当前位置:文档之家› 焓和熵

焓和熵

焓和熵
焓和熵

熵、焓是物体的一个热力学能状态函数。

在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:

1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。

在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。

既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。

分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。

物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,焓是流动式质的热力学能和流动功之和,也可认为是做功能力。

2、熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不)热力学能与动能、势能一样,是物体的一个状态量。

能可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?

1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。

德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。

1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作―熵‖(entropy),entropy一诩源于希腊语,本意是―弄清‖或―查明‖,但是这与克劳修斯所谈话的内容似乎没有什么联系。热力学第二定律宣布宇宙的熵永远在增加着。

然而,随着类星体以及宇宙中其他神秘能源的发现,天文学家们现在已经在怀疑:热力学第二定律是否果真在任何地方任何条件下都成立

熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。

在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例

如,如图4a所示,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,要将它们分离则必须消耗功。混合前后虽然温度、压力不变,但是两种状态是不同的,单用温度与压力不能说明它的状态。再如图4b所示的两个温度不同的物体相互接触时,高温物体会自发地将热传给低温物体,最后两个物体温度达到相等。但是,相反的过程不会自发地发生。上述现象说明,自然界发生的一些过程是有一定的方向性的,这种过程叫不可逆过程。过程前后的两个状态是不等价的。用什么物理量来度量这种不等价性呢?通过研究,找到了―熵‖这个物理量。

有些过程在理想情况下有可能是可逆的,例如气缸中气体膨胀时举起一个重物做了功,当重物下落时有可能将气体又压缩到原先的状态。根据熵的定义,熵在一个可逆绝热过程的前后是不变的。而对于不可逆的绝热过程,则过程朝熵增大的方向进行。或者说,熵这个物理量可以表示过程的方向性,自然界自发进行的过程总是朝着总熵增加的方向进行,理想的可逆过程总熵保持不变。对上述的两个不可逆过程,它们的终态的熵值必大于初态的熵值。

在制氧机中常遇到的节流阀的节流膨胀过程和膨胀机的膨胀过程均可近似地看成是绝热过程。二者膨胀后压力均降低。但是,前者是不可逆的绝热膨胀,膨胀前后熵值肯定增大。后者在理想情况下膨胀对外作出的功可以等于压缩消耗的功,是可逆绝热膨胀过程,膨胀前后熵值不变,叫等熵膨胀。实际的膨胀机膨胀会有损失,也是不可逆过程,熵也增大。但是,它的不可逆程度比节流过程小,增加的熵值也小。因此,熵的增加值反映了这个绝热过程不可逆程度的大小。在作理论分析计算时,引入熵这个状态参数很为方便。

熵的单位为J/(mol?K)或kJ/(kmol?K)。但是,通常关心的不是熵的数值,而是熵的变化趋势。对实际的绝热膨胀过程,熵必然增加。熵增加的幅度越小,说明损失越小效率越高

焓(enthalpy),符号H,是一个系统的热力学参数。

物理意义:⑴H=U+pV 焓=流动内能+推动功

⑵焓表示流动物质所具有的能量中,取决于热力状态的那部分能量。

定义一个系统内:

H = U + pV

式子中"H"为焓,U为系统内能,p为其压强,V则为体积。

对于在大气内进行的化学反应,压强一般保持常值,则有

ΔH = ΔU + pΔV

规定放热反应的焓取负值。如:

SO3(g)+H2O(l)==H2SO4(l);ΔH= -130.3 kJ/mol

表示每生成1 mol H2SO4 放出130.3 kJ 的热。

严格的标准热化学方程式格式: H2(g)+1/2O2(g)==H2O(l) ΔrHθm=-286kJ·mol-1 (θ表示标准态,r表示反应,m表示1mol反应.含义为标准态下进行一摩尔反应的焓变) 现在我们设想在同一温度下发生同上的1mol反应:2H2(g)+O2(g)=2H2O(g),但不是在等温等容条件下,而是在等温等压条件下,或者说发生的不是等温等容反应,而是

等温等压反应,若反应发生时同样没有做其他功,反应的热效应多大?这种热效应的符号通常用Qp表示,下标p表明等压,成为等压热效应。

Qp=△U+p△V=△U+RT∑vB(g)

