤】

1. 新建参数x=1,计算x +1。

2. 新建参数a=1,d=2。分别表示数列首项和公差。

3. 新建参数s=1,计算s+a+x*d

4. 选择x,x+1,s, s+a+x*d,和n 做深度迭代。绘制数据表,x 列为x +1,

y 列为s +a+x*d 。

第 4 步 第 4 步 与此同理那么等比数列的制作也是一样的。下面我们来看看通项公式不知道的数列怎么画出其图像。

【例4】画出菲波拉契数列12121,1,n n n a a a a a --===+。

【分析】数列的前提条件是121,1a a ==,因为12n n n a a a --=+;所以原像是12,a a ,初像是23,a a 。

【步骤】

1. 新建参数f1=0,f2=1,计算f1+f2,把计算结果的标签改为f3。

2. 新建参数a=1,计算a+1,。计算(a+1)+1(因为迭代0次的时候f3=2,

而,所以下标应该是3,而a=1,故计算a+1+1)

3. 新建参数n=8

4. 依次选择f1,f2,a1,a1+1,n,做深度迭代。

第 5 步

第 6 步

5. 绘制表中数据,x 列为13a +,y 列为3f 。

6. 画点(0,1),(1,1)两点,作为数列的前两项。从图像可以看出,数列

前面增长的很缓慢,但是到了后面就非常的惊人了。

【小结】

在开始下一章“迭代与分行”之前,先复习一下深度迭代的过程是:

1.顺次选择原像和参数n。(注意顺序)

2.按住shift不放,单击菜单【变换】【深度迭代】(出现对话框后可以松

开shift键)。

3.依次选取初像。(注意顺序)。

添加映射的方法是按键盘‘Ctrl+A’。

第二章:迭代与分形几何

分形的特点是,整体与部分之间存在某种自相似性,整体具有多种层次结构。分形图片具有无可争议的美学感召力,特别是对于从事分形研究的科学家来说。欣赏分形之美当然也要求具有一定的科学文化知识,但相对而言,分形美是通俗易懂的。分形就在我们身边,我们身体中的血液循环管道系统、肺脏气管分岔过程、大脑皮层、消化道小肠绒毛等等都是分形,参天大树、连绵的山脉、奔涌的河水、漂浮的云朵等等,也都是分形。人们对这些东西太熟悉了,当然熟悉不等于真正理解。分形的确贴近人们的生活,因而由分形而来的分形艺术也并不遥远,普通人也能体验分形之美。

因为分形几何的迭代的原像一般不止一个,而且均为多映射迭代,为了叙述的方便,我们先作以下两个约定。

1.用(A,B,C)表示有顺序的两点A、B和C。

2.(A,B,C)(D,E,F,),(G,H,I)

表示A映射到D,B映射到D,C映射到F,然后添加映射A映射到G,B映射到H,C映射到I,如此类推。

【Sierpinski三角形】

波兰著名数学家谢尔宾斯基在1915-1916年期间,为实变函数理论构造了几个典型的例子,这些怪物常称作“谢氏地毯”、“谢氏三角”、“谢氏海绵”、“谢氏墓垛”。如今,几乎任何一本讲分形的书都要提到这些例子。它们不但有趣,而且有助于形象地理解分形。

著名的Sierpinski三角形,它是很有代表性的线性分形,具有严格的自相似特点。不断连接等边三角形的中点,挖去中间新的小三角形进行分割---随着分割不断进行Sierpinski三角形总面积趋于零,总长度趋于无穷。Sierpinski

三角形在力学上也有实用价值,Sierpinski三角形结构节省材料,强度高,例如埃菲尔铁塔的结构与它就很相似。

【步骤】

1.在平面上任意画一个三角形ABC,取三边中点为D、E、F,连接DEF。

2.新建参数n=3

3.顺次选择B,C,A三点和参数n,作深度迭代,(B,C,A)(D,F,A)

?。

4.添加新的映射, (B,C,A)(B,E,D)

?。

第 3 步第 4 步

5.继续添加映射。(B,C,A)(E,C,F)

?

6.改变参数n可观察图形变化。

第 5 步第 6 步

【Sierpinski地毯】

和Sierpinski地毯相似,只是步骤多了一些。取正方形将其 9 等分,得到 9 个小正方形,舍去中央的小正方形,保留周围 8 个小正方形。然后对每个小正方形再 9 等分,并同样舍去中央正方形。按此规则不断细分与舍去,直至无穷。谢尔宾斯基地毯的极限图形面积趋于零,小正方形个数与其边的线段数目

趋于无穷多,它是一个线集,图形具有严格的自相似性。

【步骤】

1.平面上任取线段AB,以线段AB构造正方形ABCD。

2.以A为缩放中心,B、D缩放为1/3,得到E、F;以D为缩放中心,A、C

缩放为1/3得到G、H。同理得到I、J、K、L。连接各点,将正方形九

等分;

3.并填充中间的正方形MNOP,度量MNOP的面积,选择改度量结果和填充

的正方形,单击【显示】【颜色】【参数】,单击确定。则该MNOP的颜色

随它的面积变化而变化。

4.新建参数n=4,顺次选择A、B两点和参数n,作深度迭代,(A,B)

(G,P);(P,O);(O,J);(F,M);(M,N);(N,K);(A,E);(E,L);

(L,B)。注意迭代中点的对应,当迭代框遮住图像的时候可用鼠标选

中拖动开。单击迭代,隐藏不必要的点。

如果我们制作任意三角形的Sierpinski三角形和任意四边形的Sierpinski 地毯(即三角形和四边形的顶点都是自由点),然后按照多面体的侧面数将他们复制。利用画板合并点的功能,将它们“粘贴”到三棱锥和正方体的各个侧面上,(如下图)可以制作空间的Sierpinski三角形和地毯。是不是很漂亮呢?

