当前位置:文档之家› 选修2-1第二章 圆锥曲线与方程

选修2-1第二章 圆锥曲线与方程

选修2-1第二章  圆锥曲线与方程
选修2-1第二章  圆锥曲线与方程

2.1曲线与方程

1了解方程的曲线与曲线的方程的对应关系;

2了解解析几何的基本思想和利用坐标法研究曲线的简单性质;

3能够根据所给条件选择适当的方法求曲线的轨迹方程.

【重点知识梳理】

1.曲线与方程

一般地,在平面直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f(x,y)=0的实数解满足如下关系:

(1)曲线上点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.

2.求动点的轨迹方程的一般步骤

(1)建系——________________________________________.

(2)设点——_____________________________________________________.

(3)列式——__________________________________________________________.

(4)代换

——_____________________________________________________________________.

(5)证明——______________________________________________________.

3.两曲线的交点

(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.

(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.

类型一曲线与方程的关系

例1:如果曲线C上点的坐标满足方程F(x,y)=0,则有( )

A.方程F(x,y)=0表示的曲线是C

B.曲线C的方程是F(x,y)=0

C.点集{P|P∈C}?{(x,y)|F(x,y)=0}

D.点集{P|P∈C}{(x,y)|F(x,y)=0}

练习1:f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

练习2.(2014?石家庄高二检测)方程x2+y2=1(xy<0)的曲线形状是( )

A. B. C. D.

类型二直接法求轨迹方程

例2:已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.试求动圆圆心的轨迹C 的方程.

练习2:平面直角坐标系xOy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为6,求圆O的方程。

2.2椭圆

1 掌握椭圆的定义、几何图形、标准方程

2 了解椭圆轨迹与其方程的对应关系

3 掌握椭圆的图形和简单几何性质

4 了解椭圆的简单应用,理解数形结合的思想

一、椭圆的定义

1.在平面内与两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.

集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集。

2、椭圆的标准方程:(1) 焦点在轴上的椭圆的标准方程为;

焦点在y 轴上的椭圆的标准方程为.给定椭圆

,要根据的大小判定焦点在那个坐标轴上,焦点在分母大的那个坐标轴上.(2)椭圆中关系为:

3、求解与椭圆性质有关的问题时要结合图像进行分析,即使不画图形,思考时也要联想到图像.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.

2、椭圆取值范围实质实质是椭圆上点的横坐标、纵坐标的取值范围,

在求解一些最值、

x 22

221(0)x y a b a b +=>>22

221(0)y x a b a b

+=>>22

22

1(0,0)x y m n m n +=>>,m n ,,a b c 2

2

2

a b c =+

取值范围以及存在性、判断性问题中有着重要的应用.

3、求离心率问题,关键是先根据题中的已知条件构造出的等式或不等式,结合

化出关于的式子,再利用

,化成关于的等式或不等式,从而解出的值或范围.离心率与的关系为:=. 4、椭圆上一点到椭圆一个焦点的距离的取值范围为[].

5、椭圆的通径(过焦点垂直于焦点所在对称轴的直线被椭圆截得的弦叫通径)长度为

,是过椭圆焦点的直线被椭圆所截得弦长的最小值. 二、椭圆的标准方程及其几何性质

,,a b c 222a b c =+,a c c

e a

=

e e e ,a b 2222

22c a b e a a -==2

2

1b a

-?21b e a =-,a c a c -+2

2b a

考点一:椭圆的定义及其应用

例1、在平面直角坐标系xOy 中,已知点A(-1,0)、B(1,0),动点C 满足条件:△ABC 的周长为2+22。即动点C 的轨迹为曲线W 。求W 的方程;

例2、已知F 1,F 2是椭圆x 216+y 2

9=1的两焦点,过点F2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )

A .6

B .5

C .4

D .3

例3、已知F 1,F 2是椭圆C :22

221x y a b

+=(a >b >0)的两个焦点,P 为椭圆C 上的一点,且

PF →

1⊥2PF ,若△PF 1F 2的面积为9,则b =________.

考点二:椭圆的标准方程

例1、已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交椭圆C 于A,B 两点,且

=3,则C 的方程为( )

A .+y 2

=1 B .

C .

