当前位置:文档之家› 普通FANUC系统数控机床的精密加工

普通FANUC系统数控机床的精密加工

普通FANUC系统数控机床的精密加工
普通FANUC系统数控机床的精密加工

普通FANUC系统数控机床的精密加工研究伴随着科学技术的进步,现代的机械设计及机械制造技术日益趋向精密、精巧、复杂方向发展。机械设计可以通过相关的计算机辅助设计软件(如AUTOCAD、UGS、PRO/E等)来实现,且大部分的职业院校都开设相关的课程,这样对于机械设计完成精密、精巧、复杂的零部件提供了可靠的保证。

相对于机械制造,机械设计可以海马天空,有些无法通过机械制造来实现。但有很多可以实现的,却因为加工制造技术的缺陷,使加工时间、加工质量受到极大的制约。本文尝试对普通FANUC系统数控机床的精密加工进行研究。

1、精密、精巧、复杂的机械零部件的代表特征是:结构复杂、形

状及位置公差要求严格、表面质量要求很高(如轿车前大灯注

塑模具、计算机鼠标模具、家用电器外壳等)。

2、基于精密、精巧、复杂的机械零部件的加工机床,要求具备主

轴高转速、工作台高快速移动和高进给速度。

3、世界最著名的数控系统供应商德国的SIEMENS和日本的

FANUC现阶段对中国实行先进数控系统的出口限制,国产的

数控系统还不具备进行高速加工的计算能力。大部分的国产数

控机床床身也不适合高速加工。这样对中国的先进零部件的加

工就形成了制约。

本文的研究方向是基于台湾产友嘉数控机床配备FANUC 0MD系统的加工中心进行精密高速加工的实验性研究:

1、实验项目:家用吹风机外壳注塑模,试验用机床;YCM—V116B,

试验用材料是:H13,试验用刀具:SECO(瑞典山高公司品牌)

2、我们进行试验的机床是YCM—V116B(台湾友嘉实业股份有限

公司产),主轴最高转速10000转/分钟,进给速度最高10米/分

钟,配备FANUC18M系统(可4轴联动,配备α伺服模块)。

3、材料H13(4Cr5MoV1Si)是热注塑模常用的模具钢材料,当加

入0.06%~0.15%S和≤1.0%Mn使其成为易切削钢时,可用于制

造塑料模具,其机加工性能良好。材料经过调质处理,使硬度在

(40~44)HRC范围内进行加工,并可抛光达Ra为0.05μm的

镜面光洁度,满足高光洁塑料模具要求。

4、刀具采用瑞典SECO公司的高速球型铣刀,相对于H13,其切削

参数为:Vc=170(M/Min),Fz=0.009×Dc(MM/齿),a p=0.5

(MM), a e=5(MM)。

一、实验过程:

1、用SECO产217.69-2525.0-09-3A(TD250M/F15M)方肩铣刀粗

铣外形。铣削参数:Vc=215(M/Min), Fz=0.14(MM/齿),

a p=a e=25(MM)。外形图1:

图1

加工时间:17MIN

共加工3件。

2、精加工(不改变系统内部参数):外形图2

图2

加工时间:44Min

粗糙度:Ra=12.5um

刀具磨损:较严重

3、精加工(改变部分与加工有关的系统内部参数):外形图2

加工时间:41Min

粗糙度:Ra=6.3um

刀具磨损:较轻

4、精加工(改变部分系统内部参数):外形图2

加工时间:35Min

粗糙度:Ra=1.6um

刀具磨损:很轻

二、参数改变情况:

1、第一次修改:

2、第二次修改:

三、日本FANUC公司在向我国(包括港澳台地区)出口其系统时,有意将其本身具备的前馈控制(AI先行控制)参数隐瞒,使整机无法实现复杂形状的精密加工。由于加减速度无法进行有效的控制,加工表面及刀具磨损无法达到理想的效果。通过以上三次的实验,发现将其前馈控制(AI先行控制)进行适当的修改,就可以用普通的数控机床实现高速精密加工。这样不仅可以提高加工质量,节约加工时间,同时减轻加工刀具的磨损,提高产成品率,降低加工成本。

FANUC0i系统数控车床的编程与操作

二、FANUC 0i系统数控车床的编程与操作 2.1 FANUC 0i系统面板的操作 一、FANUC 0i系统面板的结构 FANUC 0i系统面板的结构如图1-19所示。主要分三部分:位于下方的机床控制和操作面板区、位于右上方MDI编辑键盘区、位于左上方的CRT屏幕显示区。 图2.1-1 FANUC 0i车床标准面板 1、机床控制、操作面板按钮 机床控制、操作面板按钮说明见表2.1-1。

钮运行暂停。按“循环启动”恢复运行。

2、MDI编辑键盘区 MDI键盘上各个键的功能见表2.1-2。 软键实现左侧中显示内容的向上翻页;软键实现左 软键实现光标的向上移动;软键 实现光标的向下移动;软键实现光标的向左移动;软键实

实现字符的输入,点击键后再点击字符键,将输入右下角的 点击将在 点击软键后再点击将在光标所处位置处输入 键中的“ 点击软键将在光标所在位置输入 点击软键后再点击将在光标所在位置处输入 3、CRT屏幕显示区 CRT屏幕显示区显示了机床位置界面、程序管理界面、设置参数界面等。 ⑴机床位置界面

在手动或手轮方式下,点击进入坐标位置界面。点击菜单软键[绝对]、菜单软键[相对]、菜单软键[综合],对应CRT界面将对应相对坐标(如图2.1-2-a)、绝对坐标(如图2.1-2-b)、和综合坐标(如图2.1-2-c )。 a相对坐标界面b绝对坐标界面c综合坐标界面 图2.1-2机床位置界面 ⑵程序管理界面 a 显示程序列表 b 显示当前程序 图2.1-3 程序管理界面 在编辑方式下点击进入程序管理界面,点击菜单软键[LIB],将列出系统中 所有的程序(如图2.1-3-a所示),在所列出的程序列表中选择某一程序名,点击将显示该程序(如图2.1-3-b所示)。 ⑶设置参数 车床刀具补偿参数 车床的刀具补偿包括刀具的磨损量补偿参数和形状补偿参数,两者之和构成车刀偏置量补偿参数。 输入刀具摩耗量补偿参数: 刀具使用一段时间后磨损,会使产品尺寸产生误差,因此需要对刀具设定磨损量补偿。步骤如下: 在MDI键盘上点击键,进入摩耗补偿参数设定界面。如图2.1-4-a所示。