【摇曳的Pythagorean Tree(毕达哥拉斯树)】

毕达哥拉斯学派发现勾股定理(西方叫做毕达哥拉斯定理)闻名于世,又由此导致不可通约量的发现。1988年,劳威尔通过数值研究发现毕达哥拉斯树花是一迭代函数系的J集。

【步骤】

1.在屏幕上以任取两点A和B,作正方形ABCD,以CD为直径作圆O,取

半圆弧OCD,在该弧上任取一点E,连接CE,DE。隐藏不必要的对象。

2.填充四边形ABCD,度量ABCD的面积。选择四边形和度量结果,单击【显

示】【颜色】【参数】。则四边形的颜色会随它的面积变化而变化。

3.新建参数n=4,选择A、B和n,作深度迭代,(A,B)(D,E),(E,C)

第2 步第 3 步

4.选择E点,单击【编辑】【操作类按钮】【动画】,E点变动,很漂亮的

效果。当E点在OCD的中点时,整个树显出对称美。

【分形树】

【分析】和毕达哥拉斯树类似,树枝按一定的规律生长。

【过程】

1.在垂直方向上画线段AB,在AB左上区域任取一点C。

2.度量CB,BA的长度,计算CB/BA;度量CBA

∠的大小。

3.双击C点作为旋转中心,旋转角度为CBA

∠,旋转B得到点E;继续以CB/BA为缩放比例,E点缩为F点;双击线段CB作为标记镜面,得到F 点关于线段CB的对称点G。连接GC,FC。

4.双击线段AB作为标记镜面,得到C、F、G关于线段AB的对称点D、H、

I,连接BD、HD、ID。

第 3 步第4 步

5.新建参数n=3。顺次选择A、B、C三点和参数n,作深度迭代,(A,B,C)

? (B,C,G),(B,C,F),(B,D,H),(B,D,I)。

6.移动C点的位置,改变树枝的形状。

【KOCH 曲线】

瑞典数学家柯赫于1904年构造了如今称之为“柯赫曲线”(Koch curve)的几何对象,这一年他一共发表了两篇论文描述这种曲线,他画出了此曲线的图形,给出了生成步骤。它的构造过程如下:取一条长度为L的直线段,与构造三分康托尔点集那样先将它三等分,然后保留两侧的两段,将中间的一段改成夹角为60o的两个等长的直线,每段长度均为L/3,这是n=1的第一次操作。类似地,第二次操作是将上次所得的四段边长为L/3的线段都进行三等分,现在每段长度为L/9,并将它们中间的一段改成夹角为60o的两个长度为L/9的直线。如果将上述操作一直进行下去,最终得到一条具有自相似结构的曲线,称为三次科赫曲线。

【步骤】

1.画线段AB,以A为缩放中心,B缩短为1/3,得到C点;同理以B为缩

放中心,A缩短为1/3,得到D点。以C点为旋转中心,D点顺时针旋

转60度,得到E点。

2.隐藏线段AB,连接线段AC、CE、ED、DB。

3.新建参数n=3,顺次选择A、B两点和n,作深度迭代。(A,B)

(A,C),(C,E),(E,D),(D,B)。(如下图所示)

4.单击迭代框的“显示”按钮,选择“显示最终迭代”。隐藏线段AC、CE、

ED、DB(如下图所示)。

5.改变参数n,观察图形变化。

【KOCH雪花】

因为它酷似雪花,所以叫“雪花曲线”(snowflake curve),也很像海岸线。柯赫曲线的生成过程很简单,以一个三角形作为源多边形,即初始元,将三角形的每一边做三等分,舍去中间的1/3,然后按科赫曲线的规则产生生成元。从源多边形开始,第一步形成一个六角星形,第二步将六角星形的12条边然后按科赫曲线的生成规则进行同样的操作得48条边星形,如图4-5,以后依此进行同样得操作,直至无穷,生成称为科赫雪花的图形。在极限的情况下,科赫雪花的上的折线演变成为曲线。由于科赫曲线生成中的每一步操作都会使折线的长度增加,所以在极限的情况下,科赫雪花边的总长度将趋于无穷。

柯赫曲线是很复杂的,首先它有许多折点,到处都是“尖端”,用数学的语言讲,曲线虽然连续,但处处不可微,即没有切线。

【步骤】

1.在平面上取AB做一个KOCH曲线,然后在A的左端任取一点G,在B的

右边任取一点F,分别在AG和BF上做KOCH雪花,注意三个迭代深度都必须为n。

2.以B点为旋转中心,A顺时针旋转60度得到H点。选择G,H两点,单

击【编辑】【合并点】,则G点与H点合并。同理,再合并H、F两点。

KOCH雪花完成了。

【数学之美】

【步骤】

1.任取两点A、B,并作正方形ABCD。

2.在AB上任取一点E,连接BE,度量线段BE的长度并计算BE/AB。

3.双击A点作为缩放中心,选择D点,单击【变换】【缩放】以计算结果

‘AE/AB’为比例缩放,得到点F;同理以D点为中心,缩放C点得到点G;以C点为缩放中心,缩放B点得到点H。连接正方形EFGH。

4.新建参数n=5,顺次选择A、B两点,和参数n,按下shift键不放,

作深度迭代,(A,B)(F,E)

。如下图所示:

5.选择E点,点击【编辑】【操作类按钮】【动画】。E点变动,产生梦幻

般的效果。

【H迭代】

【步骤】

1.在水平直线上取两点A和B,连接AB。以A点为旋转中心,B点顺时针

旋转90度,得到C点,再取AC中点D。

2.以D为旋转中心,C点顺时针旋转90度得到E点,取DE中点F。以D

为旋转中心,F点再旋转180度得到G点。连接FG。

3.同理再画出H、I两点。以AB为标记镜面,得到F、G、H、I关于AB

的对称点J、K、L、M,连接线段JK,LM。(如下图所示)

4.隐藏不必要的点,新建参数n=4。顺次选择A、B两点、参数n,作深

度迭代,

(A,B)(F,G),(H,I),(J,K),(L,M)

?.

5.单击迭代,隐藏各点的标签。

【蜂巢】

蜜蜂地巢你观察过没有?是什么形状呢?聪明的蜜蜂选择了正六边形,因为这样可以填充整个空间,而且正六边形是最省材料的一中结构。从蜂巢中我们也可以发现许多自相似的结构。由三条边迭代就可以得到蜂巢了,不信?请看。

【步骤】

1.屏幕上任取线段AB,以B为旋转中心,A点顺时针旋转120度得到点C,

A点逆时针旋转120度得到点D。

2.新建参数n=5。选择A、B和参数n,作深度迭代,(A,B)(,),(B,D)

?。

B C

3.单击迭代,得到蜂巢的图像。

上面的迭代只是分形几何的一部分,由于篇幅所限,下面给出其余一些分形几何的图片,以供欣赏:

第三章:函数迭代

【多项式432()f x ax bx cx dx e =++++求根】

【分析】多项式求根的迭代式是1()()n n n n f x x x f x +=-

'。 【步骤】

1. 新建参数a=-0.1,b=-0.1,c=1,d=2,e=-1,n =5。

2. 新建函数432()f x ax bx cx dx e =++++,画出它的图像。

3. 在图像上任取一点A ,度量A 的横坐标A x 。

4. 计算()()A A A f x x f x -';计算()()()A A A f x f x f x -'。

5. 依次选择()()

