当前位置:文档之家› 应答器设备的原理及应用

应答器设备的原理及应用

应答器设备的原理及应用
应答器设备的原理及应用

电除雾器简介

电除雾器工作原理:通过静电控制装置和直流高压发生装置,将交流电变成直流电送至除雾装置中,在电晕线(阴极)和酸雾捕集极板(阳极)之间形成强大的电场,使空气分子被电离,瞬间产生大量的电子和正、负离子,这些电子及离子在电场力的作用下作定向运动,构成了捕集酸雾的媒介。同时使酸雾微粒荷电,这些荷电的酸雾粒子在电场力的作用下,作定向运动,抵达到捕集酸雾的阳极板上。之后,荷电粒子在极板上释放电子,于是酸雾被集聚,在重力作用下流到除酸雾器的储酸槽中,这样就达到了净化酸雾的目的。电除雾器有立式、卧式、多管式和线板式等多种型式。由于电除雾器一般处在酸性气氛中,所以必须使用防腐性能较好的材料制造。常用的材质有铅质、硬PVC和玻璃钢三种类型。其中铅制静电除雾器应用的历史最久。除雾器阴极电晕线的材质也有很多种,如镍铬钢丝外包铅、钛钯合金线、钛丝等。电除雾器工作时要在阴阳两极之间产生不均匀电场,所以需要两极都可以导电。一般玻璃钢或聚氯乙烯等非金属材料的静电除雾器采用借助液膜导电的方法;也有用玻璃钢和石墨混合压制而成的导电玻璃钢,或采用在玻璃钢阳极内层加一层碳纤维垫的方法来解决导电问题。电除雾器阳极管板目前主要有塑料制、铅制和导电玻璃钢制三种。由于塑料制电除雾器是靠液膜导电,有效沉淀面积改变较大,运行的电压和电流偏低,效果不如后两者;近年来,铅制阳极管板不断被导电玻璃钢所替代,具有质轻、价低,综合性能突出等优点。导电玻璃钢电除雾器主要有处理气量、总压力降和出口酸雾等指标。

(一) 沉淀极室电除雾器有室内型和室外型,沉淀极室的配备,一般出于对沉淀极室清扫以及修理的考虑必须有两个以上的系统。另外,为了得到高的除雾效率,也有作成一级、二级或三级串联,在其间设置中间塔或气体冷却器或喷雾增湿管等。气体流动方向,无论是板式或管式,大都是垂直向下或垂直向上流动的,水平流动的方式几乎不用。管式的气体分布容易均匀,可望获得较高的除雾效率,但建设费用高。构造材料应能耐热并耐一定程度的负压,为此板式的外壳用扁钢加强的铅板,管式的用厚3.0一5.0mm左右的铅制圆筒(用扁钢加强)。为了用高压水冲洗附在电极线和沉淀极上的粉尘(砷及硒泥等),往往在上部常备有水洗用配管。最近已经造出用合成树脂制的沉淀极室,并已在实际中使用。(二) 放电电极放电电极由于要耐硫酸而包铅,所以线径较大,使电晕放电困难。为了避免这种现象,添加几个棱边以减小曲率半径。形式大多数采用6—9mm直径做成星型(铜心直径1—2mm),也有用软钢心线,或用不锈钢心线或者无心线的。(三) 沉淀极沉淀极用铅板,板式、管式通常都用3mm厚的铅板。另外,作为特殊的例子也可以用钢板包铅。最近正在推广的塑料电除雾器的沉淀电极,是用聚氯乙烯板两面层压以聚氯乙烯和石墨粉混捏而赋予导电性的聚氯乙烯而成,或用增强聚氯乙烯电极板,或用石墨层压板。对电极的尺寸,板式多数用宽2—3mm、高3—4mm左右的,管式多数用直径200—250mm 左右、高4.0m左右的。(四) 气体分布装置电除雾器使用