式中△U≡U终态-U始态≡U反应产物-U反应物,式中∑vB(g)=△n(g)/mol,即发生1mol反应,产物气体分子总数与反应物气体分子总数之差。由该式可见,对于一个具体的化学反应,等压热效应与等容热效应是否相等,取决于反应前后气体分子总数是否发生变化,若总数不变,系统与环境之间不会发生功交换,于是,Qp=QV;若总数减小,对于放热反应∣Qp∣〉∣QV∣,等压过程放出热多于等容过程放出热,;若反应前后气体分子总数增加,对于放热反应,∣Qp∣〈∣QV∣,反应前后内能减少释放的一部分能量将以做功的形式向环境传递,放出的热少于等容热效应。同样的,对于吸热反应也可以类推得到。

将上式展开又可得到:

Qp=△U+p△V=(U终态-U始态)+p(U终态-U始态)

=(U终态+pU始态)-(U终态+pU始态)

由于U、p、V都是状态函数,因此U+pV也是状态函数,为此,我们定义一个新的状态函数,称为焓,符号为H,定义式为H≡U+pV,于是:

△H≡H终态-H始态= Qp

此式表明,化学反应在等温等压下发生,不做其他功时,反应的热效应等于系统的状态函数焓的变化量。请特别关注上句中的―不做其他功时‖,若做其它功(如电池放电做功)反应的热效应决不会等于系统的状态函数H的变化量△H。

我们之所以要定义焓这个函数,其原因是由于其变化量是可以测定的(等于等温等压过程不做其它功时的热效应),具有实际应用的价值。这样处理,包含着热力学的一个重要思想方法:在一定条件下发生一个热力学过程显现的物理量,可以用某个状态函数的的变化量来度量。QV=△U、Qp,都是这种思想方法的具体体现。在随后的讨论中,这种思想方法还将体现。

应当指出,焓变在数值上等于等温等压热效应,这只是焓变的度量方法,并不是说反应不在等压下发生,或者同一反应被做成燃料电池放出电能,焓变就不存在了,因为焓变是状态函数,只要发生反应,同样多的反应物在同一温度和压力下反应生成同样多的产物,用同一化学方程式表达时,焓变的数值是不变的。

另外,我们在反应焓的符号上面加上反应的温度条件,是因为温度不同,焓变数值不同。但实验事实告诉我们,反映焓变随温度的变化并不太大,当温度相差不大时,可近似地看作反应含不随温度变,以下内容只作这种近似处理,不考虑焓变随温度的变化。实验和热力学理论都可以证明:反应在不同压力下发生,焓变不同!但当压力改变不大时,不作精确计算时,这种差异可忽略,可借用标准态数据。以下内容均作这种近似处理。

物理名词,用热量除温度所得的商,标志热量转化为功的程度[entropy]

物理意义:物质微观热运动时,混乱程度的标志。

热力学中表征物质状态的参量之一,通常用符号S表示。在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。下标―可逆‖表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。单位质量物质的熵称为比熵,记为s。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;

②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生的过程总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。

◎物理学上指热能除以温度所得的商,标志热量转化为功的程度。

◎科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。亦被社会科学用以借喻人类社会某些状态的程度。

◎在信息论中,熵表示的是不确定性的量度。

只有当你所使用的那个特定系统中的能量密度参差不齐的时候,能量才能够转化为功,这时,能量倾向于从密度较高的地方流向密度较低的地方,直到一切都达到均匀为止。正是依靠能量的这种流动,你才能从能量得到功。

江河发源地的水位比较高,那里的水的势能也比河口的水的势能来得大。由于这个原因,水就沿着江河向下流入海洋。要不是下雨的话,大陆上所有的水就会全部流入海洋,而海平面将稍稍升高。总势能这时保持不变。但分布得比较均匀。

正是在水往下流的时候,可以使水轮转动起来,因而水就能够做功。处在同一个水平面上的水是无法做功的,即使这些水是处在很高的高原上,因而具有异常高的势能,同样做不了功。在这里起决定性作用的是能量密度的差异和朝着均匀化方向的流动。