A A A f x x f x -',()()()A A A f x f x f x -'单击【图表】【绘制点】。得到点

B 。 6. 度量B 的横坐标B x 。

7. 选中点A ,和参数n ,按住Shift 键,单击【变换】菜单【深度迭代】,

弹出迭代对话框,单击点B 。结果如图1所示。

图 1 图 2 8. 选择迭代像,单击【变换】菜单【终点】,得到迭代的终点C ,度量C

点的横坐标C x 。

9. 观察表格可知,显示方程的一个近似根是0.42。

10. 拖动A 点,改变它的位置。观察表格可知道方程的另外一个近似根是

3.41。如图2所示。 【MIRA 】

【步骤】

1. 在平面上取一点A ,度量A 的横坐标A x 和纵坐标A y 。

2. 新建参数a =0.4,b=0,99875。(b 取得尽量接近1)

3. 新建函数2

2(1)()1a x f x ax x

-=++。

(完整版)运用几何画板辅助初中数学教学的实践及案例

运用几何画板辅助初中数学教学的实践及案例 摘要:当我们从数学的本质特点和学生的认知特点出发,运用“几何画板”这种工具,通过数学实验这种教与学的方式,去影响学生数学认知结构的意义建构,帮助学生本质地理解数学,培养学生的数学精神、发现与创新能力时,我们就把握住了数学教育的时代性和科学性。 关键词:素质教育新课程改革信息技术与课程的整合数学实验室 一、运用几何画板辅助初中数学教学的实践及案例 1.有效创设动态情境,激发学生学习兴趣 几何画板能简单、准确、动态地表达几何图形和现象,这就为学生学习知识、观察思维提供了一个良好的场所和环境。在课堂中数学老师可以展示一些与学习内容关系非常密切的实例,使学生观其形,闻其音,丰富学生的感观,使学生自然地深入教师精心设计的情景中,不知不觉地思索着,学习着。如用几何画板制作一辆公路上运动的自行车,并请学生思考图中包含了哪些图形,在学生思考的过程中,双击“动画”按钮,使屏幕上的自行车往返运动。还可利用“轨迹跟踪点”的功能演示出自行车行进时车轮上一点、脚蹬上一点或车把上一点形成的轨迹,来说明“点动成线”的事实。这辆平常的自行车在数学课上出现,给刚步入几何大门的孩子们带来了欢笑和几分神奇。就在这愉悦的气氛中,他们迈进了平面几何的门槛,点、直线、线段、圆等几何图形已从他们最熟悉的现实世界中抽象出来了。而这种抽象是他们用眼观察,同时是自己亲身感受到的,激发了他们学习几何的动机,点燃了他们学习的热情。 2.利用几何画板辅助教师讲授基础知识,帮助学生理解基本概念,帮助概念解析 概念是一事物区别于它事物的本质属性,概念来源于生活。在教学中讲授或学习概念常常需要借助图形进行直观性表述。几何中的概念,如“中点”,如果离开了具体的图形的帮助,那么其本质含义就无法揭示和表现出来,因而,图形成为说明概念的“形态式”语言。平面几何教学难,难在于学生不能把概念转换为图形语言,从图形中理解抽象的概念,学习也就望而却步。为此,在几何教学中,要善于利用几何画板强大的图形功能,使概念有具体直接的形象。例如用几何画板教学“三线八角”时,可以先让学生观察课件中八个角之间的位置关系,在学生观察思考的过程中,双击“同位角”按钮,几何画板能把图中的四组同位角从图中自动地拉出,单击鼠标,显示在屏幕上的四组同位角又分别返回原图中去;内错角、同旁内角类似,起到了快速、直观的效果。更重要的是还可以拖动其中任何一条直线使图形发生变化,来说明这些角的位置关系并未发生变化,从而使学生进一步认识其质的规定性,深化了对概念的理解,提高了课堂教学的效率。 例如反比例函数的图像的特点,学生不好把握,什么叫“与坐标轴无限接近,但永不相交”?为了帮助学生理解双曲线的特点,可以利用几何画板来形象地展示这一特点。如要作y= 图像,需要首先建立坐标系,在x轴上取点a,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出,“度量”菜单下的“绘制点”绘出点b(x, y),最后依次选中点a、b,选择“构造”菜单中的“轨迹”,完成双曲线的绘制。然后演示拖动图中的点a向右运动,让学生观察点的运动和数据的变化,问:当x值越来越大,y是如何变化的?学生会看到随着点a向右运动,点a与x轴的距离越来越小。教师趁机再问:图像上的点会与两轴相交吗?再仔细观察双曲线与坐标轴的关系,猜想的结果是不会相交,教师再引导分析,找出真正的原因在于x和y不能为0。

几何画板十个实例教学教程

几何画板实例教程:(1)模拟时钟 1,制作表盘 打开图表----定义坐标系,以原点为圆心构造圆O,右击圆周选选择粗线,颜色任意。在圆周上取点B,选取点O、B打开菜单变换---缩放选择固定比为4:5得到点B′ 构造线段BB′右击选择粗线,选择点O 打开变换标记中心,选择线段BB′(不要断点)打开菜单变换---旋转六十度,同理旋转十一次得到 。

在圆周任意取点C,选取O和C打开菜单变换---缩放,固定比选择为9:10 得到C′构造线段CC′,选取点C和线段CC′变换旋转6°,C旋转得到点D,然后选取点C打开菜单变换---迭代,影像选择点D,迭代次数操作键盘加号得到58次:

设y轴与圆的交点为E以点0为缩放中心将点E分别缩放90%,60℅,30%,得到点F、G、H隐藏网格和坐标轴,分别构造线段OF,OG,OH并设置为虚线、细线、粗线得到图:到此为止表盘完成了。 2:制作按钮操作时钟 打开菜单图标—新建参数标签改为秒,值的精确度选择为百分之一 打开菜单度量---计算,使用函数trunc分别计算一下结果:秒针旋转的角度、分针的旋转角度、时针的旋转角度。

选取参数“秒=1”打开编辑---操作类按钮—动画 范围设置为0到86400(一天一夜二十四小时共86400秒),标签改为“启动时钟”。 再次选择参数秒同上面一样打开动画按钮,不同的是把范围改为0到0.001,(此范围保证各指针的旋转的角度为0°),标签改为“归零”

选取打开菜单变换---标记角度,然后选取秒针(即图中的虚线)做变换—旋转变换,同理再分别选取分针和时针的旋转角度

做分针和时针的旋转变换。 此时点击启动时钟和归零就可以得到时钟的转动的效果了。(没有用的线可以隐藏了) 3.制作合并文本 用文本工具分别作时、分、秒三个独立的文本 再分别打开度量---计算下面三个值: 此结果是小时的取整; 此结果是秒的显示数字; 此结果为分的显示数字 分别右键单击三个结果选择属性—值的精确度选择单位。 依次选择下面的文本和值打开菜单编辑—合并文本

几何画板迭代全解(谢辅炬)