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

无线传感器网络原理及方法复习题

1.简述无线网络介质访问控制方法CSMA/CA的工作原理 CSMA/CA机制: 当某个站点(源站点)有数据帧要发送时,检测信道。若信道空闲,且在DIFS时间内一直空闲,则发送这个数据帧。发送结束后,源站点等待接收ACK确认帧。如果目的站点接收到正确的数据帧,还需要等待SIFS时间,然后向源站点发送ACK确认帧。若源站点在规定的时间内接收到ACK确认帧,则说明没有发生冲突,这一帧发送成功。否则执行退避算法。 2.802.11无线LAN提供的服务有哪些? ?802.11规定每个遵从该标准的无线局域网必须提供9种服务,这些服务分为两类,5种分布式服务和4种站服务。 分布式服务涉及到对单元(cell)的成员关系的管理,并且会与其它单元中的站点进行交互。由AP提供的5种服务将移动节点与AP关联起来,或者将它们与AP解除关联。 ?⑴建立关联:当移动站点进入一个新的单元后,立即通告它的身份与能力。能力包括支持的数据速率、需要PCF服务和功率管理需求等。 AP可以接受或拒绝移动站点的加入。如果移动站点被接受,它必须证明它自己的身份。 ?⑵解除关联。无论是AP还是站点都可以主动解除关联,从而中止它们之间的关系?⑶重建关联。站点可以使用该服务来改变它的首选AP 。 ?⑷分发。该服务决定如何将发送到AP的帧发送出去。如果目的站在同一个AP下,帧可以被直接发送出去,否则必须通过有线网络转发。 ?⑸集成。如果一个帧需要通过一个非802.11网络(具有不同的编址方案或帧格式)传输,该服务可将802.11格式转换成目的网络要求的格式 站服务4种站服务用于管理单元内的活动。 ?⑴身份认证。当移动站点与AP建立了关联后, AP会向移动站点发送一个质询帧,看它是否知道以前分配给它的密钥;移动站点用自己所知道的密钥加密质询帧,然后发回给AP ,就可以证明它是知道密钥的;如果AP检验正确,则该移动站点就会被正式加入到单元中。 ?⑵解除认证。一个以前经过认证的站想要离开网络时,需要解除认证。 ?⑶保密。处理加密和解密,加密算法为RC4。 ⑷数据传递。提供了一种数据传送和接收方法 3.简述无线传感器网络系统工作过程 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 4.为什么无线传感器网络需要时间同步,简述RBS、TPSN时间同步算法工作原理? 在分布式的无线传感器网络应用中,每个传感器节点都有自己的本地时钟。不同节点的晶体振荡器频率存在偏差,以及湿度和电磁波的干扰等都会造成网络节点之间的运行时间偏差, RBS同步协议的基本思想是多个节点接收同一个同步信号,然后多个收到同步信号的节点之间进行同步。这种同步算法消除了同步信号发送一方的时间不确定性。这种同步协议的缺点是协议开销大

传感器原理与工程应用考试题库

传感器原理与工程应用习题 一、单项选择题 1、在整个测量过程中,如果影响和决定误差大小的全部因素(条件)始终保持不变,对同一 被测量进行多次重复测量,这样的测量称为( C ) A.组合测量 B.静态测量 C.等精度测量 D.零位式测量 1.1在直流电路中使用电流表和电压表测量负载功率的测量方法属于( B )。 A. 直接测量 B. 间接测量 C. 组合测量 D. 等精度测量 2、1属于传感器动态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.1不属于传感器静态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.2 以下那一项不属于电路参量式传感器的基本形式的是( D )。 A.电阻式 B.电感式 C.电容式 D.电压式 2.2传感器的主要功能是( A )。 A. 检测和转换 B. 滤波和放大 C. 调制和解调 D. 传输和显示 3.电阻式传感器是将被测量的变化转换成( B )变化的传感器。 A.电子 B.电压 C.电感 D.电阻 3.1电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( D )。 A.直流平衡电桥 B.直流不平衡电桥 C.交流平衡电桥D.交流不平衡电桥 3.2电阻应变片的初始电阻数值有多种,其中用的最多的是( B )。 A、60Ω B、120Ω C、200Ω D、350Ω 3.3电阻应变片式传感器一般不能用来测量下列那些量( D ) A、位移B、压力C、加速度D、电流 3.4直流电桥的平衡条件为( B ) A.相邻桥臂阻值乘积相等 B.相对桥臂阻值乘积相等 C.相对桥臂阻值比值相等 D.相邻桥臂阻值之和相等 3.5全桥差动电路的电压灵敏度是单臂工作时的( C )。

