当前位置:文档之家› 沟槽面湍流减阻研究综述.

沟槽面湍流减阻研究综述.

沟槽面湍流减阻研究综述.
沟槽面湍流减阻研究综述.

湍流研究简史-温景嵩

湍流研究简史-温景嵩 长春实验所发现的湍流不连续性及其对柯尔莫果洛夫理论基础的冲击具有十分重要的意义。(长春实验是指作者1972年9月在长春郊区采用类似热线风速仪的仪器测量大气湍流的温度脉动,也称温度脉动仪,然后通过频谱分析仪进行各谱段频谱分析。作者从中发现了湍流不连续性,也称间歇性。)因为湍流不仅是流体运动中的一个重大的世纪性的前沿课题,不仅它普遍存在于自然界,也普遍地存在于工程界,它是基础科学中一个重大的前沿分支---20世纪下半叶兴起的非线性科学的先驱和归宿。正由于以上两个原因,所以湍流问题的研究不仅吸引了众多的流体力学家,力学家的兴趣,而且也吸引了众多的数学家,物理学家,大气科学家,甚至包括了众多的工程技术界的专家学者的兴趣,大家都想在这一领域里一显身手。可以说湍流这一领域真正是“江山如此多娇,引无数英雄竞折腰”。自1883年英国曼彻斯特大学著名流体力学大师雷诺发表他的现代湍流开创性工作以来,一百二十多年里在湍流领域中已积累起浩如烟海的文献,发表了成百上千种的学说和理论,尽管如此,由于湍流这一课题固有的十分严重的困难,一百二十多年的众多科学家的奋斗结果,真正成功的理论并不多,算起来也就四个。 1. 普朗特的半经验混合长理论 第一个是1925年普朗特发表的半经验混合长理论,以及由此而导出的平板平均流速与所在高度的对数成正比的对数分布律。(冯. 卡尔曼1930,普朗特1933)这个对数分布律已由大量实验所证明。在工程上有很好的应用,可以用以计算平板表面所受的摩擦阻力,经过推广后,现在还可以用以计算飞船模型表面所受摩擦阻力。应该承认普朗特的半经验混合长理论解决了工程应用上的一大难题。后来前苏联学者莫宁(Monin)和奥布霍夫又把它成功地推广到近地面边界层大气风速的分布问题中去,为解决大气物理中的大气扩散等难题开辟了道路。然而普朗特的混合长理论并不是在工程应用中产生,也不是在大气中应用产生,也不是由实验带出来的结果。相反,它是在解决湍流这一学科发展中所面对的难题而产生的。它产生了以后,才有了工程的应用,才有了在大气中的应用,并且也才有了实验的证实。普朗特的半经验混合长理论是为解决雷诺方程的不闭合难题而创造出。1895年,也就是雷诺用实验证明湍流发生规律工作后的十二年,同样是由他研制成著名的雷诺方程。该方程从支配黏性流体运动的基本方程---纳维-斯托克斯方程出发,然后把瞬时流场分解为平均流场和湍流脉动速度流场的和,把这个和式代入到纳维-斯托克斯方程再取平均就形成了雷诺方程,这是一个支配湍流场中平均流场变化的方程,不幸方程不闭合。因为除了待求的平均流场外,又多了一个未知数,即同一点上湍流脉动速度的两个分量相关矩,它具有应力的量纲,又叫雷诺应力。它表征了湍流脉动场对平均场的影响,相关矩肯定不为0 ,即雷诺应力不是0。否则有湍流发生后的平均流场分布规律就应和没有湍流发生时的层流流场规律相同。而实验已证实,两者确实不同,这就证实湍流场的雷诺应力对平均场确有重要影响。可惜这是未知的。于是一个雷诺方程无法同时解出平均场和雷诺应力两个未知数,形成湍流研究中著名的不闭合难题,这个难题是由纳维-斯托克斯的非线性,以及湍流特有的随机性,在对方程求取平均值过程中必然产生。所以是湍流研究中固有的一个难点。用同样的雷诺方法,原则上可以求出湍流脉动速度两个分量相关矩的方程,这样方程就多了一个,此时和原来的雷诺方程一起现在有了两个方程,两个未知数,似乎可以闭合,其实不然。从纳维-斯托克斯方程的非线性特点,可以断定在建立两个分量的二阶相关矩方程时,必然又会增加一个新的未知的三阶相关矩,方程仍然不闭合,依此类推,若建立三阶相关矩方程,则同样还会多出一个未知的四阶相关矩,可以断言,沿着这条路线下去,未知数永远要比方程多一个,方程不可能闭合。这样下去,湍流问题就无法严格在数学上求解。雷诺方程建立后又过了三十年,即1925年由普朗特用混合长理论解决了这个难题。他的解决办法就是用物理模型方法来切断雷诺方程在数学上的不封闭链条,在雷诺方程那里就打住,引入混合长的物理模型,使雷诺

