当前位置:文档之家› 贝叶斯方法在聚类中的应用

贝叶斯方法在聚类中的应用

贝叶斯方法在聚类中的应用
贝叶斯方法在聚类中的应用

1 算法介绍

1.1 贝叶斯方法的基本观点

托马斯·贝叶斯(ThomasBayes)是英国数学家,他对贝叶斯方法奠基性的工作是他的论文“关于几率性问题求解的评论”。由于当时贝叶斯方法在理论和应用中还存在很多不完善的地方,因此在很长一段时间并未被普遍接受。后来随着统计决策理论、信息论和经验贝叶斯方法等理论和方法的创立和应用,贝叶斯方法很快显示出它的优点,成为十分活跃的一个方向。随着人工智能的发展尤其是机器学习、数据挖掘的兴起,贝叶斯理论的发展和应用也获得了更为广阔的空间。近年来,贝叶斯学习理论方面的文章更是层出不穷,内容涉及到人工智能的大部分领域,如因果推理、不确定性知识表达、模式识别和聚类分析等,同时出现了专门研究贝叶斯理论的组织ISBA(IntemationalSoeietyofBayesianAnalysis)。

贝叶斯方法的特点是使用概率去表示所有形式的不确定性,学习或其他形式的推理都用概率规则来实现。贝叶斯理论在数据挖掘中的应用主要包括贝叶斯方法用于分类及回归分析、因果推理和不确定知识表达以及聚类模式发现等。贝叶斯方法正在以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习特性等成为当前数据挖掘众多方法中最为引人注目的焦点之一。

贝叶斯统计是贝叶斯理论和方法的应用之一,其基本思想是:假定对所研究的对象在抽样前已有一定的认识,常用先验分布来描述这种认识,然后基于抽取的样本再对先验认识作修正,得到后验分布,而各种统计推断都基于后验分布进行。经典统计学的出发点是根据样本,在一定的统计模型下做出统计推断。在取得样本观测值X 之前,往往对参数统计模型中的参数θ有某些先验知识,关于θ的先验知识的数学描述就是先验分布。贝叶斯统计的主要特点是使用先验分布,而在得到样本观测值T n x x x X ),...,,(21 后,由X 与先验分布提供的信息,

经过计算和处理,组成较完整的后验信息。这一后验分布是贝叶斯统计推断的基础。

1.2 贝叶斯统计模型

1.2.1 概率论中的贝叶斯公式

设事件A 1,A 2,…,A k 构成互不相容的完备事件组,则Bayes 公式是

(1)

在上式中,先验信息以{P(A j ), j=1,2,…,k }这一概率分布的形式给出,即先验分布。由于事件B 的发生,可以对A 1,A 2,…,A k 发生的概率提供新的信息。根据这些信息以及先验分布,可得出后验分布{P (A i |B ), i=1,2,..,k }.可以看出,Bayes 公式反映了从先验分布向后验分布的转化。

1.2.2 数据挖掘中常用的贝叶斯公式

将(1)式中的随机变量的形式改写,引入随机变量θ,它的取值是θ1,θ2,…,θk ,其中θj =θ(A j ),即当A j 发生时,θ取值θj ,θ是离散型的(取有限值),具有

先验分布π(θ):

B是另一随机事件,定义一个随机变量x,使得x=x(B)

式(l)中的P(B|Aj)可以表示为

它代表一种样本分布。这样式(l)可改写为

(2)

2 算法实现

2.1 使用贝叶斯方法的数据挖掘算法综述

贝叶斯方法的一个显著特点是它可以通过看结果来了解假设,也就是说,在对先验知识知之甚少,或者毫不知情的情况下,贝叶斯方法具有其它方法不可比拟的长处。而数据挖掘技术的一个重要应用就是挖掘先前未知的知识,数据挖掘与传统的数据分析(如查询、报表、联机应用分析)的本质区别之一是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的知识应具有先前未知,有效和实用三个特征。其中先前未知的信息是指该信息是预先未曾预料到的,即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。在商业应用中最典型的例子就是一家连锁店通过数据挖掘发现了小孩尿布和啤酒之间有着惊人的联系。正因为此,本文提出将贝叶斯方法应用于数据挖掘的算法,并对提出的算法进行了验证和讨论。

贝叶斯理论及方法在数据挖掘领域已有很多应用,且已有多种实现算法。其中,比较著名的算法有以下几类:

在把贝叶斯方法用于分类规则的挖掘算法中,比较著名的是贝叶斯信念构造算法。贝叶斯信念网络就是给定一个随机变量集χ={X1,X2,…,X n},其中X i是一个m维向量。贝叶斯信念网络了说明χ上的一条联合条件概率分布。贝叶斯信念网络定义如下:

B=

其中G是一个有向无环图,其顶点对应于有限集χ中的随机变量X1,X2,…,X n.其弧代表一个函数依赖关系;θ代表用于量化网络的一组参数。实际上一个贝叶斯信念网络给定了变量集合χ上的联合条件概率分布:

贝叶斯信念网络构造算法可以表示如下:给定一组训练样本D={x1,x2,..,x n},x i 是X i的实例,寻找一个最匹配该样本的贝叶斯信念网络。常用的学习算法通常是引入一个评估函数S(B|D)(常用的评估函数如贝叶斯权矩阵及最小描述长度函

数等),使用该函数来评估每一个可能的网络结构与样本之间的契合度,并从所有这些可能的网络结构中寻找一个最优解。

聚类分析的基本思想是在样品之间定义距离,在变量之间定义相似系数,距离或相似系数代表样品或变量之间的相似程度,按相似程度的大小,将样品或变量逐一归类,关系密切的类聚集到一个小的分类单位,然后逐步扩大,使得关系疏远的聚合到一个大的分类单位,直到所有的样品或变量都聚集完毕,形成一个表示亲属关系的谱系图,依次按照某些要求对某些样品或变量进行分类。聚类和分类的主要区别是,在进行聚类分析以前,对总体到底有几种类型并不知道,对已知数据分几类需在聚类的过程中探索调整,而分类是在事前已知道分为哪些类。贝叶斯方法用于聚类的挖掘算法目前并不广泛,目前主要是用简单贝叶斯学习模型来进行聚类。简单贝叶斯学习模型将训练实例I分解成特征向量X和决策类别变量C。简单贝叶斯模型假定特征向量的分量间相对于决策变量是相对独立的,也就是说各分量独立的作用于决策变量。尽管这一假定一定程度上限制了简单贝叶斯模型的适用范围,然而在实际应用中,不仅以指数级降低了贝叶斯网络构建的复杂性,而且在许多领域,在违背这种假定的条件下,简单贝叶斯也表现出相当的健壮性和高效性,它已经成功地应用到分类、聚类及模型选择等数据挖掘的任务中。简单贝叶斯学习模型:贝叶斯定理的应用之一就是如何通过给定的训练样本集预测未知样本的类别,预测依据就是取后验概率

最大的类别。设E是测试样本,P(Y|X)是在给定X情况下Y的条件概率。等式右侧的概率都是从样本数据中估计得到的。设样本表示成属性向量,如果属性对于给定的类别独立,那么P(A|C i)分解成几个分量的积,即P(a1|C i)·P(a2|C i)···P(a m|C i),其中a i是样本E的第I个属性。从而后验概率的计算公式为

这个过程称为简单贝叶斯分类。

3 算法评价

3.1 各类方法的比较

3.1.1 决策树

决策树一般都是自上而下的来生成的。选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。从根到叶子节点都有一条路径,这条路径就是一条“规则”。有些规则的效果可以比其他的一些规则要好。决策数方法最突出的优点是:

(1) 可以生成可以理解的规则;

(2) 计算量相对来说不是很大;

(3) 可以处理连续和种类字段;

(4) 决策树可以清晰的显示哪些字段比较重要。

分析不同的影响因素对分析目标的影响,找到关键的影响因素。决策树法的

优点是直观,但随着数据复杂性的提高,其分支树也会增多,管理困难。而且很难基于多个变量组合发现规则。不同决策树分支之间的分裂也不平滑。另外,对连续性的字段比较难预测,而且当类别太多时,错误可能就会增加的比较快。一般的算法分类的时候,只是根据一个属性来分类。

3.1.2 关联分析方法

关联规则分析的优点是,可以产生清晰有用的结果,而且它的处理过程可以看到,处理起来相对也比较简单,因此它有一个其它方法不具有的长处是,到目前为止,用于发现关联规则的算法和应用都比较成熟。

关联规则本身也存在一些问题:

(1)支持度仅以出现次数为评价对象,可能忽略销售额大而次数很少的项目。

(2)分析出来的关系可能是随机的。

(3)置信度低的数据可能反映很重要的市场信息,可能是替代品或竞争产品。

3.1.3 神经网络

神经网络较贝叶斯方法及其它方法的优点是:大规模的并行处理和分布式的信息存储,良好的自适应、自组织性,以及很强的学习功能、联想功能和容错功能。与当今的冯.诺依曼式计算机相比,更加接近人脑的信息处理模式。主要表现如下:

(1)神经网络能够处理连续的模拟信号。例如连续灰度变化的图像信号。

(2)能够处理混沌的、不完全的、模糊的信息。

(3)传统的计算机能给出精确的解答,神经网络给出的是次最优的逼近解答

(4)神经网络并行分布工作,各组成部分同时参与运算,单个神经元的动作速度不高,但总体的处理速度极快。

(5)神经网络信息存储分布于全网络各个权重变换之中,某些单元障碍并不影响信息的完整,具有鲁棒性。

(6)传统计算机要求有准确的输入条件,才能给出精确解。神经网络只要求部分条件,甚至对于包含有部分错误的输入,也能得出较好的解答,具有容错性。

(7)神经网络在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面有优势。神经网络也有其不足之处。首先,神经网络对分类模型比较适合,但是,神经网络的隐藏层可以说是一个黑盒子,得出结论的因素并不十分明显。同时其输出结果也没有任何解释,这将影响结果的可信度及可接受程度。其次,神经网络需要较长的学习时间,因此当数据量很大时,性能可能会出现问题。

3.1.4 距离法进行分类和聚类

由于分类或聚类体系中的类别不是完全互斥的,存在这样一些既属于其中一个类别,又同时属于其它类别的数据,对于这种数据,分类或聚类算法无法确定数据所属的所有类别。因此,需要对每个类别确定闭值,当数据在该类的阈值之上时,就将数据归于该类中。

阈值的确定是十分困难的,理论上,没有很好的解决方法,一般采用预定初始值,然后给出测试数据,使用分类器进行分类或聚类,再根据分类或聚类的准确程度调整初始值,这样的方法有两个缺点:首先,初始值的确定不容易,完全是根据经验或简单的测试而定;其次,调整的幅度无法确定,当初始值过高或过低需要增减时,增减的幅度无法很好的确定,只能反复测试,反复调整,这样就大大地增加了工作量。

3.2 各方法的比较分析

但是,在运用贝叶斯方法之后,与未用贝叶斯方法而直接运用以上技术时,比较结果如下表。选择训练集和测试集的方法如下:选用大小为216K字节的以文本格式存储的一组数据,作为一个测试集,运行各类算法,分别执行几次分类操作,计算其效率和准确率,实验结果如表3.1所示:

表3.1 贝叶斯方法与其它方法的比较

(注:(l)和(2)对效率只考虑时间因素,而未考虑空间因素;(3)是由于所用的实验数据不是激光扫描仪测得的数据,因此与其它方法没有可比性,所以未在表中列出)

表3.1中,对于时间的计算是,在实现算法的程序运行之前和运行之后分别加一个取时间函数,所取得时间值相减即可得到算法执行的时间效率。对于准确率,采用下面公式计算:

由实验结果比较和分析可知,当用贝叶斯方法对小量数据进行分析时,比不用贝叶斯方法在执行时间上要多消耗一些,但是其准确率要高的多。

3.3 贝叶斯方法的不足

(1) 贝叶斯方法最有争议之处就是先验信息的使用。先验信息来源于经验或者以前的实验结论,没有确定的理论依据作支持,因此在很多方面颇有争议。由于很多工作都是基于先验信息的,如果先验信息不正确,或者存在误差,那么最后导致的结论就会是不可想象的。尤其是在数据挖掘中,挖掘出的知识也是不可预知的,就是说不知道挖掘出的知识是有用的还是无用的,甚至是错误的。虽然知识发现中有一步是进行知识评估,但是这种评估并不能总是知识的可用性和有效性,特别不能确定先验信息是否正确时,这种评估更带有不确定性。

(2) 处理数据复杂性高,因此时间和空间消耗也比较大。贝叶斯方法要进行后验概率的计算、区间估计、假设检验等,大量的计算是不可避免的。

4 算法应用

4.1 聚类算法

聚类分析的基本思想是认为所研究的数据集中的数据或者属性之间存在着程度不同的相似性。于是从数据集中取出一批数据,具体找出一些能够度量数据

值之间或者属性之间相似程度的量,以这些量为中心作为划分类型的依据,把一些相似程度较大的数据或属性聚合为一类,把另外一些彼此之间相似程度较大的样品又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位,直到所有数据或属性都聚合完毕,把不同的类型一一划分出来。

聚类的实质就是使属于同一类别的个体之间的距离尽可能地小,而不同类别的个体间的距离尽可能地大。因此需要用到各种不同的距离度量测度来判定类别。有多种距离公式,比较常用的距离有:

?绝对值距离

?欧氏距离

?明斯基距离

聚类分析通常根据类对象的不同分为Q型和R型两大类。Q型是对数据集中的数据值进行分类处理,R型是属性进行分类处理。Q型聚类分析的优点主要是:

(1)可以综合多个属性的信息对数据值进行分类;