传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案 第1章 传感与检测技术的理论基础(P26) 1—1:测量的定义? 答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。 所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。 1—2:什么是测量值的绝对误差、相对误差、引用误差? 1- 3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.11402 ≈?L δ 标称相对误差 %==41.1142 2≈?x δ 引用误差 %--=测量上限-测量下限= 1) 50(1502 ≈?γ 1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

传感器原理及工程应用概述

第二章传感器概述 1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 2、传感器是由敏感原件和转换原件组成 3、两种分类方法:一种是按被测参数分类,一种是按传感器工作原理分类 4、传感器的基本特性可分为静态特性和动态特性 5、静态特性是指被测量的值处于稳定状态时输入与输出的关系。主要指标有灵敏度、线性度、迟滞、重复性和漂移等。 6、灵敏度是输出量增量ΔY与引起输出量增量ΔY的相应输入量增量ΔX之比。用S表示即S=ΔY\ΔX。 7、线性度是指传感器的输入与输出之间数量关系的线性程度。也叫非线性误差用γL 表示即γL= 8、传感器在相同工作条件下输入量由小到大(正量程)及由大到小(反量程)变化期间输入输出特性曲线不重合的现象称为迟滞。迟滞误差用 9、重复性是指传感器在相同的工作条件下输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度。最大重复差值 10、漂移是指输入量不变的情况下传感器输出量随着时间变化。产生漂移的原因有两个一是传感器自身结构参数一是周围环境。温度漂移的计算 第三章应变式传感器 1、电阻应变式传感器是以电阻应变片为转换原件的传感器。 2、工作原理是基于电阻应变效应,即导体在外界作用下产生机械变形(拉伸或压缩)是,其电阻值相应发生变化(应变效应)。 3、电阻应变片分为丝式电阻应变片和箔式电阻应变片。 4、电阻在外力作用下而改变原来尺寸或形状的现象称为变形,而去掉外力后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。具有弹性变形特性的物体称为弹性原件。 5、应变片的电阻值是指应变片没有粘贴且未受应变时,在室温下测定的电阻值即初始电阻值。 6、将直的电阻丝绕成敏感栅后,虽然长度不变,但应变状态不同,应变片敏感栅的电阻变化减小,因而其灵敏系数K较整长电阻丝的灵敏系数K0小,这种现象称为应变片的横向效应。为了减少横向效应产生的测量误差,现在一半多采用箔式应变片。 7、应变片温度误差:由于测量现场环境温度的改变而给测量带来的附加误差。产生的主要因素有以下两个方面:一是电阻温度系数的影响,一是试件材料和电阻丝材料的线膨胀系数的影响。 8、电阻应变片的温度补偿方法:1)线路补偿法2)应变片的自补法9***电阻应变片的测量电路10、压阻效应是指在一块半导体的某一轴向施加一定的压力时,其电阻值产生变化现象, 第四章电感式传感器 1、利用电磁感应原理将被测非电量如、位移、压力、流量、振动等转换成线圈自感系数L或互感系数M的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。 2、零点残余电压:传感器在零点位移时的输出电压。产生原因主要有以下两点一是由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。一是由于传感器导磁材料磁化曲线的非线性(如铁磁饱和,磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残余电压的高次谐波分量。为减小电感式传感器的零点残余电压,可以采取以下措施1)在设计和工艺上,力求做到磁路对称,铁芯材料均匀;要经过热处理以除去机械应力和改善磁性;两线圈毕恭毕敬绕制要均匀,力求几何尺寸与电气特性保持一致。2)在电路上进行补偿。 3、把被测的非电量变化转化为线圈互感变化的传感器称为互感式传感器。这种传感器

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

传感器原理与工程应用复习题参考答案1

《传感器原理及工程应用》习题答案 第1章 传感与检测技术的理论基础(P26) 1-3 用测量围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L = 140kPa 测量值 x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.1140 2 ≈?L δ 标称相对误差 %= =41.1142 2 ≈?x δ引用误差 %--=测量上限-测量下限= 1)50(1502≈?γ