湍流减阻的意义及工程应用

湍流减阻的意义及工程应用 摘要:伴随着世界性能源危机的逐渐加剧,节能减排已经成为大势所趋,在能源运输的过程之中,摩擦阻力是主要的耗能来源,所以研究湍流减阻意义十分的重大。为此本文将对于湍流减阻的意义及工程应用展开有关的论述。本文首先论述了推流减租的意义,之后详细的论述了其工程上面的应用。含有肋条、柔顺壁、聚合物添加剂、微气泡、仿生减阻、壁面振动等主要湍流减阻技术最近的研究成果和应用现状,并着重强调了各自的减阻机理。 关键词:能源危机湍流减阻减阻机理 引言 伴随着全球能源消耗的不断提升,科学家门已经将越来越多的警力投入到如何有效的利用与保护能源领域上面。车辆、飞机以及船舶、油气长输管道的数量快速的增加,所以设法减少这些运输工具表面的摩擦阻力,成为人们研究发展节约能源的新技术含有的突破点[1]。 1湍流减阻的意义 节约能源消耗是人类一直追求的目标,其主要的途径就是在各种运输工具设计之中,尽可能的减少表面的摩擦阻力。表面摩擦阻力在运输工具总阻力之中占据很大的比例,在这些运输工具表面的发部分区域,流动都是处于湍流的状态,所以研究推流边界层减租意义十分的重大,已经引起广泛的重视,同时已经被NASA列为21实际航空关键技术之一[2]。 有关减租问题的研究可以追溯到上世纪的30年代,不过一直到上世纪的60年代中期,研究工作主要围绕减小表面的粗糙程度,隐含的假设光滑表面的阻力最小。到了70年代,阿拉伯石油禁运由此引发的燃油价格上涨激起了持续至今的推流减租研究与应用潮流,经过多年的发展,尤其是湍流理论的发展,使得湍流减阻理论与应用都是取得了突破性的进展[3]。

2湍流减阻的工程应用 2.1肋条减阻 20世纪70年代,NASA研究中心发现具有顺流向微小肋条的表面可以有效的降低臂面的摩擦阻力,从而突破了表面越光滑阻力越小的传统思维模式,肋条减阻成为湍流减阻技术研究热点[6]。 最近几年,为了最大限度的实现减租,人们对于肋条进行了很多的实验与应用优化设计[7]。德国的Bechert和Brused等使用一种测量阻力可以精确度达到±0.3%的油管对于各种肋条表面的减阻效果进行了研究。其测试了多种形状的肋条,含有三角形、半圆以及三维肋条,实验的结果显示V形肋条减阻效果最好,可以达到10%以上的减阻幅度[8]。大量的研究工作显示肋条表面减阻的可靠性与可应用性,国外的研究已经进入到了工程实用阶段,空中客车将A320试验机表面积约70%贴上肋条薄膜,到达了节油2%左右。NASA兰利中心对于Learjet 型飞机的飞行试验结果减阻大约在6%左右。国内的李育斌在1:12的运七模型上具有湍流流动的区域顺流向粘贴肋条薄膜之后,试验表面可以减小飞机阻力8%左右[9]。 2.2壁面振动减阻 壁面振动减阻是20世纪90年代才出现的一种新的方法,米兰大学的Baron和Quadrio 利用直接的数字模拟技术研究了壁面振动减阻的总能量节约效果,其发现在壁面振动速度振 幅在大于: h QX8/ 3时,不会节约能源,而是在比较小的振幅时候能量才有节约[10]。 这个里面Qx表示流量,h表示湍流明渠流高度的一半。在振幅为 h QX4/的时候,可 以净节约多达10%的能量。因为试验都是在固定无因次周期为T+=100下进行的,所以人们认为如果应用条件适当,还能节省更多的能量[11]。 2.3仿生减阻 海洋生物长期生活在水中,经过漫长的岁月,进化出了效率很高的游动结构,表面摩擦阻力也相当的低。所以通过仿生学的研究,设计出减阻效果更好的结构,也变成了研究的热点。Bechert对于一种模拟鸟类羽毛被动流体分离控制的方法进行了风洞的测试,在迅游环境里面,对层流翼部分的活动襟翼的测试结果表明机翼上的最大升力增加了20%而未发现有负面影响。一架电动滑翔机飞行测试纪录的阻力数据也证明了这一点[12]。