熵是混乱和无序的度量。熵值越大,混乱无序的程度越大。我们这个宇宙是熵增的宇宙。热力学第二定律体现的就是这个特征。生命是高度的有序,智慧是高度的有序,在一个熵增的宇宙为什么会出现生命?会进化出智慧?(负熵)。热力学第二定律还揭示了:局部的有序是可能的,但必须以其他地方的更大无序为代价。人生存,就要能量,要食物,要以动植物的死亡(熵增)为代价。万物生长靠太阳。动植物的有序又是以太阳核反应的衰竭(熵增)或其他形式的熵增为代价的。人关在完全封闭的铅盒子里,无法以其他地方的熵增维持自己的负熵。在这个相对封闭的系统中,熵增的法则破坏了生命的有序。熵是时间的箭头,在这个宇宙中是不可逆的。熵与时间密切相关。如果时间停止―流动‖,熵增也就无从谈起。―任何我们已知的物质能关住‖的东西,不是别的,就是―时间‖。低温关住的也是―时间‖。生命是物质的有序―结构‖。―结构‖与具体的物质不是同一个层次的概念。就像大厦的建筑材料和大厦的式样不是同一个层次的概念一样。生物学已经证明,凡是上了岁数的人,身体中的原子,已经没有一个是刚出生时候的了。但是,你还是你,我还是我,生命还在延续。倒是死了的人,没有了新陈代谢,身体中的分子可以保留很长时间。意识是比生命更高层次的有序,

可以在生命之间传递。说到这里,我想物质与意识的层次关系应该比较清楚了。(摘自人民网BBS论坛)

不管对哪一种能量来说,情况都是如此。在蒸汽机中,有一个热库把水变成蒸汽,还有一个冷库把蒸汽冷凝成水。起决定性作用的正是这个温度差。在任何单一的、毫无差别的温度下——不管这个温度有多高——是不可能得到任何功的。

―熵‖(entropy)是德国物理学家克劳修斯(Rudolf Clausius, 1822 – 1888)在1850年创造的一个术语,他用它来表示任何一种能量在空间中分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量完全均匀地分布,那么,这个系统的熵就达到最大值。

在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。如果把两个水库连接起来,并且其中一个水库的水平面高于另一个水库,那么,万有引力就会使一个水库的水面降低,而使另一个水面升高,直到两个水库的水面均等,而势能也取平为止。

因此,克劳修斯说,自然界中的一个普遍规律是:能量密度的差异倾向于变成均等。换句话说,―熵将随着时间而增大‖。

对于能量从密度较高的地方向密度较低的地方流动的研究,过去主要是对于热这种能量形态进行的。因此,关于能量流动和功--能转换的科学就被称为―热力学‖,这是从希腊文―热运动‖一词变来的。

人们早已断定,能量既不能创造,也不能消灭。这是一条最基本的定律;所以人们把它称为―热力学第一定律‖。

克劳修斯所提出的熵随时间而增大的说法,看来差不多也是非常基本的一条普遍规律,所以它被称为―热力学第二定律‖。

描述热力学系统的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为热力学第二定律提供了定量表述。

为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意循环过程都都适用的一个公式,式中Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的表明存在着一个态函数熵,可定义为另一式(参见相关著述)。

对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。

能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。

从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。

产生这种现象的原因也很简单,既自然界通向无序的方法远多于通向有序的方法,打个比方,让一群学生在操场上站好队,需要一些手段,但要他们在操场上乱跑,就很简单了。

信息论中的熵:信息的度量单位。信息论的创始人Shannon在其著作《通信的数学理论》中提出了建立在概率统计模型上的信息度量。他把信息定义为―用来消除不确定性的东西‖。

Shannon公式:I(A)=-logP(A)

I(A)度量事件A发生所提供的信息量,称之为事件A的自信息,P(A)为事件A发生的概率。如果一个随机试验有N个可能的结果或一个随机消息有N个可能值,若它们出现的概率分别为p1,p2,…,pN,则这些事件的自信息的平均值:

H=-SUM(pi*log(pi)),i=1,2…N。H称为熵。

在信息论中,熵可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。

在物理学中,玻尔兹曼说:―当能量被减少时,原子就呈现为一种更无序的状态。‖熵是对无序的一种度量:那是一个意义深远的概念,该概念就来源于玻尔兹曼的新的解释。另人吃惊的是,可制作一种度量无序的方法,那就是特殊状态的概率——在次被定义为原子聚集方式的数量。他十分精确的表示为:

S=KlogW

S是熵,它与给定状态的概率W的对数值成正比,K是比例常数,现在称为玻尔兹曼常数。

如果不是玻尔兹曼,我们的进步将会倒退几十年,也许一百年。

他那不朽的公式S=KlogW刻在他的墓碑上。

熵最早是热力学上的一个符号,表达的是某一系统内部热量平均化的程度。而后,这个概念被许多其他学科借用,引伸出更多的概念。但是不管在学科间如何变化,其表达的概念总是一个,就是,系统内部物质分布平均化程度。熵如今已经成为一个广义化的概念而非物理学独有的了。

熵是一个物理概念,以日常语言来说,往往就是失序.但熵与常识中的失序有很大的不同热力学第二定律说的是,封闭系统的熵,总植无法降低.所谓封闭系统就是,就是质与能都无法自由进出的系统.

电子焓熵图中符号及单位

电子焓熵图中符号及单位 整理路学军 计算时减去熵值 压力:符号P. 单位MPa. 温度:符号t. 单位℃ 过热蒸汽区 比容符号υ 单位m3/kg 焓(比焓)符号h单位kj/kg. 比熵符号S. 单位kj/kg.K 饱和状态(蒸汽,水) 压力符号Ps 单位MPa 饱和温度(饱和水=饱和蒸汽)符号t s单位℃ 比容υ1饱和水单位m3/kg 比容υ11饱和蒸汽单位m3/kg 比焓符号h1饱和水单位kj/kg 比焓符号h11饱和蒸汽单位kj/kg 汽化潜热符号г 单位kj/kg 饱和水的比熵S1单位kj/kg.k 饱和蒸汽的比熵S11单位kj/kg.k 注:过冷水(未饱和水)的焓熵在过热蒸汽区 《发电厂热力设备》中的纸质焓熵图 流动速度V换算成为焓差V单位为m/S △h单位为j/kg时用式V=√2△h 如取值计算中V单位为m/S,△h单位为kj/kg,侧V=44.72√△h 等压热Qp及热焓H(推导过程)《物理、化学》54页 Qp=△H=△U+p△υ=(U2+p2υ2)(U1+p1υ1) H=m Cp T 其中Cp为等压比热单位kj/kg.K H≡U+pυH为技术功U为内能(物质温度的热能)pυ为膨胀功(工质的流动能,产生位移,具有压力势能)膨胀功产生位移的推动功 能量传递 做功→△w=p △υ(比容)传热→△q=T △S(比熵) dq R(功)=T ds(熵)绝热过程本式都为零 熵是体系混乱程度的量度。没有熵就没有热功的传递和转换 H=ST(绝热熵)+F(功函)+pυ(膨胀功) H=ST(绝热熵)+G(自由能) 功函的定义F≡U-TS(热温熵) 自由能的定义G=U+pυ-TS(热温熵) 功函、自由能具有方向和限度(矢量) 功函是电子要脱离原子,必须从费米能级跃进到真空静止电子(自由电子)能级这一跃进所需要的能量,叫功函。这一定义和电子的逸出功一样,只是从不同的角度讲的而已。 焓= +?(自己认为)

焓和熵的由来

焓和熵的由来 熵S:物理学上指热能除以温度所得的商,标志热量转化为功的程度。熵的单位就是焦耳每开尔文,即J/K。熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不变)热力学能与动能、势能一样,是物体的一个状态量。能量可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作“熵”(entropy)。 在作理论分析时,有时用熵的概念比较方便。在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。