FANUC数控系统的机床数据采集

FANUC数控系统的机床数据采集 (2012-05-24 14:13:55) ▼ 分类:机床数据采集及监控 标签: 发那科 fanuc 数据采集 0i 16i 18i 同西门子数控系统一样,日本发那科(FANUC)生产的数控系统是全球数控机床上装备的主要的系统之一。从上世纪70年代以来,其生产的系统种类较多,较常用的如早期的FANUC 0/6/15/18系统等,后随着数字驱动技术和网络技术等技术的发展,又推出了i系列的系统,如FANUC 0i/15i/16i/18i/21i/31i等数控系统。早期的FANUC系统开放性差,通常使用宏程序和硬件连接方式进行数据采集,但采集的数据比较少,而且实时性差,对加工和操作带来影响。但这类系统目前已逐渐淘汰,使用量比较小。 在i系列数控系统中,由于配置的不同,则可使用不同的方法进行数据采集。在配有网卡的数控系统中可利用FANUC系统的数据服务功能实现数据采集。在FANUC的许多系统中网卡都是选件,而在最新的系统上,网卡逐渐变成了标准配置,如FANUC 0i-D等。 制造数据管理系统MDC对于具有以太网的FANUC数控系统,可采集的数据量也非常多。典型的数据包括: –操作方式数据:手动JOG、MDA、自动、编辑等 –程序运行状态:运行,停止,暂停等 –主轴数据:主轴转速、主轴倍率,主轴负载,主轴运转状态 –进给数据:进给速度、进给倍率 –轴数据:轴坐标,轴负载 –加工数据:当前执行的程序号;当前使用的刀具 –报警数据:报警代码、报警和信息容 所有数据均实时后台采集,不用任何人工干预。 制造数据管理系统M对于不具有以太网的FANUC i系列的数控系统,也可采集大量的数据。典型的数据包括: –操作方式数据:手动JOG、MDA、自动、编辑等 –程序运行状态:运行,停止,暂停等 –主轴数据:主轴转速、主轴倍率,主轴负载,主轴运转状态 –进给数据:进给速度、进给倍率

FANUC 0I常用参数

FANUC-0iA 常用的参数[post] 參數型號意義 0.0TVONTV 檢查 0.1ISO傳輸碼為ISO/EIA 0.2INI輸入單位為mm(毫米)/inch(英吋) 0.5SEQ序號自動插入 1.1FVC紙帶格式 12.0MIX鏡像 20I/ORS-232 通訊頻道 傳輸(I/O=0) 參數型號意義 101.0SB2設定STOP 位元為1或2 101.3ASI設定ASCII 碼 102傳輸設備設定 103傳輸速率 傳輸(I/O=1) 參數型號意義 111.0SB2設定STOP 位元為1或2 111.3ASI設定ASCII 碼 112傳輸設備設定 113傳輸速率 傳輸(I/O=2) 參數型號意義 121.0SB2設定STOP 位元為1或2 121.3ASI設定ASCII 碼 122傳輸設備設定 123傳輸速率 行程限制 參數型號意義 1320各軸第一行程正方向限制 1321各軸第一行程負方向限制 1322各軸第二行程正方向限制 1323各軸第二行程負方向限制 進給率 參數型號意義 1420各軸快速移動進給率 1410空跑(dry run)速度 1422所有軸切削最大進給率 1430各軸切削最大進給率 1431先行控制所有軸切削最大進給率 1432先行控制各軸切削最大進給率 1425原點復歸減速後FL速度 1421快速移動FO速度 1423各軸JOG模式進給速度 1424各軸快速移動進給速度 加減速控制 參數型號意義 1620各軸快速移動加減速時間常數 1622切削進給加減速時間常數(指數型) 1622補間後加減速時間常數 1621鍾型加減速時間常數 1623切削進給FL速率(指數型) 1624補間後加減速時間常數(指數型) 1625JOG 進給FL速率(指數型) 伺服 參數型號意義 1800.1當VRDY在PRDY之前輸出伺服 1800.4切削和快速進給背隙補正量分開設 1815.1分離式檢出器使用有效/無效 1815.5絕對式檢出器使用有效/無效 1816.4DMR 1820CMR 1821各軸參考點容量 1825各軸伺服迴路增益 1826INPOSITION 寬度 1827切削進給INPOSITION 寬度 1828移動中位置偏差量限制 1829停止間位置偏差量限制 1836原點復歸時伺服誤差量 1850各軸柵格點偏移量 1851背隙補正量(切削) 1852背隙補正量(快速進給) 伺服自動設定 參數型號意義 2000~2126伺服系統參數 2000.1伺服參數自動設定 2020馬達型號 2021負載慣性比 2022馬達旋轉方向 2023馬達速度回饋脈波數 2024馬達位置回饋脈波數 2084 2085FLEX GEAR CRT/MDI 參數型號意義 3100.3FKYCRT 鍵盤為半鍵或全鍵 3100.7CORCRT為單色或彩色 3102.0~6語言設定 3105.2實際速度和T碼顯示 3111.0SVS伺服調整畫面 3111.1SPS主軸調整畫面 3111.5OPM操作監視畫面 3111.6OPS在監視畫面顯示主軸/馬達轉速 開機初始設定 參數型號意義 3401.0DPI小數點忽略有效/無效 3402.0G01電源打開時是G00或G01 3402.1~2電源打開時選擇平面G17/G18/G19 3402.3G91電源打開時是G90或G91 3404.7M3B同一個單節可執行一個或三個M碼 節距誤差補償 參數型號意義 3620補償參考點位置號碼 3621補償負方向位置號碼 3622補償正方向位置號碼 3623節距誤差補償倍率 3624節距誤差補償間隔距離 主軸控制