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性
1

第二篇 大气湍流
粘性流体的两种形态: 层流和湍流。 层流是流体运动中较简单的状态, 普遍的却是湍流。
2

湍流研究的意义
湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3

湍流研究的成果
人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4

本节的内容
湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5

湍流的一般定义和描述
1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。 2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6

湍流减阻意义与工程应用

湍流减阻意义与工程应用 摘要:湍流减阻的原理与粘性减阻的定义应用,高分子聚合物在湍流中的原理解释,从不同的方向阐述了当今流体湍流减阻的研究成果,展现了湍流减阻的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流减阻的前景,并对湍流减阻的发展提出了一些建议和设想。 关键词:湍流减阻;粘性减阻;高分子聚合物;湍流 Turbulent drag reduction significance and engineering application Abstract: the principle of turbulent drag reduction and viscous drag reduction the definition of the application of polymer in the turbulence theory to explain, in different directions this paper expounds the current research achievements of fluid turbulent drag reduction, showed the in-depth of turbulent drag reduction for the important role of science and technology and social development, the outlook of the turbulent drag reduction, and puts forward some Suggestions on the development of turbulent drag reduction and ideas Key words: turbulent drag reduction; Viscous drag reduction; Polymer; turbulence 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化,预测方法不断改进。随着我国飞速发展,所需的战略型资源--化工石油越发紧缺【1】。同时,随着我国大部分油田开发进入中后期,采出油品的流动性不断恶化,使得管道输送阻力急剧增大,运营成本剧增。因此如何降低石油及其产品的管输阻力成为国内外众多学者研究的热点和难点问题。 自从Toms,Kramer先后发现高分子稀溶液或弹性材料护面都能实现减阻以来,减阻现象与边界剪切湍流产生的基本规律密切相联【2-3】。粘性减阻就是通过或从外部改变流体边界条件或从内部改变其边界条件,依靠改变边界材料的物理、化学、力学性质或在流动的近壁区注入物理、化学、力学性质不同的气体、液体来改变近壁区流动的运动和动力学特性,从而达到减阻目的的技术【4】。 1、粘性减阻 当粘性流体沿边界流过时,由于在边界上流速为零,边界面上法向流速梯度异于零,产生了流速梯度和流体对边界的剪力。边壁剪力作功的结果消耗了流体中部分能量,并最终以热量形式向周围发散。边界面的粗糙程度,决定微观的分离和边界的无数小旋涡几何尺寸的差 异,从而决定流体能量消散的差异和阻力系数的差异[5~7]。如想达到粘性减阻,首先要实现壁的光滑减阻;就要改变层流边界层和湍流边界层中层流附面层的内部结构: 1)减小层流边界层和层流附面层贴近边界处的流速梯度值和流体对边界的剪力,减小通过粘性直接发散的能量值,达到减阻。 2)增大层流边界层和层流附面层的厚度,从而达到减阻【8-10】。