例如,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,要将它们分离则必须消耗功。混合前后虽然温度、压力不变,但是两种状态是不同的,单用温度与压力不能说明它的状态。两个温度不同的物体相互接触时,高温物体会自发地将热传给低温物体,最后两个物体温度达到相等。但是,相反的过程不会自发地发生。上述现象说明,自然界发生的一些过程是有一定的方向性的,这种过程叫不可逆过程。过程前后的两个状态是不等价的。用什么物理量来度量这种不等价性呢?通过研究,找到了“熵”这个物理量。有些过程在理想情况下有可能是可逆的,例如气缸中气体膨胀时举起一个重物做了功,当重物下落时有可能将气体又压缩到原先的状态。根据熵的定义,熵在一个可逆绝热过程的前后是不变的。而对于不可逆的绝热过程,则过程朝熵增大的方向进行。或者说,熵这个物理量可以表示过程的方向性,自然界自发进行的过程总是朝着总熵增加的方向进行,理想的可逆过程总熵保持不变。对上述的两个不可逆过程,它们的终态的熵值必大于初态的熵值。 在制氧机中常遇到的节流阀的节流膨胀过程和膨胀机的膨胀过程均可近似地看成是绝热过程。二者膨胀后压力均降低。但是,前者是不可逆的绝热膨胀,膨胀前后熵值肯定增大。后者在理想情况下膨胀对外作出的功可以等于压缩消耗的功,是可逆绝热膨胀过程,膨胀前后熵值不变,叫等熵膨胀。实际的膨胀机膨胀会有损失,也是不可逆过程,熵也增大。但是,它的不可逆程度比节流过程小,增加的熵值也小。因此,熵的增加值反映了这个绝热过程不可逆程度的大小。

水蒸汽的焓熵图

水蒸汽的焓熵图 水蒸汽的焓熵图如下图所示。图中饱和水线x=1的上方为过热蒸汽区;c-d线为干饱和蒸汽线,在a-c-d线下面为湿蒸汽区,c-d线的上方为过热蒸汽区。h-s图中还绘制了等压线、等温线、等干度线和等容线。在湿蒸汽区,等压线与等温线重合,而且是一组斜率不同的直线。在过热蒸汽区,等压线与等温线分开,等压线为向上倾斜的曲线,而等温线是弯曲而后趋于平坦。此外,在h-s图上还有等容线(图中未画出),在湿蒸汽区中还有等干度线。由于等容线与等压线在延伸方向上有些近似(但更陡些),为了便于区别,在通常的焓熵图中,常将等容线印成红线或虚线。 水蒸汽的h-s图 由于工程上用到的蒸汽,常常是过热蒸汽或干度大于50%的湿蒸汽,故h-s 图的实用部分仅是它的右上角。工程上实用的h-s图,即是将这部分放大而绘制的。 水和水蒸汽性质计算机程序简介 目前大多数水和水蒸汽热力性质的计算软件均采用第六届国际水蒸汽性质会议上成立的国际公式化委员会提出的一套水和水蒸汽热力性质的公式。这套公式的适用范围:温度从273.16K到1073.15K,压力从理想气体极限值 (p=0)到100MPa。可以预计,在今后相当长的一段时间里工业上应用的水和水

蒸汽的参数不会超出此一范围。国际公式化委员会拟定的水和水蒸汽热力性质公式简称IFC公式,IFC公式把整个区域分成6个子区域,如图2-10所示。不同的子区域采用不同的计算公式,各区域之间的边界线方程也分别用函数表达。各子区域的计算公式及边界线函数请读者参阅有关文献。 水蒸汽作工质的大量工程应用问题,主要关键是工质初、终态参数的确定。为了能适应各种工程问题热力计算的需要,计算程序都以子程序形式编制,应用时,只要根据不同的已知参数调用相应的子程序,即可确定其他状态参数。如文献[9]提供的“确定水和水蒸汽热力计算的FORTRAN程序”编制了9个子程序,各子程序的输入参数及功能如下: 序号子程序名 功能 已知输入 参数 输出结果参数 函数子程序1 PSK(T)T P 2 TSK(P)P T 子例程子程序3 PTF(P,T,V, H,S) p,t 过冷水、饱和水v,h、s 4 PTG(P,T,V, H,S) p,t 过热蒸汽、饱和蒸汽:v,h、s 5 PT(P,T,X, V,H,S) p,t 过冷水、过热蒸汽:v,h、s 6 PH(P,H,X, T,V,S) p,h 过冷水、饱和水、过热蒸汽、饱和蒸 汽、湿蒸汽:x,t,v,s 7 PS(P,S,X, T,V,H) p,s 过冷水、饱和水、过热蒸汽、饱和蒸 汽、湿蒸汽:x,t,v,h 8 HS(H,S,X, P,T,V) h,s 过热蒸汽、饱和蒸汽、湿蒸汽:x,p、 t,v 9 PX(P,X,T,p,x 饱和水、饱和蒸汽、湿蒸汽:t,v,h、