(2) 分类结果是直观的,用一个分类谱系图就能非常清楚的表现其数值分类结果;

(3) 聚类分析所得到的结果比传统的分类方法更细致、全面、合理。

本文也主要讨论Q型聚类问题,即直接对数据值进行聚类。

下图是一个简单的聚类直观的图形表示,其中聚类中心分别为(l,2)和(5,3)

图4.1.1 以(1,2)和(5,3)为中心的两类

由于贝叶斯方法的主要特点是通过先验信息来推得后验知识,如果将贝叶斯方法进行聚类,其基本思想就是:

首先根据先验信息假定数据集中可能要聚为一类的数据服从某种分布,再用某种距离测度检验先验信息给出的这种分布是否符合聚为一类的要求。如果达不到聚类的要求,则根据计算概率找出不符合要求的原因,重新确定其分布,或修正此分布的参数,以获得更准确的分布。

具体分析一下与聚类相关的问题:给定数据集,它满足以下两个条件

(1) 类的数目是未知的;

(2) 有哪些类是未知的。

与这两个条件相对应,聚类的目的是:

(1) 确定一些合适的聚类中心;

(2) 弄清类的数目k;

(3) 发现合理的聚类方法;

(4) 把数据分类到k个类别中。

针对聚类的问题及其目的,设计完整的算法如下:

STEP1:确定聚类中心数据,即围绕哪些数据进行聚类;

STEP2:对每一确定的以聚类中心数据为聚类依据的类,根据先验信息假定其分布π(θ),作为贝叶斯公式的先验概率:

STEP3:调用聚类算法进行聚类;对于每一类i和数据,根据下面公式来计算聚类后的后验概率;

STEP4:用贝叶斯公式的后验概率检验聚类结果。如果结果符合用户要求,则算法结束;否则,重新确定其分布,或修正其参数。

其中上面算法的STEP3的聚类算法如下:

(1) 给定集合C=φ,设某一聚类中心数据为x,则C={x};

(2) 对数据集中每一数据t进行距离计算,所得值记为d。

IF d≤聚类阀值THEN

C=C∪{t}

ENDIF

(3) 转(2)。

算法流程如下图

图4.1.2聚类算法流程图

4.2 算法应用

数据来源于激光扫描仪扫描物体获得的数据。用车载激光扫描仪扫描建筑物,汽车向前行进过程中,扫描仪不断旋转,并且每隔一段时间把扫描获取的数据通过传感器传送到计算机,计算机把数据以某种格式存储起来。然后对这些数据进行格式转换,转换为ASCII格式,以方便程序处理。这样数据就以文本方式存储。

在应用此算法之前,先取存储容量为26.1MB的一个数据文件来验证此聚类算法。

聚类的要求:由于扫描仪扫描时以与地面垂直的方向旋转,要把水平方向上的点聚为一类,也就是要对同一横面上的点聚类。这里的横面并不是整个建筑物的同一水平面上的完整的一条直线,而是根据建筑物表面的凹凸不同来聚类。

如下图,激光扫描仪位于相距建筑物一定距离处,旋转扫描建筑物的表面,由于扫描是以垂直于地面的方向扫描,而要求找出平行于地面的横面点,因此就需要对扫描所得的数据进行聚类。

图4.2.1激光扫描仪扫描建筑物示意图

下面四个表是激光扫描仪扫描一建筑物时旋转四次所测得数据的一部分,每一部分分别取10个点。运用上述算法聚类出结果。

表4.2.1 表4.2.2

表4.2.3 表4.2.4 下面的图即为上述四个表中数据的模拟图:图4.2.2表示处理之前的各点分布图;图4.2.3表示由算法处理之后所获取的点。

图4.2.2处理之前的各节点

要取得同一截面上的点,按下面公式进行聚类

t=Cos(距离*(角度*0.9*π/180))

d=|ti-ti+1|

取阈值f=0.007,则当d≤f时的点聚为一类。

执行聚类算法后各类中的图示如下图:

图4.2.3处理之前的各节点

5 朴素贝叶斯分类模型的改进方法

朴素贝叶斯分类器是基于一个简单的假定:在给定分类特征条件下属性值之间是相互条件独立的。在现实世界中,它的属性独立性假设使其无法表示实际应用中各属性之间的依赖关系,影响了它的分类性能。因此需要针对实际应用对朴素贝叶斯分类器模型进行改进,使之在属性独立性假设不满足的情况下依然具有较高的分类精确度。