FANUC系统数控机床参数

FANUC系统数控机床参数 一、掌握数控机床参数的重要性: 无论哪个公司的数控系统都有大量的参数,如日本的FANUC公司6T-B系统就有294项参数。有的一项参数又有八位,粗略计算起来一套CNC系统配置的数控机床就有近千个参数要设定。这些参数设置正确与否直接影响数控机床的使用和其性能的发挥。特别是用户能充分掌握和熟悉这些参数,将会使一台数控机床的使用和性能发挥上升到一个新的水平。实践证明充分的了解参数的含义会给数控机床的故障诊断和维修带来很大的方便,会大大减少故障诊断的时间,提高机床的利用率。同时,一台数控机床的参数设置还是了解CNC系统软件设计指导思想的窗口,也是衡量机床品质的参考数据。在条件允许的情况下,参数的修改还可以开发CNC系统某些在数控机床订购时没有表现出来的功能,对二次开发会有一定的帮助。 因此,无论是那一型号的CNC系统,了解和掌握参数的含义都是非常重要的。 另外,还有一点要说明的是,数控机床的制造厂在机床出厂时就会把相关的参数设置正确、完全,同时还给用户一份与机床设置完全符合的参数表。然而,目前这一点却做的不尽如人意,参数表与参数设置不符的现象时有发生,给日后数控机床的故障诊断带来很大的麻烦。对原始数据和原始设置没有把握,在鼓掌中就很难下决心来确定故障产生的原因,无论是对用户和维修者本人都带来不良的影响。因此,在购置数控机床验收时,应把随机所带的参数与机床上的实际设置进行校对,在制造厂的服务人员没有离开之前落实此项工作,资料首先要齐全、正确,有不懂的尽管发问,搞清参数的含义,为将来故障诊断扫除障碍。 数控机床在出厂前,已将所采用的CNC系统设置了许多初始参数来配合、适应相配套的每台数控机床的具体情况,部分参数还需要调试来确定。这些具体参数的参数表或参数纸带应该交付给用户。在数控维修中,有时要利用机床某些参数调整机床,有些参数要根据机床的运行状态进行必要的修正,所以维修人员要熟悉机床参数。以日本FANUC公司的10、11、12系统为例,在软件方面共设有26个大类的机床参数。它们是:与设定有关的参数、定时器参数、与控制器有关的参数、坐标系参数、进给速度参数、加/减速成控制参数、伺服参数、DI/DO (数据输入输出)参数,CRT/MDI及逻辑参数、程序参数、I/O接口参数、刀具偏移参数、固定循环参数、缩放及坐标旋转参数、自动拐角倍率参数、单放向定位参数、用户宏程序、跳步信号输入功能、刀具自动偏移及刀具长度自动测量,刀具寿命管理、维修等有关的参数。用户买到机床后,首先应将这份参数表复制存档。一份存放在机床的文件箱内,供操作者或维修人员在使用和维修机床时参考。另一份存入机床的档案中。这些参数设定的正确与否将直接影响到机床的正常工作及机床性能充分发挥。维修人员必须了解和掌握这些参数,并将整机参数的初始设定记录在案,妥善保存,以便维修时使用。 二、数控机床参数的分类 无论是哪种型号的CNC系统都有大量的参数,少则几百个,多则上千个,看起来眼花缭乱。经过仔细研究,归纳起来又有一定的共性可言,现提供其分类方式以做参考。 1、按参数的表示形式来划分,数控机床的参数可分为三类。 (1)状态型参数 状态型参数是指每项参数的八位二进制数位中,每一位都表示了一种独立的

fanuc系统数控车床设置工件零点常用方法

Fanuc系统数控车床设置工件零点常用方法 1.直接用刀具试切对刀 1.用外园车刀先试车一外园,记住当前X坐标,测量外园直径后,用X坐标减外园直径,所的值输 入offset界面的几何形状X值里。 2.用外园车刀先试车一外园端面,记住当前Z坐标,输入offset界面的几何形状Z值里。 2.用G50设置工件零点 1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心。 2.选择MDI方式,输入G50 X0 Z0,启动START键,把当前点设为零点。 3.选择MDI方式,输入G0 X150 Z150 ,使刀具离开工件进刀加工。 4.这时程序开头:G50 X150 Z150 …….。 5.注意:用G50 X150 Z150,你起点和终点必须一致即X150 Z150,这样才能保证重复加工不 乱刀。 6.如用第二参考点G30,即能保证重复加工不乱刀,这时程序开头G30 U0 W0 G50 X150 Z150 7.在FANUC系统里,第二参考点的位置在参数里设置,在Yhcnc软件里,按鼠标右键出现对话框, 按鼠标左键确认即可。 3.用工件移设置工件零点 1.在FANUC0-TD系统的Offset里,有一工件移界面,可输入零点偏移值。 2.用外园车刀先试切工件端面,这时Z坐标的位置如:Z200,直接输入到偏移值里。 3.选择“Ref”回参考点方式,按X、Z轴回参考点,这时工件零点坐标系即建立。 4.注意:这个零点一直保持,只有从新设置偏移值Z0,才清除。 4.用G54-G59设置工件零点 1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心。 2.把当前的X和Z轴坐标直接输入到G54----G59里,程序直接调用如:G54X50Z50……。 3.注意:可用G53指令清除G54-----G59工件坐标系。 Fanuc系统数控车床常用固定循环G70-G80祥解 1.外园粗车固定循环(G71) 如果在下图用程序决定A至A’至B的精加工形状,用△d(切削深度)车掉指定的区域,留精加工预 留量△u/2及△w。 G71U(△d)R(e) G71P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t)

FANUC数控车床常用指令

G75切槽循环加工格式: G75R(退刀量) G75X Z P Q R F (X绝对坐标 Z终点坐标 P进刀量 Q Z方向移动量 R终点时轴向退刀量一般为0 F进给速度 G76复合螺纹车削循环格式: G76PmraQR(m精车次数;r斜退刀量单位数0.0-9.9之间,为螺距倍数用01-99表示;a牙顶角<80、60、55、40、30、29、0>;Q最小切削深度;R精加工余量) G76XZRPQF(X、Z螺纹终点坐标;R锥螺纹半径差;P牙高;Q第一刀切削深度;F螺距)G76P030860Q0.1R0.2 G76X35Z-40R0P2.5Q1F4 G83钻孔循环格式: G83Z-30R0.5Q2000F0.2 G84攻丝格式: G98M29S60 G84Z-21R2F60 G80 (M29开启刚性攻丝模式;G97恒转速控制,G96恒线速控制;F=螺距乘转速) G41G42刀具补偿: G41左补偿;42右补偿;G40取消刀具补偿 刀尖方向:

G96恒线速度切削 恒线速度切削也叫固定线速度切削,它的含意是在车削非圆柱形内、外径时,车床主轴转速可以连续变化,以保持实时切削位置的切削线速度不变(恒定)。中挡以上的数控车床一般都有这个功能。使用此功能不但可以提高工效,还可以提高加工表面的质量,即切削出的端面或锥面等的表面粗糙度一致性好。 启动G96之后,数控系统会按照当前刀尖所在X坐标值来计算主轴转速,所以在使用G96之前一定要认真仔细的设定坐标系。还有就是在使用之前一定要根据工件的实际情况设定最高转速,也就是G50的使用,G50除了有设定坐标系的功能外还有一个最高转速的设定的功能。例如 G50 s1500 就是说机床在达到1500转的时候就不在往上提速了。在恒线速度指令前必须限制最高转速,否则会出现“飞车”.。二是要注意这个功能一般不能用在快进(G00)程序段内。换句话说,在G96程序段开始及之下、G97程序段之前,一般不能出现GOO程序段。 G96是数控加工技术指令中的主轴速度控制指令(恒线速控制)。 格式 G96 SXXXX 说明 G96指令中的S指定的使主轴的线速度,单位为m/min。 例 G96 S250 :表示设定的线速度控制在250m/min。 用G96就要用G50 SXXXX限定主轴最高转速再T0101 M3 SXXXX这个转速是初始转速,因为恒线速切削端面时,随着半径的减小主轴转速会增大,V线速=R乘以V转速。

FANUC常用系统参数说明

FANUC0 小括号()改为中括号【】将3204中的PAF由0改为1. 释放风扇报警(ALM701参数PRM8901#0(FAN) 08000-08999保密设置NE8(N0.3202#0). 09000-09999保密设置NE9(NO.3202#4). FANUC Series 0i-MD:在显 示器上修改梯图。 按SY STEM!,按右扩展键几次,直到显示器下面出现[PMCCNF时,按[PMCCNF软键,按[设定]软键,在出现的画面上将:编程允许(EDIT ENABLE)内置xx(PROGRAERNABLE)编辑后保存到(WRITETOF-ROM (EDIT) ), 这三项打开即可修改梯图. FANUC Series 0i-MC : 按SY STEM!,按[ > ]软键几次,当出现[PMCPRM软键时按此键,按[SETING ]软键,在出现的画面上将: EDIT ENABLE! 1 WRITE TO F-ROM (EDIT置1 PROGRAMMER ENA B LE 这三项打开即可修改梯图。 这三项只要能置为 1 ,就能进入梯图修改,xx 不了1,就是有参数封

住了,防止别人乱改梯图。对于有密码的,要输入密码才可以看到, 才可以修改。为使用梯形图编辑功能,应该 在“PARAMETERSFOR ONLINE MONITO R中把“ RS-232- C和“F-BUS选择为“ NOT USE , 以使在线监控功能无效。 自动插入顺序号:0000 #5 SEQ 自动插入顺序号增量值:3216 最大主轴转速:3772 加工中心乱刀XX System——参数-----PNMNET----- 数据----- 操作----- 缩放 寻找。 xx 系统D144,主轴25, D145 1POT(1).D146(2)…… 新版本系统D300主轴25, D301 1POT(1).D302 2POT(2)……

数控机床FANUC系统对刀步骤

数控机床F A N U C系统对 刀步骤 Last updated on the afternoon of January 3, 2021

数控机床对刀步骤 法兰克加工中心机床 一、主轴转速的设定 ○1、将工作方式置于“MDI”模式; ○2、按下“程序键”; ○3、按下屏幕下方的“MDI”键; ○4、输入转速和转向(如“S500M03;”后按“INSRT”); ○5、按下启动键。 二、分中 1、意义:确定工件X、Y向的坐标原点。 2、X、Y平面原点的确定。 ○1、四面分中 ○2、两面分中,碰单边 ○3、单边碰数 3、抄数 ○1、意义:将分中后的机械值输入工件坐标系中,借以建立与机床坐标原点的位置关系。○2、方法: →切换到工件坐标系:OFS/SET→坐标系→选择具体的工件坐标系(如G54、G55、 G56、G57、G58、G59等)→输入“X0”后按屏幕下方的“测量”键(或直接输入机械坐标值)。 4、分中的类型 ○1、四面分中

○2、单边碰数 ○3、X轴分中,Y轴碰单边 ○4、Y轴分中,X轴碰单边 ○5、有偏数工件原点的确定,如X30Y20 5、分中的方法 试切分中 如果分中的要求不高,或工件为毛坯料,而且外形均可铣去,为了方便操作,可采用加工时所用的刀具直接进行碰刀,从而确定工作原点,其步骤如下(一四面分中为例): ○1、将所要用到的铣刀装在主轴上,并使主轴中速旋转; ○2、手动移动铣刀沿X方向靠近工件被测边,直到铣刀刚好切削刀工件材料即可; ○3、保持X、Y不变将Z轴沿+Z方向升起,并在相对值处将X轴置零; 归零方法: 按下X后按屏幕下方的“起源”或“归零”; ○4、将X轴移动到工件另一边,同样用刀具刚好切到工件材料即可; ○5、将主轴沿+Z方向升起; ○6、将X轴移到此时X轴相对值的1/2处(口算、心算或计算器); ○7、利用相同的方法测Y轴; ○8、抄数。 注:试切分中虽然比较简单,但会在工件表面留有刀痕,所以常用于铝和铜等毛坯料的分中。 6、分中棒分中: ○1、原理:采用离心力的原理。 ○2、方法及步骤:

FANUC数控车床编程

图5-8 G90外径车削 图5-9 G90锥面车削 数控车床加工 固定循环 固定循环是预先给定一系列操作,用来控制机床位移或主轴运转,从而完成各项加工。对非一刀加工完成的轮廓表面,即加工余量较大的表面,采用循环编程,可以缩短程序段的长度,减少程序所占内存。 固定循环一般分为单一形状固定循环和复合形状固定循环。 (一)单一形状固定循环 1.外径车削循环指令G90 该循环主要用于圆柱面和圆锥面的循环切削。 (1)外圆切削循环 程序段格式为:G90 X (U ) Z (W ) F 如图5-8所示,刀具从循环起点(刀具所在位置)开始按矩形循环,最 后又回到循环起点。图中虚线表示按快速运动,实线表示按F 指定的工 作进给速度运动。X 、Z 为圆柱面切削终点坐标值;U 、W 为圆柱面切 削终点相对循环起点的增量值。其加工顺序按1、2、3、4、5、6进行。 例5-3 加工如图5-8中的外圆轮廓。 O1004 程序名 N5 G54 G98 G21; 用G54指定工件坐标系、分进给、米制编程 N10 M3 S800; 主轴正转,转速为800r/min N15 T0101; 换1号外圆刀,导入刀具刀补 N20 G0 X80 Z60; 绝对编程(以下同),快速到达起刀点 N25 X41 Z2; 快速到达循环起始点(图中刀具所在位置) N30 G90 X37 Z -20 F100; 循环加工1,背吃刀量为3mm (直径值),以100mm/min 进给 N35 X34; 模态指令,继续进行循环加工2~6,背吃刀量为3mm/次(直径值) N40 X31; N45 X28; N50 X25; N55 X22; N60 G0 X80 Z60; 快速返回到起刀点 N65 M30; 程序结束 % 程序结束符 (2)锥面切削循环 程序段格式为:G90 X (U ) Z (W ) I F 如图5-9所示,刀具从循环起点开始沿径向快速移动,然后按F 指定的进给速度沿锥面运动,到锥面另一端后沿径向以进给速度退 出,最后快速返回到循环起点。X 、Z 为圆锥面切削终点坐标值;U 、 W 为圆锥面切削终点相对循环起点的增量值。其加工顺序按1、2、 3进行。I 为锥体大小端的半径差,由于刀具沿径向移动是快速移动, 为避免打刀,刀具在Z 向应有一定的安全距离,所以在考虑I 时, 应按延伸后的值进行考虑(如图5-9中I 应是-6.25,而不是-5)。 采用编程时,应注意I 的符号,确定的方法是:锥面起点坐标大于 终点坐标时取正,反之取负。 例5-4 加工如图5-9所示的圆锥轮廓。

数控机床(FANUC系统)对刀步骤

数控机床对刀步骤 法兰克加工中心机床 一、主轴转速的设定 ○1、将工作方式置于“MDI”模式; ○2、按下“程序键”; ○3、按下屏幕下方的“MDI”键; ○4、输入转速和转向(如“S500M03;”后按“INSRT”); ○5、按下启动键。 二、分中 1、意义:确定工件X、Y向的坐标原点。 2、X、Y平面原点的确定。 ○1、四面分中 ○2、两面分中,碰单边 ○3、单边碰数 3、抄数 ○1、意义:将分中后的机械值输入工件坐标系中,借以建立与机床坐标原点的位置关系。 ○2、方法: → 切换到工件坐标系:OFS / SET → 坐标系→ 选择具体的工件坐标系(如G54、G55、G56、G57、G58、G59等)→ 输入“X0”后按屏幕下方的“测量”键(或直接输入机械坐标值)。 4、分中的类型 ○1、四面分中 ○2、单边碰数 ○3、X轴分中,Y轴碰单边 ○4、Y轴分中,X轴碰单边 ○5、有偏数工件原点的确定,如X30Y20 5、分中的方法 试切分中 如果分中的要求不高,或工件为毛坯料,而且外形均可铣去,为了方便操作,可采用加工时所用的刀具直接进行碰刀,从而确定工作原点,其步骤如下(一四面分中为例): ○1、将所要用到的铣刀装在主轴上,并使主轴中速旋转; ○2、手动移动铣刀沿X方向靠近工件被测边,直到铣刀刚好切削刀工件材料即可; ○3、保持X、Y不变将Z轴沿+Z方向升起,并在相对值处将X轴置零; 归零方法: 按下X后按屏幕下方的“起源”或“归零”; ○4、将X轴移动到工件另一边,同样用刀具刚好切到工件材料即可; ○5、将主轴沿+Z方向升起; ○6、将X轴移到此时X轴相对值的1/2处(口算、心算或计算器); ○7、利用相同的方法测Y轴;

FANUC维修中常用参数

FANUC维修中常用参数 FANUC系统有很丰富的机床参数,为数控机床的安装调试及日常维护带来了方便条件。根据多年的实践,对常用的机床参数在维修中的应用做一介绍。 1. 手摇脉冲发生器损坏。一台FANUC 0TD数控车床,手摇脉冲发生器出现故障,使对刀不能进行微调,需要更换或修理故障件。当时没有合适的备件,可以先将参数900#3置“0;'暂时将 手摇脉冲发生器不用,改为用点动按钮单脉冲发生器操作来进行刀具微调工作。等手摇脉冲发生器修好后再将该参数置“伫 2. 当机床开机后返回参考点时出现超行程报警。上述机床在返回参考点过程中,出现510或511超程报警,处理方法有两种: (1) 若X轴在返回参考点过程中,出现510或就是511超程报警,可将参数0700LT1X1数值改为+99999999(或将0704LT1X2数值修改为-99999999)后,再一次返回参考点。若没有问题则将参数0700或0704数值改为原来数值。 (2) 同时按P与CAN键后开机,即可消除超程报警。 3. 一台FANUC 0i数控车床,开机后不久出现ALM701报警。从维修说明书解释内容为控制部上部的风扇过热,打开机床电气柜,检查风扇电机不动作,检查风扇电源正常,可判定风扇损坏,因一时购买不到同类型风扇,即先将参数RRM8901#0改为“1先释放ALM701报警,然后在强制冷风冷却,待风扇购到后,再将PRM8901改为W 4. 一台FANUC 0M数控系统加工中心,主轴在换刀过程中,当主轴与换刀臂接触的一瞬间发生接触碰撞异响故障。分析故障原因就是因为主轴定位不准,造成主轴头与换刀臂吻合不好,无疑会引起机械撞击声,两处均有明显的撞伤痕迹。经查,换刀臂与主轴头均无机械松动,且换刀臂定位动作准确,故采用修改N6577参数值解决,即将原数据1525改为1524后,故障排除。 5. 密级型参数0900?0939维修法。按FANUC 0MC操作说明书的方法进行参数传输时,密级型参数0900?0939必须用MDI方式输入很不方便。现介绍一种可以传输包含密级型参数0900?0939在内的传输方法,步骤如下: (1) 将方式开关设定在EDIT位置; (2) 按PARAM键,选择显示参数的画面; (3) 将外部接收设备设定在STAND BY (准备)状态; (4) 先按EOB键不放开,再按OUTPOT键即将全部参数输出。 6. 一台FANUC 0MC立式加工中心,由于绝对位置编码电池失效,导致X、Y、Z丢失参考点,必须重新设置参考点。 (1) 将PWE“ 0”改为“1,'更改参数NO、76、1=1,NO、22改为,此时CRT显示“ 300>警即X、Y、Z轴必须手动返回参考点。 (2) 关机再开机,利用手轮将X、Y移至参考点位置,改变参数NO、22为,则表示X、Y已建立了参考点。 (3) 将Z轴移至参考点附近,在主轴上安装一刀柄,然后手动机械手臂,使其完全夹紧刀柄。此时将参数NO、22改为,即Z轴建立参考点。将NO76、1设“00,'PWE改为0。