焓熵的相关概念

焓是物体的一个热力学能状态函数。<br/>在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:<br/>1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。<br/>在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。<br/>既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。<br/>分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。<br/>物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,焓是流动式质的热力学能和流动功之和,也可认为是做功能力。<br/>2、熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不)热力学能与动能、势能一样,是物体的一个状态量。<br/>能可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?<br/>1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。<br/>德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。<br/>1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作“熵”(entropy),entropy一诩源于希腊语,本意是“弄清”或“查明”,但是这与克劳修斯所谈话的内容似乎没有什么联系。热力学第二定律宣布宇宙的熵永远在增加着。<br/>然而,随着类星体以及宇宙中其他神秘能源的发现,天文学家们现在已经在怀疑:热力学第二定律是否果真在任何地方任何条件下都成立<br/>熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。<br/>&nbsp;&nbsp;&nbsp;&nbsp;在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例如,如图4a所示,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,

关于焓和熵的概念

关于焓和熵的概念 熵和焓的概念 (2008-11-22 15:23:21) 转载 标签: 杂谈 解释1、焓是物体的一个热力学能状态函数。在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,

锅炉水蒸气的焓熵图及其使用说明

锅炉水蒸气的焓熵图及其使用说明本节概要 水蒸气不能作为理想气体处理~对蒸气热力性质的研究~包括状态方程式、比热容、热力学能、焓和熵等参数目前还难以用纯理论方法或纯实验方法得出能直接用于工程计算的准确而实用的方程。现多采用以实验为基础~以热力学一般关系式为工具的理论分析和实验相结合的方法~得出相关方程。这些方程依然十分复杂~仅宜于用计算机计算。为方便一般工程应用~由专门工作者编制出常用蒸气的热力性质表和图~供工程计算时查用。 本节介绍了由我国学者编撰的水和水蒸气热力性质表和h-s图及确定水和水蒸气热力性质的计算程序~考虑到我国的国情两者不应偏废。 本节内容 2.8.1 国际水蒸气骨架表和IFC公式 2.8.2 水蒸气表 2.8.3 水蒸气的焓熵图 2.8.4 水和水蒸气性质计算机程序简介 2.8.5 例题 本节习题 2-13、2-14 水蒸气的焓熵图 利用水蒸气表确定水蒸气状态参数的优点是数值的准确度高~但由于水蒸气表上所给出的数据是不连续的~在遇到间隔中的状态时~需要用内插法求得~甚为不便。另外~当已知状态参数不是压力或温度~或分析过程中遇到跨越两相的状态时~使用水蒸气表尤其感到不便。为了使用上的便利~工程上根据蒸汽表上已列出的

各种数值~用不同的热力参数坐标制成各种水蒸气线图~以方便工程上的计算。除了前已述及的p-v图与T-s图以外~热工上使用较广的还有一种以焓为纵坐标、以熵为横坐标的焓熵图,即h-s图,。水蒸气的焓熵图如图2-9所示。图中饱和水线x =1的上方为过热蒸汽区,下方为湿蒸汽区。h-s图中还绘制了等压线、等温线、等干度线和等容线。在湿蒸汽区~等压线与等温线重合~是一组斜率不同的直线。在过热蒸汽区~等压线与等温线分开~等压线为向上倾斜的曲线~而等温线是弯曲而后趋于平坦。此外~在h-s图上还有等容线,图2-9中未画出,~在湿蒸汽区中还有等干度线。由于等容线与等压线在延伸方向上有些近似,但更陡些,~为了便于区别~在通常的焓熵图中~常将等容线印成红线或虚线。 图2-9水蒸气的h-s图