通过分析,朴素贝叶斯分类器的本质是一种具有很强限制条件的贝叶斯网络分类器,由于它限制条件太强,不适于现实应用。然而完全无限制条件的贝叶斯网络也是不现实的,因为这样的网络在学习时非常耗时,其时间复杂度为属性变量的指数级,并且空间复杂度也非常高。因此,许多学者从事于研究朴素贝叶斯分类器的改进模型,大多数研究具有较宽松条件限制的贝叶斯网络分类器。众多的研究策略可归纳为以下几个方面:

5.1基于属性间的关系

(1)属性分组技术

Kononcnko提出一种采用穷尽搜索的属性分组技术假定同个组内的属性之间可能是相互依赖的,但是组与组之间是满足独立性假设的属性集合。也就是说,独立性假设弱化为这些属性组之间的独立性。但是,这种算法的复杂性远远高于朴索贝叶斯分类器,而且在现实世界中,属性可以完全被分成独立的子集合只是少数情况。

(2)属性删除技术

适用于存在冗余属性的情况。

Langley和Sage提出了种基于属性删除的选择性贝叶斯分类器。当存在一些属性依赖于其他属性,特别是存在冗余属性时,属性删除方法确实能够改善朴素贝叶斯分类器的预测精确度。

(3)局部朴素贝叶斯分类器

适用于属性之间依赖的情形比较复杂的情况。

这种方法是为属性变量的每种取值(或某个范围)建立一个朴索贝叶斯分类器。也就是说,单一的全局朴素贝叶斯分类器被许多局部朴索贝叶斯分类器所代替,将属性独立性假设放宽到只要局部属性独立就可以了。Kohavi将朴素贝叶斯分类器和决策树相结合,用一棵决策树来分割实例空间,在每个叶子结点上建立局部朴索贝叶斯分类器。Zhang和Webb等利用懒惰式学习策略提出了一种懒隋式贝叶斯规则(LazyBayasian Rule, LBR)和学习技术,该方法将懒惰式技术应用到局部朴素贝叶斯规则的归纳中。该算法虽然较大地提高了分类精确度,但是效率很低。为了提高LBR的效率,Wang和Webb给出了一种启发式LBR算法HLBR,可以有效地提高学习效率。LBR和HLBR是目前该方向上的最新研究成果之一。

(4)构造新属性或概率调整技术

适用于某些属性依赖于其他属性的情形。

Pazzani等提出了通过相互依赖的属性构造一个新属性,并用新属性取代原来相互依赖的那些属性的方法这种方法也可以视作为事先的条件概率调整技术。Wang和Webb等提出了一种准懒隋式(Semi- Lazy)的限制性贝叶斯网络分类器的条件概率调整方法,在某些情况下可以减小误分类率。

(5)建立依赖关系技术

适用于属性之间相互依赖的情形比较复杂的情况。

Friedman等提出了一种树扩张型贝叶斯方法(Tree-Augmented Baycsian Classifier,TAN)。这种方法的基本思路是放宽朴素贝叶斯的独立性假设条件,扩展朴素贝叶斯的结构,使其能够容纳属性间存在具有某种特征的依赖关系。Friedman利用条件相互信息(Conditional Mutual Information)建立属性之间的依赖关系矩阵,构造一棵最大权生成树作为个分类器。由于TAN限制每个属性结点最多有一个非类变量(类标)的父结点,也就是说每个属性结点最多仅依赖于一个非类标结点,使其表示依赖关系的能力受到限制。

5.2整体分类技术

(1)懒惰式学习策略

懒惰式(Lazy)学习策略相对于急切式(Eager)学习策略的不同之处在于,前者是在分类时间,对于每个来分类的实例,临时建立起个分类器来进行分类;后者是在训练时间就先行建立了分类器,在分类时间上分类所有要分类的实例。

一般而言,对于同种模型技术,懒惰式学习策略在分类精度上优于急切式学习策略,但是在学习效率上却大大劣于急切式学习策略。

(2) 显现模式技术

显现模式技术(emerging patterns)是指在数据集合中表现活跃的部分属性值组合序列,将显现模式技术到分类器的构造中是一种新的研究方法。

结束语

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.doczj.com/doc/ea7282250.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

浅谈贝叶斯方法

浅谈贝叶斯方法 随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。 一、第一部分中给出了7个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