D 例2、若椭圆的对称轴为坐标轴,长轴长与短轴长的和为6

,一个焦点的坐标是)

则椭圆的标准方程为( )

A .2214x y +=

B .2219x y +=

C .2219y x +

= D .22

14

y x += 例3、如果方程22

143

x y m m +=--表示焦点在y 轴上的椭圆,则实数m 的取值范围是( ) A .34m << B .7

2

m >

C .732m <<

D .742m <<

22x 22132x y +=22143x y +

=22154x y +=

考点三:椭圆的几何性质及其应用

例1、曲线

221259x y +=与曲线()22

19259x y k k k

+=<--的( ) A.长轴长相等 B.短轴长相等 C.焦距相等 D.离心率相等

例2、已知||=3,A 、B 分别在x 轴和y 轴上运动,O 为原点,=31+3

2

,则动点P 的轨迹方程是

A .

B .

C .

D . 例3、直线:220l x y -+=过椭圆左焦点F 1和一个顶点B ,则该椭圆的离心率为( )

A .

15 B .2

5

C

.5 D

.5

例4、设椭圆)0(122

22>>b a b

y a x =+的离心率为e =31,右焦点为F (c ,0),方程

02=-+c bx ax 的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )

A .必在圆x 2

+y 2

=1 外 B .必在圆x 2

+y 2

=1上 C .必在圆x 2

+y 2

=1内 D .以上三种情形都有可能

考点四:椭圆的综合问题

例1、已知椭圆C :22

13

x y +=,斜率为1的直线l 与椭圆C 交于,A B 两点,

且AB =,

则直线l 的方程为 .

例2、若椭圆上有个不同的点,为右焦点,组成公差的等差数列,则的最大值为( ) A .199 B .200 C .99 D .100

22

19y x +=2219x y +=2214y x +=22

14x y +=22

143x y +=n 12,n P P P F {}i

PF 1

100

d >

n

例3、已知椭圆()2222:10x y C a b a b

+=>>的离心率2e =,焦距为2.

(1)求椭圆C 的方程;

(2)已知椭圆C 与直线0x y m -+=相交于不同的两点,M N ,且线段MN 的中点不在圆2

2

1x y +=内,求实数m 的取值范围.

例4、已知椭圆()22

22:10x y C a b a b

+=>>,直线:2l y x =+与以原点为圆心,

椭圆短半轴长为半径的圆O 相切.

(1)求椭圆C 的方程;

(2)设椭圆C 与曲线()0y kx k =>的交点为,A B ,求OAB ?面积的最大值.

1.椭圆

22

12516

x y +=的焦距是( ) A .3 B .6 C .8 D .10

2.已知椭圆

()22

2

1025x y m m +=>的左焦点为()14,0F -,则m =( ) A .3 B .4 C .9 D .2

3.短轴长等于8,离心率等于

3

5

的椭圆的标准方程为( ) A .

22110064x y += B .22110064x y +=或22

164100x y += C .

2212516x y += D .2212516x y +=或22

11625

x y +=

4.已知椭圆

12

102

2=-+-m y m x 的长轴在y 轴上,且焦距为4,则m 等于( ) A.4 B.5 C. 7 D.8

5.已知方程

22

1221

x y k k +=--表示焦点在y 轴上的椭圆,则实数k 的取值范围是( ) A. 1,22?? ??? B .(1,+∞) C.(1,2) D .1,12?? ???

6.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦

点,若,则椭圆的离心率为( )

A .

B

C .

D .

22

221x y a b

+=0a b >>1F x P 2F 1260F PF ∠=212

13

7.求适合下列条件的椭圆的标准方程:

(1)两个焦点的坐标分别是()0,5,()0,5-,椭圆上一点P 到两焦点的距离之和为26;

(2)焦点在坐标轴上,且经过)2A -和()

B -两点.

8.已知椭圆()2222:10x y C a b a b +=>>的离心率12e =,且过点31,2M ?? ???

(Ⅰ)求椭圆C 的方程;

(Ⅱ)椭圆C 长轴两端点分别为A 、B ,点P 为椭圆上异于A 、B 的动点,定直线4x =与直线PA 、PB 分别交于M 、N 两点,又()7,0E ,过E 、M 、N 三点的圆是否过x 轴上不同于点E 的定点?若经过,求出定点坐标;若不经过,请说明理由.