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流.为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用.目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级.(二)LES 另一种方法称做大涡模拟方法(LES方法).这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N—S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程.小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭.随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数.这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

高尔夫球运动中的流体力学

高尔夫球运动中的流体力学 “高尔夫”是GOLF 的音译,由四个英文词汇的首字母缩写构成。它们分别是:Green ,Oxygen , Light , Friendship ,意思是"绿色,氧气,阳光,友谊",它是一种把享受大自然乐趣、体育锻炼和游戏集于一身的运动。[1]如今,现代高尔夫球运动已经成为贵族运动的代名词,是中国古代一种名为“捶丸”的球戏演变而来的。 1 高尔夫球的发展历史 高尔夫球最早是用木制的,中国的捶丸的“丸”或“俅”是用“痪木”,即木疙瘩制成。后来,西方改用皮革内充以羽毛来缝制。不过这种球有一个大缺点,就是当球被打入水中或被露水粘湿时,重量会增加。[2]直到1845年,开始改用橡胶或塑胶压制而成的光滑圆球,这种球优点是不会因为被水湿了而大大加重,但是球飞行的距离却大为缩短。 后来,人们发现,用旧了的有划痕的高尔夫球,反而可以打得更远。为什么表面粗糙了,飞行反而远了呢?这里面大有学问。 早在1910年,著名物理学家J.J.Thomson 就发表了这方面的研究论文[3],相继的研究工作导致了为让球飞得更远,在球的表面上采用了布满小凹痕的设计。事实上一个表面光滑的球,职业选手击出后的飞行距离,大约只是布满凹痕球的一半。粗糙的表面可降低空气阻力的道理涉及“边界层”的概念。 2 边界层理论 边界层理论的基本想法是,在黏性系数很小的情形,可将整个流场分做两部分处理,黏性只表现在附着于物体表面上的边界层内;从表面向外,边界层中气流的速度从零逐渐加大到与外部气体流速相同,不同速度层间存在摩擦损耗,对于边界层以外的流体,则完全略去黏性力的影响,用理想流体的理论处理,并将得到的解作为边界层外缘的边条件,这样整个问题可得到解决,边界层的厚度21 Re d ≈δ,其中d 为球的直径。 3 高尔夫球效应的原理 物体或高尔夫球在空气中飞行,最早空气被想象为没有黏性的,或者说是没有摩擦的。这时流过物体表面的流体质点和物体表面质点的速度可以不同,它们之间是有正压力却没有切向力,这就好像把重物体在另一物体的水平面上拖着走时没有阻力一样。人们把这种没有黏性的流体称为理想流体。按理说,在理想流体中飞行的物体是没有阻力的,在地面上的抛体,即使是抛一根稻草,它的飞行距离可以和扔石头一样远。不过这和实际观察到的现象完全不符合,物体在空气中飞行时的阻力是绝对不可忽略的。最早认识到这个矛盾的是法国学者达朗伯尔,所以这个矛盾也被称为“达朗伯尔佯谬”。[4] 由于空气阻力的作用,按说应该是光滑的物体受到的空气阻力小才对,不过流体作用在运动物体上的阻力还要复杂一些,除了上面的这种由流体的黏性引起的阻力外,还有一种由于流场改变所产生的阻力,即压差阻力。而且在物体运动