几何画板迭代全解 佛山市南海区石门中学谢辅炬 目录 ?迭代的基本概念以及迭代的基本操作 ◆迭代的概念 ◆迭代在代数、几何中的应用 ◆画正多边形 ◆数列的图像、前n项和与积 ?迭代与分形几何 ◆Sierpinski 三角形 ◆Sierpinski 地毯 ◆摇曳的Pythagorean Tree毕达哥拉斯树 ◆分形树 ◆KOCH 曲线 ◆KOCH Snowflake柯克雪花 ◆数学之美 ◆H迭代 ◆蜂巢 ◆其它分形欣赏 ?函数迭代:函数映射,M集,朱丽亚集 ◆迭代法求方程解 ◆MIRA ◆Henon-Attractor ◆Mandelbrot集合 ◆Julia Sets集合 ◆牛顿迭代法 ?下期预告

第一章:迭代的概念和操作 迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。通俗的讲就是用自身的结构来描述自身。最典型的例子就是对阶乘运算可看作一下的定义:!(1)!(1)!(1)(2)! n n n n n n =?--=-?- 。递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。我们先来了解下面这几个最基本的概念。 迭代:按一定的迭代规则,从原象到初象的反复映射过程。 原象:产生迭代序列的初始对象,通常称为“种子”。 初象:原象经过一系列变换操作而得到的象。与原象是相对概念。 更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。 图 1.1 图 1.2 在几何学中,迭代使一组对象产生一组新的对象。图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。 所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。那么下面我们通过例子来进一步地了解迭代以及相关的概念。 几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。我们先通过画圆的正n

几何画板视频教程全集(完整)(完整资料).doc

此文档下载后即可编辑 几何画板视频教程全集(完整) 一、绘制几何图形和几何体[本章实例下载] 实例1 利用画点工具任意画三点 实例2 绘制线段 实例3 绘制过同一点的三条直线 实例4 绘制相同端点的三条射线 实例5 绘制三个同心圆 实例6 绘制共点圆 实例7 绘制圆在第一象限内的部分 实例8 绘制三角形的中线 实例9 绘制三角形的三条角平分线 实例10 绘制三角形的三条高 实例11 绘制相邻两边可以随意改变的平行四边形实例12 绘制菱形 实例13 绘制梯形的中位线 实例14 绘制等腰梯形 实例15 绘制正三角形 实例16 绘制正五边形 实例17 绘制关于某条直线对称的两个全等的三角形实例18 绘制关于某点对称的两个三角形 实例19 绘制相似三角形 实例20 绘制五角星 实例21 绘制正方体 实例22 绘制相邻三条棱可改变的三棱柱 实例23 绘制三棱台 实例24 绘制圆柱 实例25 绘制圆锥 实例26 绘制圆台

二、制作度量型课件[本章实例下载] 实例1 验证三角形的中位线定理 实例2 验证圆幂定理 实例3 验证三角形内角和 实例4 验证圆周角与圆心角的关系实例5 验证同底等高三角形面积相等实例6 验证三角形的面积公式 实例7 验证勾股定理 实例8 验证两点间的距离公式 实例9 验证正弦定理 实例10 验证两平行线间的斜率关系实例11 验证余弦定理 实例12 绘制分段函数

三、制作图像型课件[本章实例下载] 实例1 二次函数的图像 实例2 指数函数的图像 实例3 对数函数的图像 实例4 函数y=sinx的图像 实例5 绝对值函数的图像 实例6 可变系数的二次函数的图像 实例7 可变系数的三角函数的图像 实例8 定义在区间[a,b]上的函数的图像实例9 椭圆的参数方程 实例10 星形线 实例11 圆锥曲线的统一方程 实例12 心脏线

几何画板的深度迭代的用法大全

如何用好几何画板的深度迭代 第一章:迭代的概念和操作 迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。通俗的讲就是用自身的结构来描述自身。最典型的例子就是对阶乘运算可看作一下的定义:!(1)!(1)!(1)(2)! n n n n n n =?--=-?- 。递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。我们先来了解下面这几个最基本的概念。 迭代:按一定的迭代规则,从原象到初象的反复映射过程。 原象:产生迭代序列的初始对象,通常称为“种子”。 初象:原象经过一系列变换操作而得到的象。与原象是相对概念。 更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。 图 1.1 图 1.2 在几何学中,迭代使一组对象产生一组新的对象。图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。 所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。那么下面我们通过例子来进一步地了解迭代以及相关的概念。 几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。两者没有本质的不同,但前者需要手动改变

中学数学全套课件制作实例(几何画板).pdf

中学数学全套课件制作实例(几何画板) 1、《几何画板》:绘制三角形内接矩形的面积函数图像 2、《几何画板》:求过两点的直线方程 3、《几何画板》:验证两点间距离公式 4、《几何画板》:绘制分段函数的图像 5、《几何画板》:绘制某区间内的函数图像 6、《几何画板》:运用椭圆工具制作圆柱 7、《几何画板》:绘制四棱台 8、《几何画板》:绘制三棱柱 9、《几何画板》:绘制正方体 10、《几何画板》:绘制三角形的内切圆 11、《几何画板》:通过不在一条直线上的3点绘制圆 12、《几何画板》:给定半径和圆心绘制圆 13、《几何画板》:绘制棱形 14、《几何画板》:绘制平行四边形 15、《几何画板》:绘制等腰直角三角形 16、《几何画板》:旋转体教学 17、《几何画板》:画角度的箭头 18、《几何画板》:“派生”关系进行轨迹教学板 19、《几何画板》:制作“椭圆”工具 20、《几何画板》:显示圆和直线的位置关系 21、《几何画板》:研究圆切线的性质 22、《几何画板》:“垂径定理”的教学

23、《几何画板》:证明三角形的中线交于一点 24、《几何画板》:验证分割高线长定理 25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半 26、《几何画板》:证明三角形内角和等于180度 27、《几何画板》:验证三角形面积公式 28、《几何画板》:验证勾股定理 29、《几何画板》:验证正弦定理 30、《几何画板》:验证圆弧的三项比值相等 31、《几何画板》:巧用Excel制作函数图像 32、《几何画板》:绘制极坐标系中的曲线函数图像 33、《几何画板》:绘制带参数的幂函数图像 34、《几何画板》:绘制带参数的正弦函数图像 35、《几何画板》:绘制带参数的抛物线函数图像 36、《几何画板》:绘制带参数的圆函数图像 37、《几何画板》绘制带参数直线函数图像

最全的几何画板实例教程

上篇用几何画板做数理实验 图1-0.1 我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。 案例一四人分饼 有一块厚度均匀的三角形薄饼,现在要把它平 均分给四个人,应该如何分? 图1-1.1 思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。 方案一:画三角形的三条中位线,分三角形所成的四部 分面积相等,(其实四个三角形全等)。如图1-1.2。 图1-1.2