贝叶斯网络工具箱使用

matlab贝叶斯网络工具箱使用 2010-12-18 02:16:44| 分类:默认分类| 标签:bnet 节点叶斯matlab cpd |字号大中小订阅 生成上面的简单贝叶斯网络,需要设定以下几个指标:节点,有向边和CPT表。 给定节点序,则只需给定无向边,节点序自然给出方向。 以下是matlab命令: N = 4; %给出节点数 dag = false(N,N); %初始化邻接矩阵为全假,表示无边图C = 1; S = 2; R = 3; W = 4; %给出节点序 dag(C,[R,S])=true; %给出有向边C-R,C-S dag([R,S],W)=true; %给出有向边R-W,S-W discrete_nodes = 1:N; %给各节点标号 node_sizes = 2*ones(1,N); %设定每个节点只有两个值 bnet = mk_bnet(dag, node_sizes); %定义贝叶斯网络bnet %bnet结构定义之后,接下来需要设定其参数。 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); 至此完成了手工输入一个简单的贝叶斯网络的全过程。 要画结构图的话可以输入如下命令: G=bnet.dag; draw_graph(G); 得到:

贝叶斯统计方法研究

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用中存储的数据,计算构造模型所需的互信息和条件互信息。3.使用种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 .根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。.选取其中后验概率最大的类,即预测结果。 一、第一部分中给出了个定义。 定义给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义若定某事件未发生,而其对立事件发生,则称该事件失败

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

JAVA贝叶斯网络算法

贝叶斯网络 提纲: 最近工作: B-COURSE工具学习 BNT研究与学习 BNT相关实验及结果 手动建立贝叶斯网及简单推理 参数学习 结构学习 下一步工作安排 最近工作: 1. B-COURSE 工具学习 B-COURSE是一个供教育者和研究者免费使用的web贝叶斯网络工具。主要分为依赖关系建模和分类器模型设计。输入自己的研究数据,就可以利用该工具在线建立模型,并依据建立好的模型进行简单推理。 B-COURSE要求数据格式是ASCII txt格式的离散数据,其中第一行是各种数据属性变量,其余各行则是采集的样本,属性变量值可以是字符串也可以是数据,属性变量之间用制表符分割,缺失属性变量值用空格代替。读入数据后,在进行结构学习前,可以手动的选择需

要考虑的数据属性!生成过程中,可以手动确定模型,确定好模型后,可以选择JAVA playgroud,看到一个java applet程序,可以手动输入相应证据,从而进行简单推理。 B-COURSE的详细使用介绍,可详见 [url]http://b-course.cs.helsinki.fi/obc/[/url]。 B-COURSE工具隐藏了数据处理,算法实现等技术难点,所以对初学者来说,容易上手。但是却不能够针对不同的应用进行自主编程,缺乏灵活性。 2.贝叶斯网工具箱BNT的研究与学习 基于matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。 贝叶斯网络表示:BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中(i,j)值为1,否则为0。 结构学习算法函数:BNT中提供了较为丰富的结构学习函数,都有: 1. 学习树扩展贝叶斯网络结构的TANC算法learn_struct_tan(). 2. 数据完整条件下学习一般贝叶斯网络结构的K2算法 learn_struct_k2()、贪婪搜索GS(greedy search)算法

案例1 贝叶斯方法

案例1 贝叶斯方法

(一)贝叶斯方法介绍 由贝果叶斯朔因公式,可以解决的推理问题. (|)j P B A 这个概率就是,可由贝叶斯公式给出. 12,,...,n j n B B B A A A B A 假设共有种两两互斥的原因会导致发生.当结果发生时,我们就会追朔发生的原因,需要计算由于原因导致发生的概率是多大?

12(|)(|),(|)...,(|).. j j n B P B A P B A P B A P B A 通常,我们会找那个最有可能发生的原因,也就是找,使得是中最大的一个这个推断方贝叶称之为斯方法法12,,,n B B B S ???: 称为的定义一个划分,若 12(),n i B B B S ??????= 不漏(),.i j ii B B i j =?≠ 不重1 B 2B 3B 4 B S n B

12,,,()0.()0 n i B B B S P B P A ???>>B s aye 设为的一个划分且对有公式:1()(|)(|)()(|)i i i n j j j P B P A B P B A P B P A B ==∑(),(|),1,2,...,. j j j j P B p P A B q j n ===设1q 1B ???S A 1 p 2 p n p 2q n q 2 B n B ()(|)i i P B P B A 先验概率后验概率 1 i i n j j j p q p q =∑=

(1702-1762) · 贝叶斯公式由英国数学家托马斯贝叶斯 提出.不过贝叶斯在世时并没有公开发表这一重大发现.而是他去世后两年才由他的朋友理查德普莱斯整理遗稿时发现并帮助发表的.