湍流的研究进展

湍流的研究进展 XXX (XXX大学化工学院,青岛 266042) 摘要:本文对一百多年来湍流研究的进展作了简要回顾,并概述了湍流产生的原因及湍流对流体造成的影响,从不同的方向阐述了当今流体湍流的研究成果,展现了湍流研究的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流研究的前景,并对湍流研究的发展提出了一些建议和设想。 关键词:湍流;湍流模式;流体湍流;湍流强度; The Turbulence of Research Progress XXXXX (Qingdao University of Science and Technology, Qingdao 266042) Abstract: Stupid hundred years Turbulence Research progress made brief review and an overview of the the turbulence causes and turbulent fluid caused today's fluid turbulence research, elaborated from a different direction, to show the turbulentdepth study of the important role of science and technology and social development, the future prospects for turbulence research, development and turbulence research has made some suggestions and ideas. Keywords: Turbulence; Turbulence models; Fluid turbulence; Turbulence intensity; 一、湍流研究的历史进程 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化, 预测方法不断改进。回顾一下湍流研究取得进展的历程对于进一步揭示这一十分复杂流动现象是有益的。 涡团粘度概念首先是由波希尼斯克(Boussinesq)于1877年提出的,他的观点是湍流是一团杂乱无章的涡团。而现代湍流理论的创始人O.Reynolds则认为,湍流是由层流不稳定性发展起来的。这两位湍流研究的先驱者对湍流的认识有所不同。 本世纪二十年代湍流研究取得了巨大进展,有电子管补偿线路的热线风速计为湍流实验研究提供了有效的手段。 从四十年代到六十年代末湍流研究在理论和实验两方面都没有很大的突破。但是应用热线风速计测量各种湍流特性的资料大大充实了湍流的数据库。 六十年代末以后, 湍流研究又出现了一个新高潮,切变湍流中拟序结构的发现,复杂的湍流模式的建立和发展。湍流的直接数值模拟的尝试以及在方程中发现奇异吸引子或其它混沌现象的探索是近二十多年来湍流研究中的重大突破。

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

关于湍流理论研究进展精品资料

关于湍流理论研究进展 摘要本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对具有代表性的理论假设的思想方法,进行了扼要阐述,指出了相应的实用价值和局限性。 关键词湍流湍流统计理论混沌理论湍流拟序结构湍流剪切流动 1 无处不在的湍流现象 湍流是自然界中流体的一种最普遍的运动现象,它广泛的存在于我们生活周围。在大风吹过地面障碍物的旁边,在湍急的河水流过桥墩的后面,在烟囱中冒出的浓烟随风渐渐扩散等地方,都能观察到湍流运动现象。简单地说,湍流运动就是流体的一种看起来很不规则的运动。由于湍流现象广泛存在于自然界和工程技术的各个领域,因此湍流基础理论研究取得的进展就可能为经济建设和国防建设的广泛领域带来巨大的效益。例如,提高各种运输工具的速度以大量节约能源,提高各种流体机械的效益;改善大气和水体的环境质量,降低流体动力噪声,防止流体相互作用引发的结构振动乃至破坏;加强反应器内部物质的热交换与化学反应的速度等等。 然而像湍流这样,虽经包括许多著名科学家在内长达一个世纪多的顽强努力,正确反映客观规律的系统的湍流理论至今还没有建立,在整个科学研究史上也是不多见的。因此,可以说湍流是力学中没有解决的最困难的难题之一。因此,世界上许多国家一直坚持把湍流研究列为需要最优先发展的若干重大基础研究课题之一。 2 湍流理论的发展历史 湍流理论从它的思路来说大体可分为两类[1]。一类是先把流体动力学方程组平均以后,然后再设法使方程组封闭,求解后再和实验结果比较,看封闭办法是否正确。湍流中绝大部分理论是属于这一类型。另一类是先求解,取特殊模型,再引进平均,得到要求的物理量,和相应的实验结果进行比较。 2.1 Reynolds方程和混合长度理论 十九世纪70年代是Maxwell-Boltzmann分子运动理论取得辉煌成果的时代。它成功地解释了气体状态方程、气体粘性、气体热传导和气体扩散等

湍流的研究进展论文

湍流的研究进展 丁立新 (青岛科技大学) 摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。 关键词湍流理论研究工程应用 Research process of turbulence Dinglixin Qingdao University of Science & technology Abstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested. Keywords Turbulence, Theoretical research of turbulence, Engineering applications 湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极