1.设F 1(-4,0),F 2(4,0)为定点,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( )

A .椭圆

B .直线

C .圆

D .线段 2.△ABC 的两个顶点为A(-1,0),B(1,0),△ABC 周长为6,则C 点轨迹为( )

A .22143x y +=(y ≠0)

B . 22

143

y x +=(y ≠0)

C . 22154x y += (y ≠0)

D . 22

154

y x += (y ≠0) 3.若点P 在椭圆12

22=+y x 上,1F 、2F 分别是椭圆的两焦点,且

9021=∠PF F ,则2

1PF F ?的面积是( )

A .2

B .1

C .

23 D .2

1 4.直线1y kx =-与椭圆22

17x y t

+=恒有公共点,则t 值可能是( ) A .7 B .-1 C .0.5 D .1

5.两数1、9的等差中项是a ,等比中项是b ,则曲线22

1x y a b

+=的离心率为( ) A .

10

B .

210 C .4

5

D .10与210 6.若,且,则曲线

是( ) A .焦点在轴上的椭圆 B .焦点在轴上的椭圆 C .焦点在轴上的双曲线 D .焦点在轴上的双曲线 7.椭圆的焦点、,P 为椭圆上一点,已知,则△的面

积为( )

A .9

B .12

C .10

D .8

8.椭圆2

2

3412x y +=的离心率为 .

9.已知点P 是椭圆14

22

=+y x 上的在第一象限内的点,又)0,2(A 、)1,0(B ,O 是原点,则四边形OAPB 的面积的最大值是_________.

),0(πθ∈51cos sin =+θθ1cos sin 2

2=-θ

θy x x y x y

10.已知方程1232

2=-++k

y k x 表示椭圆,则k 的取值范围为__ ____.

11.求适合下列条件的椭圆的标准方程:

(1)长轴长是短轴长的3倍,且过点()3,1-;(2)椭圆过点()3,0

,离心率e =.

1.已知A 是椭圆E :22

143

x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.

(Ⅰ)当AM AN =时,求AMN ?的面积; (Ⅱ)当AM AN =2k <<.

2.已知椭圆()的左焦点为,则

( ) A . B . C . D .

3.已知椭圆的右焦点为.短轴的一个端点为,直线

交椭圆于两点.若,点到直线的距离不小于

,22

2125x y m

+=0m >()1F 4,0-m =943222

22:1(0)x y E a b a b

+=>>F M :340l x y -=E ,A B 4AF BF +=M l 4

5

直击高考

则椭圆的离心率的取值范围是( )

A .

B .

C .

D . 4.【安徽,文20】设椭圆

E 的方程为点O 为坐标原点,点A 的坐

标为,点B 的坐标为(0,b ),点M 在线段AB 上,满足直线OM 的斜

.(Ⅰ)求E 的离心率e ; (Ⅱ)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN AB .

5.已知椭圆C :,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则 .

6.【新课标2,文20】设,分别是椭圆:的左,右焦点,

是上一点且与轴垂直.直线与的另一交点为.

(Ⅰ)若直线的斜率为

,求的离心率; (Ⅱ)若直线在轴上的截距为2,且,求,

E 3(0,]43[,1)4

22

221(0),x y a b a b

+=>>(,0)a 2,BM MA =⊥22

194

x y +=||||AN BN +=1F 2F C 22

221(0)x y a b a b

+=>>M C 2MF x 1MF C N MN 3

4

C MN y 15MN F N =a b

2.3双曲线

1 掌握双曲线的定义、几何图形和标准方程;

2 掌握双曲线的图形及简单几何性质;

3 理解数形结合的思想;

4 了解双曲线轨迹与其方程的对应关系;

(一)双曲线的定义

第一定义:平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫做焦距.

集合P ={M|||MF 1|-|MF 2||=2a},|F 1F 2|=2c ,其中a 、c 为常数且a>0,c>0;M 为动点;

(1)当ac 时,P 点不存在.

第二定义:平面内到定点F 的距离和到定直线的距离的比等于常数(大于1)的点的轨迹叫做双曲线,即d

MF ||=e(e>1).F 为直线外一定点,动点到定直线的距离为d ,e 为大于1的常数.