贝叶斯预测方法

贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测。贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中f t = m t? 1,Q t = R t + V。 由于Rt=Ct-1+Wt=Ct-1/δ,故有W?t = C t? 1(δ? 1? 1) W 其计算步骤为: (1)R t = C?t / δ; (2)Q t = R t + V; (3)A t = R t / Q t; (4)f t? 1 = m t? 1; (5)e t?y t?f t? 1; (6)C t = A t V; (7)m t?m t? 1 + A t e t 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0。Ol,δ=0。8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。 通过The SAS System for Windows 9.0软件回归分析得到抛物线预测方程: 表示年份见表3给出了1980-2006年的预测信息。 计算结果分析 对预测结果的准确度采用平均绝对百分误差(MAPE)分析。公式如下: 根据表l和表2对1980-2005年出口额的预测结果可知,常均值折扣模型所得结果的平均绝对百分误差MAPE=8。1745%,而由抛物线回归模型所得结果的平均绝对百分误差为9。5077%。由此可见这组数据中,使用贝叶斯模型预测的结果更为精确。

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈-CAL-FENGHAI.-(YICAI)-Company One1

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过.

贝叶斯决策方法综述

贝叶斯决策方法综述 一、决策问题 决策就是对一件事情要做出决定,它与推断的差别在于是否涉及后果。统计学家在作推断时是按统计理论进行的,很少或根本不考虑推断结论在使用后的损失,而决策者在使用推断结果做决策时必须与得失联系在一起考虑。能给他带来利润的他就使用,使他遭受损失的就不会被采用,度量得失的尺度就是损失函数。著名统计学家A.Wald(1902-1950)在20世纪40年代引入了损失函数的概念,指的是由于决策失误导致的损失值。损失函数与决策环境密切相关,因此从实际问题中归纳出合适的损失函数是决策成败关键。把损失函数加入贝叶斯推断就形成贝叶斯决策论,而损失函数被称为贝叶斯统计中的第四种信息。 决策分析是一般分四个步骤:1)形成决策问题,包括提出方案和确定目标;2)判断自然状态及其概率;3)拟定多个可行方案;4)评价方案并做出选择。常用的决策分析技术有:确定型情况下的决策分析、风险型情况下的决策分析及不确定型情况下的决策分析。 (1)确定型情况下的决策分析。确定型决策问题的主要特征有四方面:一是只有一个状态,二是有决策者希望达到的一个明确的目标,三是存在着可供决策者选择的两个或两个以上的方案,四是不同方案在该状态下的收益值是清楚的。确定型决策分析技术包括用微分法求极大值和数学规划等方法。 (2)风险型情况下的决策分析。这类决策问题与确定型决策只在第一点特征上有所区别,即在风险型决策问题中,未来可能的状态不只一种,究竟出现哪种状态不能事先肯定,只知道各种状态出现的可能性大小(如概率、频率、比例或权等)。常用的风险型决策分析技术有期望值法和决策树法。期望值法是根据各可行方案在各自然状态下收益值的概率平均值的大小,决定各方案的取舍。决策树法有利于决策人员使决策问题形象化,把各种可以更换的方案、可能出现的状态、可能性大小及产生的后果等,简单地绘制在一张图上,以便计算、研究与分析,同时还可以随时补充。 (3)不确定型情况下的决策分析。如果不只有一个状态,各状态出现的可能性大小又不确定,便称为不确定型决策问题。常用的决策分析方法有: a)乐观准则。比较乐观的决策者愿意争取一切机会获得最好结果。决策步骤是从每个方案中选一个最大收益值,再从这些最大收益值中选一个最大值,该最大值对应的方案便是入选方案。 b)悲观准则。比较悲观的决策者总是小心谨慎,从最坏结果着想。决策步骤是先从各方案中选一个最小收益值,再从这些最小收益值中选出一个最大收益值,其对应方案便是最优方案。这是在各种最不利的情况下找出一个最有利的方案.