FANUC常用系统参数说明

FANUC0 小括号()改为中括号【】将3204中的PAR由0改为1. 释放风扇报警(ALM701)参数PRM8901#0(FAN) O8000-O8999保密设置NE8(NO.3202#0). O9000-O9999保密设置NE9(NO.3202#4). FANUC Series Oi-MD: 在显示器上修改梯图。 按SYSTEM键,按右扩展键几次,直到显示器下面出现[PMCCNF]时,按[PMCCNF]软键,按[设定]软键,在出现的画面上将:编程允许(EDIT ENABLE),内置编程器许可(PROGRA MM ER ENABLE),编辑后保存到快闪存储器(WRITE TO F-ROM (EDIT)), 这三项打开即可修改梯图. FANUC Series Oi-MC : 按SYSTEM 键,按[ > ] 软键几次,当出现[PMCPRM]软键时按此键,按[SETING]软键,在出现的画面上将:EDIT ENABLE置1 WRITE TO F-ROM (EDIT)置1 PROGRAMMER ENABLE 置1 这三项打开即可修改梯图。

这三项只要能置为1 ,就能进入梯图修改,若置不了1,就是有参数封住了,防止别人乱改梯图。对于有密码的梯形图,要输入密码才可以看到,才可以修改。为使用梯形图编辑功能,应该在“PARAMETERS FOR ONLINE MONITOR”中把“RS-232-C”和“F-BUS”选择为“NOT USE”,以使在线监控功能无效。 自动插入顺序号:0000 #5 SEQ 自动插入顺序号增量值:3216 最大主轴转速:3772 加工中心乱刀修正 System------参数-----PNMNET-----数据-----操作-----缩放-----寻找。 旧版本系统D144,主轴25,D145 1POT(1).D146(2)……新版本系统D300主轴25,D301 1POT(1).D302 2POT(2)……

fanuc数控机床入门教程

1 机床CNC 基础知识 北京发那科机电有限公司王玉琪 2006 2 此文是本人对GM(中国厂)培训时的讲义。目的是对初学者对 CNC 有基本的综合概念。以便于更深入地学习诸如:加工编程, PMC 和系统维修等课程。 3 机床CNC 基础知识 一.CNC 机床与CNC 系统 CNC 的含义是计算机数值控制。 1.CNC 机床 ⑴.金属切削用 孔加工、攻丝、镗削、铣削、车削、切螺纹、切平面、轮廓加工、平面磨削、外圆磨 削、内圆磨削等。 ⑵.线电极切割机。 ⑶.冲床、步冲、冲压、金属成型、弯管等机床。 ⑷.产业机器人。 ⑸.注塑机。 ⑹.检测、测量机。 ⑺.木工机械。 ⑻.特殊材料加工机械:如加工石材、玻璃、发射性矿料等。 ⑼.特种加工机械 激光加工机、气体切割机、焊接机、制图机、印刷机等。 随着电子技术和计算机技术以及IT 技术的发展,目前,这些机床与加工设备都可用数值计算 机用数值数据进行控制,称为CNC 控制。 下图是一台金属加工机床------立式加工中心的一般结构。 4 2.CNC 系统 CNC 系统的含义是计算机数值控制系统。 下图是一台CNC 系统的基本配置图。 FANUC LTD FS0 i - 6 系统配置 FSSB βis 伺服电机 αis 伺服电机 I/O Link βi 伺服放大器 7.2 “ LCD/MDI(单色) 8.4 “ LCD /MDI(彩色) αi 伺服放大器 Series 0i-C

以太网10 base T/100 base TX PC Internet αi 主轴电机 FANUC I/O Link DI/DO 1024/1024 操作面板I/O 模块I/O 单元 系统在LCD后面 CNC 系统的基本配置 机床的CNC 控制是集成多学科的综合控制技术。 上图是一台典型的CNC 控制系统。从图中可见,一台CNC 系统包括:⑴.CNC 控制单元(数 值控制器部分)。⑵.伺服驱动单元和进给伺服电动机。⑶.主轴驱动单元和主轴电动机。 ⑷.PMC (PLC)控制器。⑸.机床强电柜(包括刀库)控制信号的输入/输出(I/O)单元。⑹.机床的位 置测量与反馈单元(通常包括在伺服驱动单元中)。⑺.外部轴(机械)控制单元。如:刀库、交 换工作台、上下料机械手等的驱动轴。⑻.信息的输入/输出设备。如电脑、磁盘机、存储卡、键 盘、专用信息设备等。⑼.网络。如以太网、HSSB(高速数据传输口)、RS-232C 口等和加工现场 的局域网。 上图右下方的I/O Link βi 伺服放大器与电动机用于外部机械的驱动与控制。上方画出了以太 网。 CNC 单元(控制器部分)的硬件实际上就是一台专用的微型计算机。是CNC 设备制造厂自己 设计生产的专门用于机床的控制的核心。下面的几张图表示出其基本硬件模块;基本的控制功能模 块和一台实际的控制器硬件。 5 CNC 单元的基本模块 CNC 单元内的基本模块 6 CNC 功能框图 7 下面是一台控制器部件装在LCD 显示器画面的CNC 单元硬件图。 二.机床的运动坐标及进给轴 一台机床有几个运动轴执行加工时的切削进给,因此称其为进给轴。机床开机后以机床零点为 基准建立了机床的机械坐标系(直角坐标系)。每个轴对应于其中的一个相应的坐标。轴有直线运 动的,有回转运动的。国际标准ISO 对坐标轴的方向与名称是有规定的。如下图。