焓&熵

焓enthalpy 为了引出焓这个概念,我们先讨论恒容和恒压过程的热效应。 对于一个封闭体系,△U=Q-W,封闭体系,恒容变化(不做体积功),且不做非体积功时,△U=Q,即封闭系、恒容、W'=0时,△U=Q v(Q v为恒容热效应),dU=δQ v。 上式是热力学中常用的一个公式,使用此公式时,一定要满足前面的条件,请大家注意,在热力学中用公式必须满足条件。 在化学中,我们更关心恒压过程,因为化学效应一般是在恒压条件下进行的。 封闭体系、恒压时,△U=Q p-W,若W'=0,则Q p=△U+W=△U+P e△V=U2-U1+ (P e V2-P e V1),因恒压P e=P1=P2,则Q p=(U2+P2V2)-(U1+P1V1),为了数学表达的方便,引进一个物理量,焓:H=U+PV,这里要说明一下,焓在这里无明确的物理意义,可以理解为,为了表达方便,专门设为一个符号,H即U+PV,之所以要提出焓这一物理量,是因为U+PV经常会用到,所以专门用一个符号来代替它。则上式 Qp=H2-H1=△H。 ∴封闭体系、恒压、W'=0时, Qp=△H,dH=δQ p。 这里要特别说明的是,H是状态系数,因为U、P、V都是状态系数,状态确定,U、P、V都是一定值,当然H也是确定值,也就是说从始态→终态,所有途径的△H都是的一样的,也就是说,在计算△H时,可以设计一条方便计算得途径。 焓是热力学的基本概念之一,以后经常要用到。总的来说,封闭体系不做非体积功时的过程,内能变化可以通过测定恒容热效应来求,焓变可以通过测恒压热效应求得。 焓 焓(enthalpy),符号H,是一个系统的热力学参数。 物理意义:⑴H=U+pV 焓=流动内能+推动功 ⑵焓表示流动工质所具有的能量中,取决于热力状态的那部分能量 定义一个系统内: H = U + pV 式子中"H"为焓,U为系统内能,p为其压强,V则为体积。 对于在大气内进行的化学反应,压强一般保持常值,则有 ΔH = ΔU + pΔV 规定放热反应的焓取负值。如:

熵焓自由能

熵、焓、自由能 熵 . 熵:热量与温度之商乘坐熵,记作S。 S = Q / T . 熵变; 熵的变化量称为熵变,记作ΔS ΔS = ΔQ / T . Q 为系统吸收的热量,T为系统的温度。 熵变等于系统从热源吸收的热量与系统的热力学温度之比,可用于度量热量转变 为功的程度。 熵表示热量转化为功的程度,也表示系统中的无序程度, 1、熵越大,其做功能力下降,无序程度增加。 2、熵是表示物质系统状态的一个物理量,它表示该状态可能出现的程度。、 3、孤 立体系(即绝热体系)中实际发生的过程必然要使它的熵增加。 4、对于纯物质的晶体,在热力学零度时,熵为零. :有两种表述形式。 表述1:不可能用有限个手段和程序使一个物体冷却到绝对温度零度。表述2: 一切纯物质的晶体,在热力学零度时,熵为零。 标准熵:1 mol物质在下所计算出的熵值,称标准摩尔熵,简称标准熵。用ST q 表示,单位:J·mol-1 ·K-1 熵的规律:

(1) 同一物质,气态熵大于液态熵,液态熵大于固态熵; ST q(g) > ST q(l) > ST q(s) S q H2O (g) > H2O (l) > H2O (s) (2) 相同组成的分子中,分子中原子数目越多,熵值越大; S q O2 (g) < S q O3 (g) S q NO (g) < S q NO2 (g) < S q N2O4 (g) S q CH2=CH2 (g) < S q CH3-CH3 (g) (3) 相同元素的原子组成的分子中,分子量越大,熵值越大; S q CH3Cl(g) < S q CH2Cl2 (g) < S q CHCl3(g) (4) 同一类物质,越大,结构越复杂,熵值越大; S qCuSO4(s) < S qCuSO4·H2O(s) < SqCuSO4·3H2O(s) < SqCuSO4·5H2O (s) S qF2(g) < S qCl2(g) < S qBr2(g) < SqI2 (g) (5) 固体或液体溶于水时,熵值增大,气体溶于水时,熵值减少。 反应熵变的计算公式 一般地,对于标准状态下的反应:m A + n B =x C + y D 熵变 =(x × C 的标准熵 + y × D的标准熵)-(m × A的标准熵 + n × B的标准熵) = [x Sq,C + y Sq,D] – [m Sq,A + n Sq,B] 热力学第二定律: 孤立体系(即绝热体系)的自发过程是体系熵增加的过程,即:

熵和焓的理解

熵 entropy 描述的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为提供了定量表述。 为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有,式中 Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的表明存在着一个态函数熵,定义为 对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。 能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。 从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。 在信息论中,熵可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。 注:熵的增加系统从几率小的状态向几率大的状态演变,也就是从有规则、有秩序的状态向更无,更无秩序的演变。 焓 enthalpy