方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。 图1-1.3 用几何画板验证: 第一步:打开几何画板程序,这时出现一个新绘图文件。 说明:如果几何画板程序已经打开,只要由菜单“文件”→“新绘图”,也可以新建一个绘图文件。 第二步:(1)在工具箱中选取“画线段”工具; (2)在工作区中按住鼠标左键拖动,画出一条线段。如图 1-1.4。 注意:在几何画板中,点用一个空心的圈表示。 图1-1.4 第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5: 注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做: 用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。如图 1-1.6 图1-1.6 在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明 B 图1-1.5 第四步:(1)再次选取“画线段”工具,移动鼠标与点A 重合,按左键拖动画出线段AC ;(2)画线段BC ,标出标签C ,如图1-1.7。 注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。 B 图1-1.7 第五步:(1) 用“选择”工具单击线段AB ,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单“作图”→“中点”,画出线段AB 的中点,标上标签。得如图1-1.8。 注意:如果被选取的是点,点的外面会有一个粗黑圆圈。在几何画板中,选取线段是不包括它的两个端点的,以后的问题都是这样,如果不小心多选了某个对象,可以 B C D 图1-1.8

的几何画板实例教程

上篇用几何画板做数理实验 图1-0、1 我们主要认识一下工具箱与状态栏,其它的功能在今后的学习过程中将学会使用。 案例一四人分饼 有一块厚度均匀的三角形薄饼,现在要把它平 均分给四个人,应该如何分? 图1-1、1 思路:这个问题在数学上就就是如何把一个三角形分成面积相等的四部分。 方案一:画三角形的三条中位线,分三角形所成的四部分 面积相等,(其实四个三角形全等)。如图1-1、2。 图1-1、2

方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1、3。 图 1-1、3 用几何画板验证: 第一步:打开几何画板程序,这时出现一个新绘图文件。 说明:如果几何画板程序已经打开,只要由菜单“文件”→“新绘图”,也可以新建一个绘图文件。第二步:(1)在工具箱中选取“画线段”工具; (2)在工作区中按住鼠标左键拖动,画出一条线段。如图 1-1、4。 注意:在几何画板中,点用一个空心的圈表示。 图1-1、4 第三步:(1)选取“文本”工具;(2)在画好的点上单击左键, 可以标出两点的标签,如图1-1、5: 注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做: 用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。如图1-1、6 图1-1、6 在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明 B 图1-1、5 第四步:(1)再次选取“画线段”工具,移动鼠标与点A重 合,按左键拖动画出线段AC;(2)画线段BC,标出标签C,如 图1-1、7。 注意:在熟悉后,可以先画好首尾相接的三条线段后再标 上标签更方便。 B 图1-1、7 第五步:(1) 用“选择”工具单击线段AB,这时线段上出现 两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单 “作图”→“中点”,画出线段AB的中点,标上标签。得 如图1-1、8。 注意:如果被选取的就是点,点的外面会有一个粗黑圆 圈。在几何画板中,选取线段就是不包括它的两个端点 的,以后的问题都就是这样,如果不小心多选了某个对象,可以按Shi f t键后用左键再次单击该对象取消选取。 B D 图1-1、8

几何画板迭代全解(谢辅炬)

几何画板迭代全解 市南海区石门中学辅炬 目录 ?迭代的基本概念以及迭代的基本操作 ◆迭代的概念 ◆迭代在代数、几何中的应用 ◆画正多边形 ◆数列的图像、前n项和与积 ?迭代与分形几何 ◆Sierpinski 三角形 ◆Sierpinski 地毯 ◆摇曳的Pythagorean Tree毕达哥拉斯树 ◆分形树 ◆KOCH 曲线 ◆KOCH Snowflake柯克雪花 ◆数学之美 ◆H迭代 ◆蜂巢 ◆其它分形欣赏 ?函数迭代:函数映射,M集,朱丽亚集 ◆迭代法求方程解 ◆MIRA ◆Henon-Attractor ◆Mandelbrot集合 ◆Julia Sets集合 ◆牛顿迭代法 ?下期预告

第一章:迭代的概念和操作 迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。通俗的讲就是用自身的结构来描述自身。最典型的例子就是对阶乘运算可看作一下的定义: !(1)! (1)!(1)(2)! n n n n n n =?- -=-?- 。递归算法的特点是书写简单,容易理解,但是运算消耗存较大。我们先来了解下面这几个最基本的概念。 迭代:按一定的迭代规则,从原象到初象的反复映射过程。 原象:产生迭代序列的初始对象,通常称为“种子”。 初象:原象经过一系列变换操作而得到的象。与原象是相对概念。 更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n项。我 们知道 1 2 n n a a - =+,所以迭代的规则就是后一项等于前一项加2。以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。 图 1.1 图 1.2 在几何学中,迭代使一组对象产生一组新的对象。图1.2中A、B、C、D、E、F、G,各点相距1cm,那么怎么由A点和B点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm。所以我们以A点作为原像,B点作为初像,迭代一次得到B点,二次为C点,以此类推。 所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。那么下面我们通过例子来进一步地了解迭代以及相关的概念。 几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。我们先通过画圆的正n

几何画板课件制作实例教程

几何画板课件制作实例教程_小学数学篇 几何画板课件制作实例教程 第一章小学数学 1. 1数与代数 实例1 整数加法口算出题器 实例2 5以内数的分成 实例3 分数意义的动态演示 实例4 求最大公约数和最小公倍数 实例5 直线上的追及问题 1.2 空间与图形 实例6 三角形分类演示 实例7 三角形三边的关系 实例8 三角形内角和的动态演示 实例9 三角形面积公式的推导 实例10 长方形周长的动态演示 实例11 长方体的初步认识 实例12 长方体的体积 1.3 统计与概率 实例13 数据的收集与整理 实例14 折线统计图 “几何画板”软件以其动态探究数学问题的功能,为数学教育活动施行“动手实践、自主探索、合作交流”的学习方式提供了可能性。经笔者们的尝试,她除了