FANUC 常用参数及分类

FANUC 常用参数及分类 参数在NC系统中用设定NC数控机床及辅助设备的规格和内容,及加工操作所必需的一些数据。机床厂家在制造机床、最终用户在使用过程中,通过参数的设定,来实现对伺服驱动、加工条件、机床坐标、操作功能、数据传输等方面的设定和调用。 机床厂商、用户在配备、使用FANUC系统时,根据具体的使用状况,有大量的参数需要调整和设置。在使用和调整这些参数是有必要搞清楚这些参数的用途和设置方法。在下文中介绍一些有关FANUC系统参数的常识和一些常用参数。 表3-2FANUC系统参数类型列表 数据形式 位型0或1 位轴型 字节型-128`127 0~256 有些参数中不使用符号 字节轴型 字型-32768~3276 0~65535 有些参数中不使用符号 字轴型 双字型-99999999~99999999 双字轴型 FANUC系统参数分类 按照数据形式参数可以分为下表所表示的类别: 1、对于位型和位轴型参数,每个数据号由8位组成,每一位有不同的意义。 2、轴型参数允许参数分别设定给每个控制轴。 3、每个数据类型有一个通用的有效范围,参数不同其数据范围也不同。 为了进一步说明这两类数据在数据设定方面的区别,特举如下两个例子:1、位型和位轴型参数举例 1000 # 7 # 6 # 5 # 4 #3 #2 #1 #0 数据号S E Q INI ISO TV C 数据 内容 通过该例可以知道位型和位轴型的数据格式,它们都是每一个数据号由0~7位数据组成。在描述这一类数据时可以用这样的格式来说明:数据号.位号。比如上例中的ISO参数就可以用这样的符号来表示:1000.1。1000.1=0时表示数据采用EIA码输出,1000.1=1时表示数据输出采用ISO码。位型和位轴型数据就是用这样的方式来设定不同的系统功能。 2、位型和位轴型以外的数据 1023 指定轴的伺服轴号 数据号数据内容

Fanuc系统数控车床常用固定循环G70 G80祥解

Fanuc系统数控车床常用固定循环G70 G80祥解Fanuc系统数控车床常用固定循环 G70 G80祥解 G75径向切槽循环指令指令格式:G75 R(e);G75 X(U)Z(W)P(?i)Q(?k)R(?d)F__ 参数含义:e:每次径向进给后的径向退刀量(单位mm);X:切削终点的X轴绝对坐标值,也可采用相对坐标U:切削终点与起点的X轴相对坐标的差值(单位:mm);Z:切 削终点的Z轴绝对坐标值,也可采用相对坐标W:切削终点与起点的Z轴相对坐标 的差值(单位:mm);?i:径向(X轴)进给,X轴断续进给的进给量(单位:0.001mm,半径值)无正负号;?k:轴向(Z轴)移动量(单位:0.001mm),无正负号,Z向移动量必须小于刀宽;?d:切削至终点时,轴向的退刀量,一般设为0,以免断刀。F:进给速度。在本循环可处理断削,可在X轴割槽及X轴啄式钻孔G74纵向切槽循环指令指令格式:G74 Re_;G74 X(u)_Z(w)_P(i)_Q(k)_R(d)_F(t)_;e:每次Z轴向进到后的轴向退刀量。取值范围0-99.99.X(X轴切削终点坐标)Z(Z轴切削终点坐标)i(每次X 向进给切削量)k Z轴断续切削的进刀量)d(切削至终点后的径向退刀量)。如果省 略X(U)及P,结果只在Z轴操作,用于钻孔Fanuc系统数控车床常用固定循环 G70-G80祥解1.外园粗车固定循环(G71)如果在下图用程序决定A至A'至B的精加工形状,用?d(切削深度)车掉指定的区域,留精加工预留量?u/2及?w。 G71U(?d)R(e)G71P(ns)Q(nf)U(?u)W(?w)F(f)S(s)T(t)N(ns)…….F__从序号ns至nf的程序段,指定A及B间的移动指令。.S__.T__ N(nf)…?d:切削深度(半径指定)不指定正负符号。切削方向依照AA'的方向决定,在另一个值指定前不会改变。FANUC系统参数(NO.0717)指定。e:退刀行程本指定是状态指定,在另一个值指定 前不会改变。FANUC系统参数(NO.0718)指定。ns:精加工形状程序的第一个段号。nf:精加工形状程序的最后一个段号。?u:X方向精加工预留量的距离及方向。(直