一条规律:

双曲线为等轴双曲线?双曲线的离心率e =2?双曲线的两条渐近线互相垂直(位置关系). 两种方法:

(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a 、2b 或2c ,从而求出a 2

、b 2

,写出双曲线方程.

(2)待定系数法:先确定焦点是在x 轴上还是在y 轴上,设出标准方程,再由条件确定

a 2

、b 2

的值,即“先定型,再定量”;如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y

2

n

2=

λ(λ≠0),再根据条件求λ的值. 三个防范:

(1)区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2

=b 2

+c 2

,而在双曲线中c 2

=a 2

+b 2

.

(2)双曲线的离心率大于1,而椭圆的离心率e ∈(0,1).

(3)双曲线x 2

a 2-y 2

b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2

a 2-x

2

b 2=1(a >0,b >0)的

渐近线方程是y =±a

b

x.

(二)双曲线的标准方程和几何意义

x ∈R ,y≤-a 或y≥a

考点一:双曲线的定义及其标准方程

例1、中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为

( )

A .x 2-y 2=1

B .x 2-y 2=2

C .x 2-y 2= 2

D .x 2-y 2

=12

例2、已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且

满足1MF ·2MF =0,|1MF |·|2MF |=2,则该双曲线的方程是 ( )

A.x 2

9-y 2=1 B .x 2

-y 2

9=1 C.x 2

3-y 2

7=1 D.x 2

7-y 2

3=1 例3、设椭圆C 1的离心率为

5

13

,焦点在x 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( ).

A.x 2

42-y 2

32=1 B.x 2

132-y 2

52=1 C.x 2

32-y 2

42=1 D.x 2

132-y

2

122=1

例4、双曲线x 2

64-y

2

36=1上一点P 到双曲线右焦点的距离是4,那么点P 到左准线的距离是

________.

考点二:双曲线的几何性质

例1、已知点F 是双曲线x 2

a 2-y

2

b 2=1(a>0,b>0)的左焦点,点E 是该双曲线的右顶点,过F 且

垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是 ( )

A .(1,+∞)

B .(1,2)

C .(1,1+2)

D .(2,1+2)

例2、已知椭圆C 1:x 2

a 2+y 2

b 2=1(a >b >0)与双曲线C 2:x 2

-y 2

4=1有公共的焦点,C 2的一条渐

近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( ). A .a 2=132 B .a 2=13 C .b 2=12

D .b 2

=2

例3、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ). A. 2 B. 3 C.3+12 D.5+1

2

考点三:直线与双曲线的位置关系

例1、过点P(4,4)且与双曲线x 2

16-y

2

9

=1只有一个交点的直线有 ( )

A .1条

B .2条

C .3条

D .4条

例2、设双曲线x 2

9-y

2

16=1的右顶点为A ,右焦点为F ,过点F 作平行双曲线的一条渐近线的

直线与双曲线交于点B ,则△AFB 的面积为________.

例3、F 1,F 2分别为双曲线x 2

a 2-y

2

b 2=1(a >0,b >0)的左,右焦点,过点F 2作此双曲线一条渐

近线的垂线,垂足为M ,满足|1MF ,|=3|2MF ,|,则此双曲线的渐近线方程为________________.

考点四:双曲线综合问题

例1、P 为双曲线x 2

-y 2

15

=1右支上一点,M 、N 分别是圆(x +4)2+y 2=4和(x -4)2+y 2

=1

上的点,则|PM|-|PN|的最大值为________.

例2、(1)已知双曲线关于两坐标轴对称,且与圆x 2

+y 2

=10相交于点P(3,-1),若此圆过点P 的切线与双曲线的一条渐近线平行,求此双曲线的方程;

(2)已知双曲线的离心率e =52,且与椭圆x 2

13+y

23=1有共同的焦点,求该双曲线的方程.

例3、已知双曲线C :x 2

4

-y 2

=1,P 是C 上的任意点.

(1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为(3,0),求|PA|的最小值.