可在小学数学中“空间与图形”这个学习领域中大展手脚,在“数与代数”、“统计与概率”这两个学习领域中,同样也能折射出其独特的魅力光芒。 小学生的数学学习心理的特点决定其数学学习活动需以直观的形象作为探索数学问题的支撑,以操作、实验作为主要途径之一。因此,本章实例课件的制作以几何画板善于表现数学思想的特色积极渗透各种数学思想,注重以课件所蕴含的思想推行“致力于改变学生的学习方式”教学策略,同时也努力实现学生个体在自主操作与学习课件中充分进行“观察、实验、猜测、验证、推理与交流”等数学活动,促使学生在课件的引导下亲身体验“做数学”,实现数学的“再创造”。 1. 1数与代数 培养学生的数感与符号感是“数与代数”学习内容的一个很重要的目标,而采用几何画板能较轻易地实现“数形结合”。以“数形结合”的方式可帮助小学生体会数与运算的意义以及其所含的数学思想。因此,本节实例课件的设计体现了促进学生经历从实际问题到抽象出数与运算的全过程的观念,同时也充分展露了几何画板善于以直观的图形表现抽象的数学思想的特点。 实例1 整数加法口算出题器 【课件效果】 新课程标准规定:小学一年级学生要求熟练掌握20以内整数的口算加减法。编制“口算出题器”类课件,以往可能要在可编程类软件的平台上进行,现在却可以利用几何画板的参数【动画】功能,较轻易地实现。 如图1-1所示,单击按钮,出示随机加法算式,单击按钮,显示当前算式的结果。本实例适用于整数加法意义的教学、20以内的加法口算测试等,显示了信息技术与学科整合的优势。 整数加法口算出题器 4+8= 图1.1 图1-1 课件效果图 【构造分析】 1.技术要点 υ几何画板软件参数【动画】的运用 υ【带参数的迭代】的运用 2.思想分析

几何画板迭代全解

几何画板迭代全解 目录 ?迭代的基本概念以及迭代的基本操作 ◆迭代的概念 ◆迭代在代数、几何中的应用 ◆画正多边形 ◆数列的图像、前n项和与积 ?迭代与分形几何 ◆Sierpinski 三角形 ◆Sierpinski 地毯 ◆摇曳的Pythagorean Tree毕达哥拉斯树 ◆分形树 ◆KOCH 曲线 ◆KOCH Snowflake柯克雪花 ◆数学之美 ◆H迭代 ◆蜂巢 ◆其它分形欣赏 ?函数迭代:函数映射,M集,朱丽亚集 ◆迭代法求方程解 ◆MIRA ◆Henon-Attractor ◆Mandelbrot集合 ◆Julia Sets集合 ◆牛顿迭代法 ?下期预告

第一章:迭代的概念和操作 迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。通俗的讲就是用自身的结构来描述自身。最典型的例子就是对阶乘运算可看作一下的定义: !(1)! (1)!(1)(2)! n n n n n n =?--=-?- 。递归算法的特点是书写简单,容易理解,但 是运算消耗内存较大。我们先来了解下面这几个最基本的概念。 迭代:按一定的迭代规则,从原象到初象的反复映射过程。 原象:产生迭代序列的初始对象,通常称为“种子”。 初象:原象经过一系列变换操作而得到的象。与原象是相对概念。 更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。 在几何学中,迭代使一组对象产生一组新的对象。图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。 所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。那么下面我们通过例子来进一步地了解迭代以及相关的概念。 几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。我们先通过画圆的正n 边形这个例子来看一下它们的区别。 【例1】画圆的内接正7边形。

几何画板视频教程全集(完整)精编版

几何画板视频教程全集(完整) 一、绘制几何图形和几何体[本章实例下载] 实例1 利用画点工具任意画三点 实例2 绘制线段 实例3 绘制过同一点的三条直线 实例4 绘制相同端点的三条射线 实例5 绘制三个同心圆 实例6 绘制共点圆 实例7 绘制圆在第一象限内的部分 实例8 绘制三角形的中线 实例9 绘制三角形的三条角平分线 实例10 绘制三角形的三条高 实例11 绘制相邻两边可以随意改变的平行四边形 实例12 绘制菱形 实例13 绘制梯形的中位线 实例14 绘制等腰梯形 实例15 绘制正三角形 实例16 绘制正五边形 实例17 绘制关于某条直线对称的两个全等的三角形 实例18 绘制关于某点对称的两个三角形 实例19 绘制相似三角形 实例20 绘制五角星 实例21 绘制正方体 实例22 绘制相邻三条棱可改变的三棱柱 实例23 绘制三棱台 实例24 绘制圆柱 实例25 绘制圆锥 实例26 绘制圆台

二、制作度量型课件[本章实例下载] 实例1 验证三角形的中位线定理 实例2 验证圆幂定理 实例3 验证三角形内角和 实例4 验证圆周角与圆心角的关系 实例5 验证同底等高三角形面积相等实例6 验证三角形的面积公式 实例7 验证勾股定理 实例8 验证两点间的距离公式 实例9 验证正弦定理 实例10 验证两平行线间的斜率关系实例11 验证余弦定理 实例12 绘制分段函数

实例1 二次函数的图像 实例2 指数函数的图像 实例3 对数函数的图像 实例4 函数y=sinx的图像 实例5 绝对值函数的图像 实例6 可变系数的二次函数的图像 实例7 可变系数的三角函数的图像 实例8 定义在区间[a,b]上的函数的图像实例9 椭圆的参数方程 实例10 星形线 实例11 圆锥曲线的统一方程 实例12 心脏线

几何画板视频教程全集(完整)

绘制几何图形和几何体[本章实例下载] 实例1 利用画点工具任意画三点 实例2 绘制线段 实例3 绘制过同一点的三条直线 实例4 绘制相同端点的三条射线 实例5 绘制三个同心圆 实例6 绘制共点圆 实例7 绘制圆在第一象限内的部分 实例8 绘制三角形的中线 实例9 绘制三角形的三条角平分线 实例10 绘制三角形的三条高 实例11 绘制相邻两边可以随意改变的平行四边形实例12 绘制菱形 实例13 绘制梯形的中位线 实例14 绘制等腰梯形 实例15 绘制正三角形 实例16 绘制正五边形 实例17 绘制关于某条直线对称的两个全等的三角形实例18 绘制关于某点对称的两个三角形 实例19 绘制相似三角形 实例20 绘制五角星 实例21 绘制正方体

实例22 绘制相邻三条棱可改变的三棱柱实例23 绘制三棱台 实例24 绘制圆柱 实例25 绘制圆锥 实例26 绘制圆台 制作度量型课件[本章实例下载] 实例1 验证三角形的中位线定理 实例2 验证圆幂定理 实例3 验证三角形内角和 实例4 验证圆周角与圆心角的关系 实例5 验证同底等高三角形面积相等 实例6 验证三角形的面积公式 实例7 验证勾股定理 实例8 验证两点间的距离公式 实例9 验证正弦定理 实例10 验证两平行线间的斜率关系 实例11 验证余弦定理 实例12 绘制分段函数 制作图像型课件[本章实例下载] 实例1 二次函数的图像 实例2 指数函数的图像