1研究的背景和意义

目录 1研究的背景和意义 (2) 2表面活性剂减阻机理及影响因素 (6) 2.1湍流减阻基本概念 (6) 2.1.1从微观结构角度对表面活性剂湍流减阻机理的解释 (7) 2.1.2从湍流物理角度对湍流减阻机理的解释 (7) 2.2影响表面活性剂减阻的因素 (10) 2.2.1烷基 (10) 2.2.2烷基链头基 (11) 2.2.3 烷基链长度 (11) 2.2.4表面活性剂的浓度 (11) 2.2.5 补偿离子 (11) 2.2.5.1补偿离子的浓度 (11) 2.2.5.2补偿离子的疏水性与亲水性 (12) 2.2.5.3补偿离子的电荷性质以及电荷数 (12) 2.3其他因素的影响 (12) 2.3.1管路系统的直径 (12) 2.3.2流体介质的速度和温度 (13) 2.3.3环境中的金属离子 (13) 2.3.4雷诺数的影响 (13) 2.4表面活性剂减阻方程式的介绍 (13) 2.4.1粘弹性流体的剪力及湍流运动方程 (14) 3表面活性剂的国内外研究及运用状况 (15) 3.1国外的研究状况 (15) 3.2国内的研究状况 (16) 4主要研究的方法和内容 (17) 4.1研究的内容 (17) 4.2研究方法 (17) 4.2.1流变模型及数值模拟研究 (17) 4.2.2尺度放大的研究方法 (19) 5前景与展望 (21)

1研究的背景和意义 如今随着世界能耗的不断增加,能源问题一直是比较棘手的问题,特别像我国人口众多的国家,人均资源占有量远低于世界的平均水平,且对于能源的需求更加巨大,所以节约能源对于中国来说乃至于对于全世界来说是相当重要的大事。能源的消耗重要发生在能源交通运输过程中,且表面摩擦占很大的比例。而在长距离的管道运输过程中,泵站的动力几乎全部用于克服表面摩擦力。而由于表面摩擦阻力的存在,会将油气由层流状态转变为湍流状态,所以湍流减阻对长距离的管道输油具有重要的意义,已引起了广泛的重视。 在长距离管道流体输运中,绝大部分的流体输送能耗来源于管道壁面的摩擦阻力。对于能源紧缺的今天,尤其是像我国这样处于发展中且人均资源占有量较低的国家来说,节约能源以及能源的高效利用已经成为了当前研究的重点和亟待解决的问题。减阻添加剂的使用能极大地减少流体在壁面的摩擦阻力,减阻效果高达80%,具有重要的节能价值。相比于聚合物减阻剂,表面活性剂具有可逆的机械降解性质,在高剪切力场合以及封闭式循环系统如集中供暖系统中有着极大的优势以及更为广泛的应用前景。 由于表面活性剂溶液在不同的剪切力作用下,其内部的单体分子会形成不同形状的微观胶束结构,比如球状、棒状、蠕虫状、网状等,而这些不同的微观结构又能够影响表面活性剂溶液的流变性能,使其在不同剪切力下表现不同的流变特性;而流变特性又会影响流体内部的湍流结构,从而进一步影响表面活性剂溶液的减阻性能。因此,为了认识表面活性剂溶液的内在减阻机理,对其微观结构、流变特性及流体内部湍流结构的研究成为了国内外众多学者关注的焦点之一。 然而,表面活性剂在高效减阻的同时,其换热性能将会极大地恶化,这主要是由其内部微观结构对流体湍流强度的抑制作用造成的,从而导致了表面活性剂溶液传热性能恶化的现象。因此,为了进一步扩大表面活性剂在换热领域的应用,其强化传热也成为了研究的焦点。 当表面活性剂溶液发生减阻作用时,其流体内部的湍流涡结构会受到由表面活性剂形成的剪切诱导结构的抑制,从而使湍流结构发生改变。这一特点则为通过影响湍流结构实现减阻的其它减阻方法提供了可能的条件,为表面活性剂与其它适当的减阻方式相结合的耦合减阻研究提供了指导。因此,表面活性剂与其它减阻方式耦合进行高效湍流减阻的研究也是当前的研究热点。 综上所述,为了全面认识表面活性剂溶液的减阻机理,提高其在节能方面的应用价值和范围,就需要对其微观结构、流变特性、减阻特性、湍流结构特征、强化传热以及与其它减阻方法协同作用耦合特性进行系统的研究。本文对作者近年来在表面活性剂湍流减阻方面的最新研究进展进行综述,并与其它同类研究进行了对比分析。首先总结分析表面活性剂溶液结构、复杂流变特性和湍流结构及其与减阻和换热性能之间的内在联系,然后阐述表面活性剂和壁面微沟槽协同作用减阻性能与机理,并介绍表面活性剂减阻的实际工程应用,最后对表面活性剂减阻在今后的研究重点提出建议。 湍流减阻对提高能源的利用率、保护生态坏境等都有重要的意义。近年来国际学术界对湍流减阻的基础和运用研究十分重视,每年都要召开有关于湍流减阻的学术会议,湍流减阻已经发展成为当今流体力学及流体工程界的一个热门学科。添加剂湍流减阻技术作为湍流减阻重要的一个分支,是指在管道中的流体湍流流