1、已知双曲线x 2

a 2-y

2

5

=1的右焦点为(3,0),则该双曲线的离心率等于( )

A.314

14

B.324

C.32

D.4

3

2、已知双曲线的渐近线为y =±3x ,焦点坐标为(-4,0),(4,0),则双曲线方程为( )

A.x 2

4-y 2

12=1 B.x 2

2-y 2

4=1 C.x 2

24-y 2

8=1 D.x 2

8-y

2

24=1 3、若双曲线过点(m ,n)(m >n >0),且渐近线方程为y =±x,则双曲线的焦点( )

A .在x 轴上

B .在y 轴上

C .在x 轴或y 轴上

D .无法判断是否在坐标轴上

4、已知m 是两个正数2,8的等比中项,则圆锥曲线x 2

+y

2

m

=1的离心率为( )

A.

32或 52

B.

3

2

C. 5

D.

3

2

或 5 5、如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )

A .3

B .2 C. 3

D. 2

6、已知P 是双曲线x 2a 2-y 2

b 2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是5

4,

且1PF ,·2PF ,=0,若△PF 1F 2的面积为9,则a +b 的值为( )

A .5

B .6

C .7

D .8

7、过双曲线x 2

a 2-y 2

b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2

=a 2

4的切线,切点为E ,延长FE

交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________.

8、P 是以F 1、F 2为焦点的双曲线C :x 2

a 2-y

2

b 2=1上的一点,已知PF 1·PF 2=0,且|PF 1|

=2|PF 2|.

(1)求双曲线的离心率e ;

(2)过点P 作直线分别与双曲线的两渐近线相交于P 1,P 2两点,若OP 1·OP 2=-27

4,

2PP 1+PP 2=0.求双曲线C 的方程.

1、平面内有一固定线段AB ,|AB|=4,动点P 满足|PA|-|PB|=3,O 为AB 中点,则|OP|的最小值为( )

A .3

B .2 C.3

2

D .1

2、过双曲线x 2

-y

2

3=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两

点,则|AB|=( )

A.43

3

B .2 3

C .6

D .4 3

3、已知M(x 0,y 0)是双曲线C :x 2

2-y 2

=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,

则y 0的取值范围是( )

A.? ????-33,33

B.? ????-36,36

C.? ????-223,223

D.? ????

-233

,233

4、已知双曲线x 2

a 2-y

2

b 2=1的左,右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与双曲线

一个交点为P ,且∠PF 1F 2=

π

6

,则双曲线的渐近线方程为________________. 5、已知双曲线x 2

a 2-y

2

b 2=1(a >1,b >0)的焦距为2

c ,直线l 过点(a,0)和(0,b),点(1,0)到

直线l 的距离与点(-1,0)到直线l 的距离之和s≥4

5c ,则双曲线的离心率e 的取值范围为

________.

6、直线x =2与双曲线C :x 2

4-y 2

=1的渐近线交于E 1,E 2两点,记1OE ,=e 1,2OE ,=e 2,

任取双曲线C 上的点P ,若OP ,=a e 1+b e 2,则实数a 和b 满足的一个等式是________. 7、设A ,B 分别为双曲线x 2

a 2-y

2b 2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,

焦点到渐近线的距离为 3.

(1)求双曲线的方程; (2)已知直线y =

3

3

x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM +ON =t OD ,求t 的值及点D 的坐标.

8、已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M(3,m)在双曲线上.

(1)求双曲线方程;

(2)求证:1MF ·2MF =0.

直击高考

1、【湖北】已知0<θ<,则双曲线与C2:﹣

=1的()

A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等

2、【北京】设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.

3、【浙江】设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.

圆锥曲线与方程练习题

《圆锥曲线与方程》单元测试 姓名_____________ 学号__________ 成绩____________ 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( ) A.10 B.8 C.7 D.6 2.已知双曲线12222=-b y a x 的一条渐近线方程为x 43 y =,则双曲线的离心率为 ( ) A.35 B.34 C.45 D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( ) A. 1201622=-y x B.1201622=-x y C.1162022=-y x D.116 2022=-x y 4.方程 22 125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<< C.9252m << D.92 m > 5.过双曲线22149 x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( ) A.0个 B.1个 C.2个 D.3个 6.抛物线2y x =上的点到直线24x y -=的最短距离是( ) A.35 B.553 C.552 D.105 3 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A. 15 B.152 C. 2 15 D.15 8.设12,F F 是椭圆164942 2=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ?的面积为( ) A.4 B.6 C.22 D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线

第二章 圆锥曲线与方程(复习)

第二章 圆锥曲线与方程(复习) 校对人:聂格娇 审核人:徐立朝 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 7881,找出疑惑之处) 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆22 12516 x y +=的右焦点为焦点的抛物线方程为 .