实例3 对数函数的图像 实例4 函数y=sinx的图像 实例5 绝对值函数的图像 实例6 可变系数的二次函数的图像 实例7 可变系数的三角函数的图像 实例8 定义在区间[a,b]上的函数的图像 实例9 椭圆的参数方程 实例10 星形线 实例11 圆锥曲线的统一方程 实例12 心脏线 制作动画型课件[本章实例下载] 实例1 两圆的位置关系 实例2 制作向量平移动画 实例3 制作切割三棱柱动画 实例4 三角形拼接成平行四边形 实例5 用定义画椭圆 实例6 绘制抛物线动画 实例7 研究指数函数图像与对数函数图像的关系实例8 绘制函数y=Asinx的图像 实例9 圆锥的形成 实例10 制作旋转旋转的正三棱锥

几何画板课件制作实例教程_代数篇

中学数学——代数 代数学是整个高中数学里最重要的内容,而函数又是代数学的基础,因此学好函数也就为学好代数学打好了坚实的基础。函数思想一直是数学中的一种最重要的思想,它的概念和思维方法渗透在高中数学的各个部分。而教师在进行函数教学时,最感头疼的是函数的图像,为了解决数形结合的问题,在有关函数的传统教学中,大多数教师都是用手工绘制函数图像,但手工绘制的函数图像有不精确、速度慢的弊端,且函数图像缺乏变化。运用几何画板则能快速直观地制作出函数的图像,让学生能轻松领会较抽象的内容,从而大大提高课堂效率,起到事半功倍的效果。 目录 实例29 一次函数 实例30 二次函数图像的动态演示 实例31 二次函数在闭区间上的值域 实例32 函数的拟合工具 实例33 圆周上的追及问题 实例34 二分法求方程的根 x的图像的关系 实例35 函数y=a x的图像与y=log a 实例36 用函数的观点研究等差数列前n项和的最值 实例37 等比数列的图像(一) 实例38 等比数列的图像(二) 实例39 函数y= Asin(ωx+φ)的图像 实例40 轨迹一边红、一边篮 实例41 正弦函数线 实例42 定积分意义的动态演示 实例43 打造个性化的课件

–148–实例29 一次函数 【课件效果】 如图2-78所示,在直线j上拖动点B,直线l的解析式y=1.54x+1.69的一次项系数发生改变,直线l的斜率随着系数的改变发生相应改变;在直线k上拖动点C,直线l 解析式的常数项发生改变,直线l随着点C的上下移动而移动。 图2-78 课件效果图 【构造分析】 1.技术要点 ◆度量点的(横、纵)坐标 ◆利用两个度量值(或计算值)绘制点 ◆轨迹的构造 ◆文本的合并 2.思想分析 本例要实现的效果是通过拖动点来改变函数解析式及其图象。利用几何画板4可以直接度量点的横(纵)坐标的功能,得到点B和点C的纵坐标的值y B和y C ;把y B和y C 作为参数k和b,用于进行相关计算。度量出x轴上的点D的横坐标x D,绘制出点(x D,kx D+b),通过构造轨迹得到直线y = kx D+b;最后利用文本合并的功能得到解析式y = kx+b。 【制作步骤】 1. 在坐标系上绘制图形

最好的几何画板教程

目录 第一篇画板入门 第一章用工具框作图 (3) 第二章用构造菜单作图 (19) 第三章用变换菜单作图 (33) 第四章动作按钮的制作 (51) 第五章智能化菜单详解 (58) 第六章认识奇妙的参数 (64) 第二篇例赏析 例1 眩目的动画彩轮 (69) 例2 漂亮的勾股树 (70) 例3 一个梦幻万花筒 (72) 例4 闪烁效果的制作 (75) 第三篇精选附录 附录一迭代帮助文件 (79) 附录二平面几何著名定理 (87) 附录三圆锥曲线教材培训 (93)

第一章:用工具框作图 通过本章,你应 1、 熟练使用绘图工具作“点”、“线”、“圆” 2、 学会在几何对象上画“点”、“线”、“圆” 3、 学会用绘图工具构造交点、等圆、直角等的构造技巧 4、 学会“点”、“线”、“圆”的标签的显示和隐藏 5、 理解用几何画板绘图应首先考虑对象间的几何关系 第一节 几何画板的启动和绘图工具的介绍 1、启动几何画板:单击Windows98桌面左下角的“开始”按钮,依次:选择“程序”→选择“几何画板4.03”,单击即可启动几何画板。 进入几何画板系统后的屏幕画面如下图所示 几何画板的窗口是不是和其他Windows 应用程序窗口十分类似?有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。 画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们 分别是什么?它们分别是【选择箭头工具】、【点工具】、【圆规工具】、【直尺 工具】、【文本工具】、【自定义画图工具】。 和一般的绘图软件相比,你会不会感觉它的工具是不是少了点?几何画 板的主要用途之一是用来绘制几何图形。而几何图形的绘制,我们通常是用 直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。因为任何欧氏 几何图形最后都可归结为“点”、“线”、“圆”。这种公里化作图思想因为“三 大作图难题”曾经吸引无数数学爱好者的极大兴趣从而在数学历史上影响重 大,源远流长。从某种意义上讲几何画板绘图是欧氏几何“尺规作图”的一 菜单栏 绘图区 状态栏 工具框

《几何画板》教学实例

《几何画板》教学实例 ———三角函数图像变换 来凤一中 湖北来凤 445700 田延斌 摘要:数形结合是学习数学的重要方法,用图形解释抽象的数学现象形象、直观。函数图象变换是函数教学的一个难点,如能让学生观察变换过程,难点很容易突破。《几何画板》不仅能让学生观察还可以让学生自己操作,学生的学习效率和学习兴趣能得到很大的提高。下面是我的教学实例:函数y=Asin(ωx+φ) 图象变换。 关键词:几何画板 图像变换 自主学习 一、分步观察振幅变换,周期变换和和相位变换 利用《几何画板》画出函数y=2sinx , y=21sinx x ∈[0, π]的图象(学生自己操作课软件) 如图,将固定值中的A 值分别改为2和 21 (可以改为任意值),再按 得到y =2sin x x ∈[0, π]和 y=2 1sinx x ∈[0, π]的图象,这个过程中可以观察由y =sin x 图像得到y=2sinx 和 y=2 1sinx 图像的过程,也可以拖动“动A ”改变A 的值,控制图像变换细节。注意观察图像变化与A 值的关系。引导,观察,启发得到振幅变换的定义。同样方法同理得到周期变换和和相位变换。 二、系统观察y =sin x ? y =Asin(ωx +?)图像变换 由老师提供课件,学生在电脑上操作,改变A, ω, ?的值,观察图像的变化,也可以按图中按钮观察。特别注意按,和这三个按钮的先后顺序,总结图像的变化规律。 引导, 观察,启发:由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。在课件中按,可将图像还原到y =sin x 的图象,途径一:先按再;途径二:先按再。 途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(?>0)或向右(?<0=平移|?|个单位,再将图象上各点的横坐标变为原来的ω1 倍(ω>0),便得y =sin(ω x +?)的图象 途径二:先周期变换(伸缩变换)再平移变换先将y =sin x 的图象上各点的横坐标变为原来的ω1 倍(ω>0),再沿x 轴向左(?>0)或向右(?<0=平移ω?| |个单位,便得y =sin(ωx