湍流理论发展概述

. 湍流理论发展概述

一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。 二、基本湍流模型 常用的湍流模型有: 零方程模型:C-S模型,由Cebeci-Smith给出;B-L模型,由Baldwin-Lomax 给出。 一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。

湍流理论若干问题研究进展

第15卷第4期水利水电科技进展1995年8月 湍流理论若干问题研究进展 刘兆存 金忠青 (河海大学 南京 210098) 摘要 本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对拟序结构发现后人们对湍流内部结构的新认识和近年来发展很快的从微分方程分析角度出发对湍流机理新的探索进行了评价,说明引入混沌后在时、空演化方面对湍流机理的模拟,最后阐述了流动稳定性和层流向湍流的转捩。 关键词 湍流 N-S方程 流动结构 流动机理 封闭性 近年来,在围绕湍流结构和统计两条主线的研究工作中出现了新观点和新趋势,虽然从历史的观点来看有些可能是错的——在科学容忍的范围内,但在现阶段却是研究的主流。 1 简要回顾及发展 1.1 半经验理论和模式理论 湍流的控制方程是N-S方程,但和层流相比,方程不封闭。为满足工程需要,发展了一系列的以普朗特混合长理论为代表的湍流半经验理论或早期模式理论。这种理论虽然对于增进对湍流机理的了解没有提供更多的贡献,但对解决工程实际问题却起了重大的作用[1]。半经验理论是一种唯像理论,并不涉及湍流内部机理。以速度分布公式为例,半经验理论的速度分布公式大致有对数型和指数型。对数型速度分布得到的假定是充分发展的剪切湍流中主流区(不含边界层的)的流速梯度和分子粘性无关,指数型(或渐近指数型)则假定分子粘性不能忽略[2],两种类型的流速分布公式在工程实践中都获得了非常广泛的应用。半经验理论的一个发展方向是吸收统计理论的成果,用统计理论的精细成果丰富半经验理论不足并保留便于应用的优点,如文[3]所作的工作。 近代的模式理论在封闭湍流基本方程组时特别吸收了统计理论的成果,如二方程模型、应力通量代数模型、应力通量方程模型等。关于这方面的详细论述,将另文给出。 1.2 统计理论 湍流的统计理论的目标则是从最基本的物理守恒定律——N-S方程和连续性方程出发,探讨湍流的机理。理查逊-柯尔莫哥洛夫湍流图像部分被实验所证实。统计理论中湍流的能量传递关系被更符合实际的U. Fr isch等所提出的B-模型所代替。湍流统计理论历时半个多世纪的发展,经泰勒、陶森德等人的努力,取得丰硕的成果,但仍不能绕过封闭性的困难,所得成果都还是很不完善的。湍流统计理论的重要性目前已有所下降[1]。我国周培源等提出了均匀各向同性湍流的准相似性条件以及相应均匀各向同性湍流的涡旋结构统计理论并得到实验的验证[4],进一步将在均匀各向同性湍流中得到的准相似性条件推广到一般的剪切湍流中,然后对关联方程的耗散项作出假定,利用逐级近似方法发展了湍流的统计理论[5],所得结果部分经实验证实。文[6]采用逐级迭代法对湍流平均运动方程和脉动速度关联方程 · 12·

相关主题
文本预览
相关文档 最新文档