二、新课导学 ※ 典型例题 例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 变式:若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :22 22x y a b + =1(0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32 )到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 变式:双曲线与椭圆22 12736 x y +=有相同焦点,且经过点,求双曲线的方程.

※动手试试 练1.已知ABC ?的两个顶点A,B坐标分别是(5,0) -,(5,0),且AC,BC 所在直线的斜率之积等于m(0) m≠,试探求顶点C的轨迹. 练2.斜率为2的直线l与双曲线 22 1 32 x y -=交于A,B两点,且4 AB=, 求直线l的方程. 三、总结提升 ※学习小结 1.椭圆、双曲线、抛物线的定义及标准方程; 2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. ※知识拓展 圆锥曲线具有统一性: ⑴它们都是平面截圆锥得到的截口曲线; ⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x,y的二次方程.

《圆锥曲线与方程》单元测试卷 答案

《圆锥曲线与方程》单元测试卷 一、选择题:(本大题共10小题,每小题4分,共40分.) 1.方程132-=y x 所表示的曲线是 ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.平面内两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么 ( ) (A )甲是乙成立的充分不必要条件 (B )甲是乙成立的必要不充分条件 (C )甲是乙成立的充要条件 (D )甲是乙成立的非充分非必要条件 3.椭圆14222=+a y x 与双曲线12 2 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 4.若抛物线的准线方程为x =–7, 则抛物线的标准方程为 ( ) (A )x 2=–28y (B )y 2=28x (C )y 2=–28x (D )x 2=28y 5.已知椭圆19 252 2=+y x 上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于 (A )2 (B ) 4 (C ) 8 (D ) 2 3 ( ) 6.顶点在原点,以x 轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于 ( ) (A ) 4 (B )8 (C )16 (D )32 7.21F F 为双曲线2 214 x y -=-的两个焦点,点P 在双曲线上,且1290F PF ∠=o ,则21PF F ?的面积是 (A ) 2 (B )4 (C )8 (D )16 ( ) 8.过点P (4,4)与双曲线22 1169 x y -=只有一个公共点的直线有几条 ( ) (A ) 1 (B ) 2 (C )3 (D )4 9、已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其交于N M 、两点,MN 中点的横坐标为3 2-,则此双曲线的方程是 ( )

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

高三数学圆锥曲线与方程章末复习题1

知识改变命运 第2章 圆锥曲线与方程 §2.1 圆锥曲线 课时目标 1.理解三种圆锥曲线的定义.2.能根据圆锥曲线的定义判断轨迹的形状. 1.圆锥面可看成一条直线绕着与它相交的另一条直线l(两条直线不互相垂直)旋转一周 所形成的曲面.其中直线l 叫做圆锥面的轴. 2.圆锥面的截线的形状 在两个对顶的圆锥面中,若圆锥面的母线与轴所成的角为θ,不过圆锥顶点的截面与轴 所成的角为α,则α=π2时,截线的形状是圆;当θ<α<π2 时,截线的形状是椭圆;0≤α≤θ时,截线的形状是双曲线;当α=θ时,截线的形状是抛物线. 3.椭圆的定义 平面内到______________________________等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的________.两焦点间的距离叫做椭圆的________. 4.双曲线的定义 平面内到____________________________________________等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,两个定点F 1,F 2叫做双曲线的________,两焦点间的距离叫做双曲线的________. 5.抛物线的定义 平面内__________________________________________________________的轨迹叫做抛物线,________叫做抛物线的焦点,__________叫做抛物线的准线. 6.椭圆、双曲线、抛物线统称为____________. 一、填空题 1.已知A ????-12,0,B 是圆F :??? ?x -122+y 2=4 (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹为________. 2.方程5(x +2)2+(y -1)2=|3x +4y -12|所表示的曲线是________. 3.F 1、F 2是椭圆的两个焦点,M 是椭圆上任一点,从焦点F 2向△F 1MF 2顶点M 的外角平分线引垂线,垂足为P ,延长F 2P 交F 1M 的延长线于G ,则P 点的轨迹为__________(写出所有正确的序号). ①圆;②椭圆;③双曲线;④抛物线. 4.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹是____________. 5.一圆形纸片的圆心为O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点,把纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点.当点A 运动时点P 的轨迹是________. 6.若点P 到F(4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹表示的曲线是________. 7.已知两点F 1(-5,0),F 2(5,0),到它们的距离的差的绝对值是6的点M 的轨迹是__________. 8.一动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹为______________. 二、解答题

高中数学圆锥曲线与方程教案

高中数学圆锥曲线与方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 2.1 求曲线的轨迹方程(新授课) 一、教学目标

知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).