几何画板课件制作实例教程_解析几何篇

几何画板课件制作实例教程 (5) 中学数学——解析几何 解析几何一直都是学生学习的难点,而现在用几何画板展示直线、圆、圆锥曲线非常方便;用几何画板可以演示曲线关于某点某线的对称图形,让我们一目了然;也可以用几何画板演示我们不很清楚的习题,使我们对某一类型的题有了深刻的认识和印象,提高学习效率,并为利用代数方法的计算提供了一个动画思维的过程。 目录 实例51 直线的斜率 实例52 两直线垂直 实例53 网页探究型课件 实例54 椭圆(双曲线)的第二定义 实例55 椭圆长、短轴变化(一) 实例56 椭圆长、短轴变化(二) 实例57 椭圆工具(已知顶点和任意一点) 实例58 发掘课本习题的作用 实例59 半椭圆 实例60 双曲线的第一定义 实例61 双曲线的切线 实例62 抛物线的切线 实例63 抛物线的焦点弦 实例64 圆锥曲线的统一形式 实例65 与定线段成定张角的点的轨迹 实例65 与定线段成定张角的点的轨迹 实例65 与定线段成定张角的点的轨迹 实例66 到定点的距离与定直线的距离的比值等于定值的点的轨迹 实例67 与两定点的距离的比值等于定值的点的轨迹 实例68 与两定点连线的斜率之积等于定值的点的轨迹 实例69 与两定直线的距离之积等于定值的点的轨迹 实例70 心形曲线的构造

–249– 实例51 直线的斜率 【课件效果】 直线的倾斜程度由倾斜角和斜率确定。本实例效果图,如图2-169a 表示单击【旋转】按钮后的状态,直线CE 将从x 轴开始旋转到与直线CD 重合,同时出现倾斜角和斜率,如图2-169b 所示。拖动点D ,可以改变直线CD 的倾斜度,拖动点C ,可以将直线CD 平移。 a b 图2-169 课件效果图 【构造分析】 1.技术要点 ◆ 利用圆上的弧标记角 ◆ 【移动】按钮的使用 2.思想分析 本例构造的的目的用于理解直线倾斜角的范围及斜率的含义。对于与x 轴相交的直线,可以通过移动交点将直线进行平移,为此构造了一个辅助圆。选择【显示】|【显示所有隐藏】命令,显示出整个课件的制作过程,如图2-170所示;对于与x 轴平行的直线,读者可以自行构造。

几何画板迭代详解

几何画板迭代详解 迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。通俗的讲就是用自身的结构来描述自身。最典型的例子就是对阶乘运算可看作一下 的定义:!(1)!(1)!(1)(2)! n n n n n n =?--=-?- 。递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。我们先来了解下面这几个最基本的概念。 迭代:按一定的迭代规则,从原象到初象的反复映射过程。 原象:产生迭代序列的初始对象,通常称为“种子”。 初象:原象经过一系列变换操作而得到的象。与原象是相对概念。 更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。 在几何学中,迭代使一组对象产生一组新的对象。图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。 所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。那么下面我们通过例子来进一步地了解迭代以及相关的概念。 几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。我们先通过画圆的正n 边形这个例子来看一下它们的区别。 【例1】画圆的内接正7边形。

几何画板课件制作实例教程_小学数学篇

几何画板课件制作实例教程 第一章小学数学 1. 1数与代数 实例1 整数加法口算出题器 实例2 5以内数的分成 实例3 分数意义的动态演示 实例4 求最大公约数和最小公倍数 实例5 直线上的追及问题 1.2 空间与图形 实例6 三角形分类演示 实例7 三角形三边的关系 实例8 三角形内角和的动态演示 实例9 三角形面积公式的推导 实例10 长方形周长的动态演示 实例11 长方体的初步认识 实例12 长方体的体积 1.3 统计与概率 实例13 数据的收集与整理 实例14 折线统计图 “几何画板”软件以其动态探究数学问题的功能,为数学教育活动施行“动手实践、自主探索、合作交流”的学习方式提供了可能性。经笔者们的尝试,她除了可在小学数学中“空间与图形”这个学习领域中大展手脚,在“数与代数”、“统计与概率”这两个学习领域中,同样也能折射出其独特的魅力光芒。 小学生的数学学习心理的特点决定其数学学习活动需以直观的形象作为探索数学问题的支撑,以操作、实验作为主要途径之一。因此,本章实例课件的制作以几何画板善于表现数学思想的特色积极渗透各种数学思想,注重以课件所蕴含的思想推行“致力于改变学生的学习方式”教学策略,同时也努力实现学生个体在自主操作与学习课件中充分进行“观察、实验、猜测、验证、推理与交流”等数学活动,促使学生在课件的引导下亲身体验“做数学”,实现数学的“再创造”。

1.1数与代数 培养学生的数感与符号感是“数与代数”学习内容的一个很重要的目标,而采用几何画板能较轻易地实现“数形结合”。以“数形结合”的方式可帮助小学生体会数与运算的意义以及其所含的数学思想。因此,本节实例课件的设计体现了促进学生经历从实际问题到抽象出数与运算的全过程的观念,同时也充分展露了几何画板善于以直观的图形表现抽象的数学思想的特点。 实例1 整数加法口算出题器 【课件效果】 新课程标准规定:小学一年级学生要求熟练掌握20以内整数的口算加减法。编制“口算出题器”类课件,以往可能要在可编程类软件的平台上进行,现在却可以利用几何画板的参数【动画】功能,较轻易地实现。 如图1-1所示,单击按钮,出示随机加法算式,单击按钮,显示当前算 式的结果。本实例适用于整数加法意义的教学、20以内的加法口算测试等,显示了信息技术与学科整合的优势。 整数加法口算出题器 4+8= 图1.1 图1-1 课件效果图 【构造分析】 1.技术要点 ◆几何画板软件参数【动画】的运用 ◆【带参数的迭代】的运用 2.思想分析 几何画板的迭代功能很强,它能够完成具有一定规律的几何图形的循环构造,较轻易地实现“数形结合”。本课例构造并不复杂,主要运用参数【动画】可产生“随机数”的原理制作。选择【显示】|【显示所有隐藏对象】命令,显示所有隐藏对象,如图2所示。

相关主题
文本预览
相关文档 最新文档