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

(翻译)嵌入式贝叶斯网络在人脸识别中的应用

嵌入式贝叶斯网络在人脸识别中的应用 Ara V Nefian 英特尔公司 微处理器研究实验室 Santa Clara ,CA 95052 ara.nefian @ https://www.doczj.com/doc/ea7282250.html, 摘要:本文所介绍的嵌入式贝叶斯网络(EBN)是嵌入式隐马尔可夫模型的一种概括,嵌入式隐马尔可夫模型最初应用于人脸和字符识别。一个EBN 递归的被定义为一个层次结构,在这个结构里,“双亲”层节点在嵌入式贝叶斯网络或者描述“孩子”层各节点的观察序列的条件下是一个贝叶斯网络。在嵌入式贝叶斯网络下,可以建立复杂的N 维数据,在保护他们的灵活性和局部尺度不变性的同时避免复杂的贝叶斯网络。在本文中,我们提出了嵌入式贝叶斯网络在人脸识别上的一种应用,并且描述了该方法与特征脸方法以及嵌入式隐马尔可夫模型方法相比的完善之处。 1、 简介: 本文介绍的动机是需要实际的统计模型与n 维的依赖,特别是依赖使用二维图像分析。而隐马尔可夫模型(HMM)是非常成功的应用于语音识别或手势识别,在这个模型里,随着时间的推移数据依赖于一维,相当于一个N 维隐马尔可夫模型已被证明是不切实际的,由于其复杂性会随着数据的大小而成倍增长[1]。对于图像识别,特别是人脸识别[2],其数据本质上是二维的,基于采用主成分分析([3],[4]),线性判别分析([5]),神经网络([6],[7]),和匹配追踪方法的模板与早期的几何特征表现相比有了改进。然而,这些方法不能概括在尺度,方向,或面部表情方面的广泛差异。近年来,几种近似二维隐马尔可夫模型与实际计算模型的方法被研究了,诸如伪二维隐马尔可夫模型或嵌入式隐马尔可夫模型应用于字符识别[1]或人脸识别[10],[11]。这些模型在相当大的程度上降低了早期基于隐马尔可夫模型的人脸识别方法的错误率[11]。在文献[12]中,Jia 和 Gray 制定了一个有效的近似于隐马尔可夫模型的训练和识别的方法,并将其应用于文本图像分析。本文介绍了一个系列嵌入式贝叶斯网络(EBN )并研究它们的人脸识别性能。嵌入式贝叶斯网络通过允许每一个隐马尔可夫模型被任意的贝叶斯网络所代替来概括嵌入式隐马尔可夫模型。本文主要介绍在动态贝叶斯网络如HMM 或耦合HMMs 基础上建立的一系列嵌入式贝叶斯网络,并将他们的人脸识别性能与现有的一些方法相比较。 2、 耦合隐马尔可夫模型 耦合隐马尔可夫模型(CHMM )可以被视为一个HMMs 的集合,一个数据流集合,其中每个HMM 在时间t 时的离散型节点受所有相关HMMs 在时间t-1时的离散型节点的影响。图1显示了一个CHMM ,其中正方形代表隐藏的离散节点而环形代表连续观测节点。用C 表示一个CHMM 通道的数量,并用i =[il,..,,ic]表示状态向量,描述通道1处隐藏节点的状 态,…,在一个特定时间t 的实例。(C 是耦合隐马尔可夫模型(CHMM )的一个通道,i = [i l ,….,i c ]是描述在通道1……C 隐藏节点的状态的状态向量,1q [,...]C t t t q q 代表一个特定的时间例如t 时状态。)耦合隐马尔可夫模型的要素有 ,在通道c 里的状态i c 的初始状态概率;

Promedas—贝叶斯网络在医学诊断中的应用

Promedas—贝叶斯网络在医学诊断中的应用1. 综述 现代的医学诊断是一个非常复杂的过程,要求具备患者准确的资料,以及对医学著作深刻的理解,还有多年的临床经验。这样的情况尤其适用在内科诊断中,因为它涵盖了一个巨大范围的诊断门类。而且也因此使得内科诊断成为了一个需要专攻的学科。 诊断是一个过程。通过这个过程,医生为病人的症状寻找拥有最佳解释的病因。这个研究的过程是一个连续的过程,即病人的症状会指示医生对其进行一些初步的检查。基于这些初步检查的结果,一个关于可能的病因的试探性的假设形成了。这个过程可能会在若干个循环中推进,直到病人被以充分的确定性来做了诊断,而且其症状的病因也被建立起来。 诊断过程的一个很重要的部分是标准化诊断的形式。这里有若干的规则来限制:依据病人的症状以及检验的结果,什么样的检查应该被执行,它们的顺序应该是什么样的。这些规则形成了一个决策树,其节点是诊断的中间过程;依据当前诊断的结果,其枝干指向额外的检查。这些规则是由每个国家的一个医学专家委员会制定的。 在平时遇到的大部分诊断里,上面提到的指南已经足以准确的指导我们做出正确的诊断。对于这种“一般”的情形,一个“决策支持系统”是没有必要的。在10%~20%的案例中,进行诊断的过程是很困难的。因为对于正确的诊断结果的不确定性,以及对下一步进行什么检查的不确定性,不同的医生在不同的诊断过程中做出的决策是不一样的,而且缺乏“推理”。在这些案例中,通常一个专攻此类疾病的专家或者详细描述此类疾病的著作将会被咨询。对于这种困难的情形,基于计算机的决策支持系统可以作为一个可供选择的信息来源。而且,这样一个由计算机提供帮助的决策支持系统在指出其他一些原来可能被忽略的疾病方面是有帮助的。它可能就此导致一个被提高的,更加理性的诊断过程,并且更见高效和廉价。

相关主题
文本预览
相关文档 最新文档