1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 解: 对测量数据列表如下: 当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。 则 2072.410.03270.0788()0.104d G mm v σ=?=<=-, 所以7d 为粗大误差数据,应当剔除。然后重新计算平均值和标准偏差。 当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。 则 20 2.370.01610.0382()d i G mm v σ=?=>,所以其他14个测量值中没有坏值。 计算算术平均值的标准偏差 20 0.0043()d mm σσ= = = 20 330.00430.013()d mm σ=?= 所以,测量结果为:20(120.4110.013)()(99.73%)d mm P =±= 1-14 交流电路的电抗数值方程为

湿式除尘器工作原理

湿式除尘器工作原理 所有湿式除尘器的基本原理都是让液滴和相对较小的尘粒相接触/结合产生容易捕集的较大颗粒。在这个过程中,尘粒通过几种方法长成大的颗粒。这些方法包括较大的液滴把尘粒结合起来,尘粒吸收水分从而质量(或密度)增加,或者除尘器中较低温度下可凝结性粒子的形成和增大。 在所有上述微粒成长方法中,第一种方法是目前为止最具意义的一种捕集方法,实际应用于大多数湿式除尘器中。 1惯性撞击() 如果微粒分散于流动气体中,当流动气体遇到障碍物,惯性将使微粒突破绕障碍流动的气体流,其中一部分微粒将撞击到障碍物上。这种事件发生的可能性依赖于几个变数,尤其是微粒具有的惯性大小和障碍物的尺寸大小(在湿式除尘器中,障碍物就是液滴)。在除尘器中,惯性撞击发生在粉尘颗粒和相对较大的液滴之间。最常用的产生惯性撞击的机械设备如图1所示。图1中尘粒和水滴存在于移动的气体流中。混合物进入收缩段,横断面积减小从而气体的流动速度增加。相对较大的液滴需要一些时间加速,而小的颗粒不需要(根据物质的相对惯性)。因此在这一阶段,粉尘颗粒将由于惯性冲撞与移动较慢的水滴发生撞击。混合物接着经过喉道进入扩散段。和在收缩段的过程相反,随着横断面积的增加,气体流速减慢小颗粒运动速度也随之减慢。液滴则由于较大的质量和惯性会保持较高的速度并且赶上并撞击粉尘颗粒。这种收缩喉管和发散段的设计通常称为除尘器的文丘里管段或者接触器段。 虽然使用文丘里管是最通常的惯性撞击湿法除尘,也可以使用其它的方法。其中的一种方法是使用各种不同设计(如并流(同向流),逆流(逆向流),错流等)的喷雾塔。这些除尘器有效应用于各种能在较低能耗下获得所需的捕集效率的场合,通常是粉尘颗粒较大或者除尘效率要求较低的情况下。1 2拦截 如果小颗粒在流体中围绕障碍物移动,它将可能由于颗粒的相对大的物理尺寸与障碍物接触。这也会发生在粉尘颗粒和液滴的相对运动中。 3扩散 空气动力学粒径小于0.3μm(比重为1)的小颗粒主要通过扩散捕集,因为它们质量小不大可能发生惯性撞击,且物理尺寸小不容易被拦截。微小颗粒从高浓度区域向低浓度区域移动的过程称为扩散。扩散主要是布朗运动的结果,布朗运动即微小颗粒在周围气体分子和其他微粒碰撞下的无规则自由运动。当这些微粒被捕集到一个液滴里面,液滴邻近区域的微粒浓度降低,其他微粒又一次从高浓度区域向液滴邻近区域低浓度区域移动。 4冷凝

传感器原理及应用习题及答案

习题集及答案 第1章概述 1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3传感器如何分类?按传感器检测的畴可分为哪几种? 答案 1.1答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 1.3答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试 求:① R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U0=? ②R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =1.2Ω,

《传感器原理与工程应用》第四版(郁有文)课后答案

第一章传感与检测技术的理论基础 1. 什么是测量值的绝对误差、相对误差、引用误 差? 答:某量值的测得值和真值之差称为绝对误差。 相对误差有实际相对误差和标称相对误差两种表示方法。实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。 引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。 2. 什么是测量误差?测量误差有几种表示方法? 它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。 测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。