圆锥曲线与方程测试题(带答案)

圆锥曲线与方程 单元测试 时间:90分钟 分数:120分 一、选择题(每小题5分,共60分) 1.椭圆12 2 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A . 41 B .2 1 C .2 D .4 2.过抛物线x y 42 =的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6 D .4 3.若直线y =kx +2与双曲线62 2 =-y x 的右支交于不同的两点,则k 的取值范围是( ) A .315(- ,)315 B .0(,)315 C .315(-,)0 D .3 15 (-,)1- 4.(理)已知抛物线x y 42 =上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( ) A .(2,5) B .(-2,5) C .(5,-2) D .(5,2) (文)过抛物线)0(22 >=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若 p x x 321=+,则||PQ 等于( ) A .4p B .5p C .6p D .8p 5.已知两点)4 5,4(),45 ,1(--N M ,给出下列曲线方程:①0124=-+y x ;②32 2=+y x ;③ 122 2=+y x ;④12 22=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线122 22=-b y a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图 象上,若△21F AF 的面积为1,且2 1 tan 21= ∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-y x C .1512322 =-y x D .112 5322=-y x 7.圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .04 1 22 2 =- --+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .04 122 2=+--+y x y x

2019-2020年高中数学第二章圆锥曲线与方程章末测试A新人教B版选修(I)

2019-2020年高中数学第二章圆锥曲线与方程章末测试A 新人教B 版选修 (I) 一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( ) A .x 2 =-28y B .y 2 =28x C .y 2 =-28x D .x 2 =28y 2.设P 是椭圆x 225+y 2 16=1上的点.若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ) A .4 B .5 C .8 D .10 3.以椭圆x 216+y 2 9=1的顶点为顶点,离心率为2的双曲线方程是( ) A. x 216-y 248=1 B.x 29-y 227=1 C.x 216-y 248=1或y 29-x 2 27 =1 D .以上都不对 4.椭圆x 2 25+y 2 9=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( ) A .(5,0)或(-5,0) B.? ????52,332或? ????5 2,-332 C .(0,3)或(0,-3) D.? ????532,32或? ?? ?? -532,32 5.双曲线x 2a 2-y 2 b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( ) A .2 B. 3 C. 2 D.32 6.在y =2x 2 上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( ) A .(-2,1) B .(1,2) C .(2,1) D .(-1,2) 7.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且它的一个焦点在抛物线y 2 =12x 的准线上,则此双曲线的方程为( ) A.x 25-y 26=1 B.x 27-y 2 5 =1 C.x 23-y 26=1 D.x 24-y 2 3 =1 8.动圆的圆心在抛物线y 2 =8x 上,且动圆恒与直线x +2=0相切,则动圆必过点( ) A .(4,0) B .(2,0) C .(0,2) D .(0,-2) 9.椭圆x 2a 2+y 2 b 2=1(a >b >0)上任意一点到两焦点的距离分别为d 1,d 2,焦点为2 c ,若 d 1,2c ,d 2成等差数列,则椭圆的离心率为( )