FANUC数控参数一览表

FANUC系统参数一览表 系统参数不正确也会使系统报警。另外,工作中常常遇到工作台不能回到零点、位置显 示值不对或是用MDI键盘不能输入刀偏量等数值,这些故障往往和参数值有关,因此维修时若确认PMC信号或连线无误,应检查有关参数。 一.16系统类参数 0:OFF 1:ON 1.SETTING 参数(与设定相关的参数) 参数号符号意义16-T 16-M 0000/0 TVC 代码竖向校验O:不进行1:进行 0000/1 ISO EIA/ISO代码O:EIA代码1:ISO代码 0000/2 INI MDI方式公/英制O:米制1:英制 0000/5 SEQ 自动加顺序号O:不进行1:进行 0002/0 RDG 远程诊断O不进行1进行 0002/7 SJZ 手动参考位置返回0参考位置未确定时,使用减速挡块进行参考位置返回,参考位置已经确定时,与减速挡块无关,用快速移动定位到参考位置。1只用减速挡块进行参考位置返回。 0012/0 MIRx 各轴镜像的设定0关闭1开启 0012/4 AIC 轴命令的移动距离0依照指定的地址1总为增量命令 0012/7 RMVx 各轴的受控轴拆除设定0不拆除受控轴1拆除受控轴 3216 自动加程序段号时程序段号的间隔O 1 2.RS232C口参数 0020 此参数用于设定与连接在哪个接口上的输入输出设备之间进行数据的输入输出。0,1RS-232-C串行端口1 2 RS-232-C串行接口2 3遥控缓冲器 接口4存储卡接口5数据服务器接口10 DNC1/DNC2接口,OSI因 特网12DNC1接口#2 0021 前台输入设备的设定 0022 后台输入设备的设定 0023 后台输出设备的设定(前台与后台同时使用不同的输入输出设备时,作为后台的设备可设定的数值只有0-3。如果使用了正在使用的输入输出设备,将发生报警 P/S 233或BP/S233,同时,注意设定值0和1表示相同的输入输出设备。) 100/3 NCR 程序段结束的输出码O 1 100/5 ND3 DNC运行时:读一段/读至缓冲器满O 1 3.与存储卡接口相关的参数 0300/0 PCM 存储卡接口0:NC端接口1:电脑端接口 4.与FACTOLINK相关的参数(与面板操作相关的参数) 0801/0 SB2 停止位的个数0:一位1:2位 0810/0 BGS 对FACTOLINK报警任务通信,没有显示FACTOLINK屏幕时0:不启动1:启动

FANUC0i系统数控车床的编程与操作

二、 FANUC 0i系统数控车床的编程与操作 FANUC 0i系统面板的操作 一、FANUC 0i系统面板的结构 FANUC 0i系统面板的结构如图1-19所示。主要分三部分:位于下方的机床控制和操作面板区、位于右上方MDI编辑键盘区、位于左上方的CRT屏幕显示区。 图 FANUC 0i车床标准面板 1、机床控制、操作面板按钮 机床控制、操作面板按钮说明见表。 按钮名称功能说明 自动运行此按钮被按下后,系统进入自动加工模式。 编辑此按钮被按下后,系统进入程序编辑状态,用 于直接通过操作面板输入数控程序和编辑程

序。 MDI此按钮被按下后,系统进入MDI模式,手动输 入并执行指令。 远程执行此按钮被按下后,系统进入远程执行模式即 DNC模式,输入输出资料。 单节此按钮被按下后,运行程序时每次执行一条数 控指令。 单节忽略此按钮被按下后,数控程序中的注释符号“/” 有效。 选择性停止当此按钮按下后,“M01”代码有效。 机械锁定锁定机床。 试运行机床进入空运行状态。 进给保持 程序运行暂停,在程序运行过程中,按下此按 钮运行暂停。按“循环启动”恢复运行。 循环启动程序运行开始;系统处于“自动运行”或“MDI” 位置时按下有效,其余模式下使用无效。 循环停止程序运行停止,在数控程序运行中,按下此按 钮停止程序运行。 回原点机床处于回零模式;机床必须首先执行回零操 作,然后才可以运行。 手动机床处于手动模式,可以手动连续移动。 手动脉冲机床处于手轮控制模式。 手动脉冲机床处于手轮控制模式。 X轴选择按钮在手动状态下,按下该按钮则机床移动X轴。Z轴选择按钮在手动状态下,按下该按钮则机床移动Z轴。 正方向移动按钮手动状态下,点击该按钮系统将向所选轴正向移动。在回零状态时,点击该按钮将所选轴回零。 负方向移动按钮手动状态下,点击该按钮系统将向所选轴负向 移动。 快速按钮按下该按钮,机床处于手动快速状态。 主轴倍率选择旋钮将光标移至此旋钮上后,通过点击鼠标的左键 或右键来调节主轴旋转倍率。

FANUCi系统数控车床的编程与操作

FANUC 0i系统数控车床的编程与操作 2.1 FANUC 0i系统面板的操作 一、FANUC 0i系统面板的结构 FANUC 0i系统面板的结构如图1-19所示。主要分三部分:位于下方的机床控制和操作面板区、位于右上方 MDI编辑键盘区、位于左上方的 CRT屏幕显示区。 图2.1-1 FANUC 0i车床标准面板 1、机床控制、操作面板按钮 机床控制、操作面板按钮说明见表 2.1-1 0 表2.1-1机床操作面板按钮说明

2、MDI编辑键盘区 MDI键盘上各个键的功能见表 2.1-2。 表2.1-2 MDI键盘上各个键的功能

软键』实现光标的向下移动;软键T实现光标的向左移动;软 键二1实现光标的向右移动。 实现字符的输入,点击7键后再点击字符键,将输入右下角的 字符。例如:点击.生将在CRT的光标所处位置输入“O’字 符,点击软键T后再点击土!将在光标所处位置处输入P字符; 软键空1中的“EOB将输入“;”号表示换行结束。 实现字符的输入,例如:点击软键鬥将在光标所在位置输入 “5”字符,点击软键日后再点击鬥将在光标所在位置处输入 “]”。 在CRT中显示坐标值。 CRT将进入程序编辑和显示界面。 CRT将进入参数补偿显示界面。 本软件不支持。 本软件不支持。 在自动运行状态下将数控显示切换至轨迹模式。 输入字符切换键。 删除单个字符。 将数据域中的数据输入到指定的区域。 字符替换。 将输入域中的内谷输入到指定区域。 删除一段字符。 本软件不支持。 机床复位。 3、CRT CRT屏幕显示区显示了机床位置界面、程序管理界面、设置参数界面等。⑴机床位置界面 在一手动或一手轮方式下,点击进入坐标位置界面。点击菜单软键[绝对]、菜单软键[相对]、菜单软键[综合],对应CRT界面将对应相对坐标(如图2.1-2-a )、绝对坐标(如图2.1-2-b )、和综合坐标(如图2.1-2-c )。 a相对坐标界面 b 绝对坐标界面 c 综合坐标界面

相关主题
文本预览
相关文档 最新文档