在实际测量中,有时要用到修正值,而修正值是与 绝对误差大小相等符号相反的值。在计算相对误差时 也必须知道绝对误差的大小才能计算。 采用绝对误差难以评定测量精度的高低,而采用相 对误差比较客观地反映测量精度。 引用误差是仪表中应用的一种相对误差,仪表的精 度是用引用误差表示的。 3. 用测量范围为-50?+150kPa 的压力传感器测量 140kPa 压力时,传感器测得示值为142kPa,求该示 值的绝对误差、实际相对误差、标称相对误差和引 用误差。 解:绝对误差 ,142-140 = 2 kPa 4. 什么是随机误差?随机误差产生的原因是什 么?如何减小随机误差对测量结果的影响? 答:在同一测量条件下,多次测量同一被测量时,其 绝对值和符号以不可预定方式变化着的误差称为随机 误差。 实际相对误差 标称相对误差 引用误差 142 -140 0 = ------------------- 140 100% =1.43% 142-140 100% =1.41% 142 142 -140 150 -( - 汉1 0 80 =1%

知识讲解 传感器(原理及典型应用)

传感器(原理及典型应用) 编稿:张金虎审稿:代洪 【学习目标】 1.知道什么是传感器,常见的传感器有哪些。 2.了解一些传感器的工作原理和实际应用。 3.了解传感器的应用模式,能够运用这一模式去理解传感器的实际运用。 4.了解传感器在生活、科技中的运用和发挥的巨大作用。 【要点梳理】 要点一、传感器 1.现代技术中,传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转化为电路的通断。把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。 2.传感器原理 传感器感受的通常是非电学量,如压力、温度、位移、浓度、速度、酸碱度等,而它输出的通常是电学量,如电压值、电流值、电荷量等,这些输出信号是非常微弱的,通常要经过放大后,再送给控制系统产生各种控制动作。传感器原理如下图所示。 3.传感器的分类 常用传感器是利用某些物理、化学或生物效应进行工作的。根据测量目的不同,可将传感器分为物理型、化学型和生物型三类。 物理型传感器是利用被测量物质的某些物理性质(如电阻、电压、电容、磁场等)发生明显变化的特性制成的,如光电传感器、力学传感器等。 化学型传感器是利用能把化学物质的成分、浓度等化学量转换成为电学量的敏感元件制成的。 生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器,生物或生物物质主要是指各种酶、微生物、抗体等,分别对应酶传感器、微生物传感器、免疫传感器等等。 要点二、光敏电阻 光敏电阻能够把光照强弱这个光学量转换为电阻大小这个电学量,一般随光照的增强电阻值减小。 要点诠释:光敏电阻是用半导体材料制成的,硫化镉在无光时,载流子(导电电荷)极少,导电性能不好,随着光照的增强,载流子增多,导电性能变好。 要点三、热敏电阻和金属热电阻 1.热敏电阻 热敏电阻用半导体材料制成,其电阻值随温度变化明显。如图为某一热敏电阻的电阻—温度特性曲线。

最新传感器原理及应用试题库

一:填空题(每空1分) 1 1.依据传感器的工作原理,传感器分敏感元件,转换元2 件,测量电路三个部分组成。 3 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。4 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应5 可以分为外光电效应,内光电效应,热释电效应三种。 6 4.光电流与暗电流之差称为光电流。 7 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域内。 8 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式9 应变计和箔式应变计结构。 10 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在11 后坡区与距离的平方成反比关系。 12 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温13 度传感器。 14 9.画出达林顿光电三极管内部接线方式: U C E 15 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定16 义为:传感器输出量的变化值与相应的被测量的变化值之比,用公17 式表示 k(x)=Δy/Δx 。 18 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特19

性的一种度量。按照所依据的基准之线的不同,线性度分为理论线性度、20 端基线性度、独立线性度、最小二乘法线性度等。最常用的是最21 小二乘法线性度。 22 12.根据敏感元件材料的不同,将应变计分为金属式和半导体23 式两大类。 24 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信25 息变换过程。 26 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法27 电桥补偿法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 28 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 29 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳30 定性。 31 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效32 应,入射光强改变物质导电率的物理现象称为内光电效应。 33 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 34 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随35 频率变化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有36 关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 37 20.内光电效应可分为光电导效应和光生伏特效应。 38 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测39 量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和40 转换元件组成。 41

相关主题
文本预览
相关文档 最新文档