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

圆锥曲线与方程练习题及答案解析

圆锥曲线与方程练习题及答案解析 一、选择题 1.(2013?呼和浩特高二检测)椭圆x225+y2169=1的焦点坐标为( ) A.(5,0),(-5,0) B.(0,5),(0,-5) C.(0,12),(0,-12) D.(12,0),(-12,0) 【解析】由c2=a2-b2求出c 的值.因为169>25,所以焦点在y轴上.因为c2=169-25=144,所以c=12,所以焦点坐标为(0,12),(0,-12).故选C. 【答案】C 2.已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是( ) A.x216+y27=1 B.y216+x27=1 C.x225+y216=1 D.y225+x29=1 【解析】∵椭圆的焦点在y轴上,∴可设它的标准方程为y2a2+x2b2=1(a>b>0).∵2a=++-=8,∴a=4,又c=3,∴b2=a2-c2=16-9=7,故所求的椭圆的标准方程为y216+x27=1. 【答案】 B 3.(2013?福州高二检测)已知A(0,-1)、B(0,1)两点,△ABC 的周长为6,则△ABC的顶点C的轨迹方程是( ) A.x24+y23= 1(x≠±2) B.y24+x23=1(y≠±2) C.x24+y23=1(x≠0) D.y24 +x23=1(y≠0) 【解析】∵2c=|AB|=2,∴c=1,∴|CA|+|CB|=6-2=4=2a,∴顶点C的轨迹是以A、B为焦点的椭圆(A、B、C 不共线).因此,顶点C的轨迹方程y24+x23=1(y≠±2).【答案】 B 4.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 【解析】椭圆方程可化为x22+y22k=1,依题意2k>2,∴0

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

高中二年级数学 第二章 圆锥曲线与方程(A)

第二章 圆锥曲线与方程(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12 ,则此椭圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212 =1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B.x 29-y 227 =1 C.x 2108-y 236=1 D.x 227-y 29 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24 =1 C.y 24-x 28=1 D.x 28-y 24 =1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2 =1的离心率e 的取值范围是( ) A .(2,2) B .(2,5) C .(2,5) D .(2,5) 7. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( ) A .直线 B .圆 C .双曲线 D .抛物线 8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )

人教a版数学【选修1-1】作业:第二章《圆锥曲线与方程》章末检测(a)(含答案)

1 第二章 章末检测(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.1 2 C .2 D .4 2.设椭圆 x 2 m 2 + y 2n 2 =1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为 1 2 ,则此椭圆的方程为( ) A. x 212+y 216=1 B.x 216+y 2 12 =1 C. x 248+y 264=1 D.x 264+y 2 48 =1 3.已知双曲线x 2a 2- y 2 b 2 =1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在 抛物线y 2=24x 的准线上,则双曲线的方程为( ) A. x 236-y 2108=1 B.x 29-y 2 27 =1 C. x 2108-y 236=1 D.x 227-y 2 9 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+ y 2 b 2 =1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆 的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2

1 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则 双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 2 4=1 C.y 24-x 28=1 D.x 28-y 2 4=1 6.设a >1,则双曲线x 2a 2- y 2a +1 2 =1的离心率e 的取值范围是( ) A .(2,2) B .( 2,5) C .(2,5) D .(2, 5) 7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( ) A .1 B .2 C .3 D .0 8.设F 为抛物线y 2=4x 的焦距,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC → =0,则FB →|+|FB →|+|FC → |等于( ) A .9 B .6 C .4 D .3 9.已知双曲线x 2a 2- y 2b 2 =1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线 与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2] B .(1,2) C .[2,+∞) D .(2,+∞) 10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( ) A .(4,0) B .(2,0) C .(0,2) D .(0,-2) 11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y 2=-2px (p>0)的焦点为F ,准线为l ,则p 表示 ( ) A 、F 到准线l 的距离 B 、F 到y 轴的距离 C 、F 点的横坐标 D 、F 到准线l 的距离的一半 2.抛物线22x y =的焦点坐标是 ( ) A .)0,1( B .)0,4 1 ( C .)8 1,0( D .)4 1,0( 3.离心率为 3 2 ,长轴长为6的椭圆的标准方程是 ( )A .22195x y + = B .22195x y +=或22 159x y += C .2213620x y + = D .2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A .043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆1582 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A .15322=-y x B .13522=-y x C .181322=-y x D .15 1322=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A.y x 292-=或x y 342= B.x y 2 9 2-=或y x 3 42= C.y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A .4 B .4- C .2 D . 2- 8、双曲线112 42 2=-y x 的焦点到渐近线的距离为 ( ) A . 1 B .2 C .3 D .32 9.以椭圆 22=1169144 x y +的右焦点为圆心,且与双曲线22 =1916x y -的渐近线相切的圆方程是

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

相关主题
文本预览
相关文档 最新文档