熵和焓的理解

熵 entropy 描述热力学系统的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为热力学第二定律提供了定量表述。 为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有Image:熵1.jpg,式中Image:熵2.jpg Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的Image:熵3.jpg表明存在着一个态函数熵,定义为 Image:熵4.jpg 对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。 能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。 从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。 在信息论中,熵可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。 注:熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。 焓 enthalpy 热力学中表征物质系统能量的一个重要状态参量,常用符号H表示。对一定质量的物质,焓定义为H=U+pV,式中U为物质的内能,p为压力,V为体积。单位质量物质的焓称为比焓,表示为h=u+p/ρ,u为单位质量物质的内能(称为比内能),ρ为密度,1/ρ为单位质量物质的体积。焓具有能量的量纲。一定质量的物质按定压可逆过程由一种状态变为另一种状态,焓的增量便等于在此过程中吸入的热量。

焓和熵的介绍

焓(enthalpy),符号H,是一个系统的热力学参数。定义一个系统内: H = U + pV 式子中"H"为焓,U为系统内能,p为其压强,V则为体积。焓不是能量,仅具有能量的量纲,它没有明确的物理意义。焓有下述一些特性: 焓的绝对值无法求得,使用配分函数求出的焓值也不是绝对值。焓是系统的容量性质,与系统内物质的数量成正比。焓是一个状态函数,也就是说,系统的状态一定,焓是值就定了。 单位质量的物质所含有的热量叫作焓. "系统的状态一定,焓值也确定了。" 焓是代表流动工质沿着流动方向往前方传递的总能量(内能、推动功、动能、势能)中,直接取决于热力状态的那部分能量。举例:单位时间内锅炉主蒸汽的热焓-(锅炉给水的热焓+排污水的热焓)/单位时间内进炉煤的低位发热值,就是锅炉的效率啊。引用焓的概念,可使热工计算大为简单,对借助于图解法来研究工质的热力过程更为方便。熵的说明:热量是工质与外界存在温差时所传递的能量,则温度T是传热的推动力,只要工质与外界有微小的温差就能传热,于是相应地也应有某一状态参数的变化来标志有无传热,这个状态参数定名为熵。根据熵的变化,可以判断工质在可逆过程中是吸热、放热,还是绝热。熵的更重要的作用是用以恒量过程的不可逆程度。如:蒸汽经过节流孔板,喷嘴等处可以理 解为等熵绝热过程的。 焓是单位物质所含能量的多少!汽轮机中就是一个焓降的过程,焓降的过程就是对外做功的过程!实际上,哪怕效率非常高的机组,焓降也不会很高,我们为什么不能让焓降更大呢?这就引出了熵,霍金语:“熵是一种新的世界观” 熵的多少代表了我们利用这些能量所需要付出代价的多少。焓降的过程伴随着熵增,当焓降到一定程度,熵会增到一定程度,也就说我们利用这些能所需要的代价越来越高,熵增到一定程度,需要付出的代价已经不划算利用这些能源了!熵是一种代价,它决定了我们不能靠能量守恒定律而尽情挥霍能源。举例,同样参数的汽轮机,背压机组能发电20-30MW,凝气机组能发电100MW,因为我们建立了真 空,付出了循环水的“代价” 熵描述热力学系统的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为热力学第二定律提供了定量表述。用符号“S”表示,单位为:j/K 焓(enthalpy),符号H,是一个系统的热力学参数。物理意义:⑴H=U+pV 焓=流动内能+推动功⑵焓表示流动工质所具有的能量中,取决于热力状态的那部分能量定义一个系统内: H = U + pV 式子中"H"为焓,U为系统内能,p为其压强,V则为体积。对于在大气内进行的化学反应,压强一般保持常值,则有ΔH = ΔU + pΔV 规定放热反应的焓取负值。如: SO3(g)+H2O(l)==H2SO4(l);ΔH= -130.3 kJ/mol 表示每生成1 mol H2SO4 放出 130.3 kJ 的热。严格的标准热化学方程式格式: H2(g)+1/2O2(g)==H2O(l) ΔrHθm=-286kJ·mol-1 (θ表示标准态,r 表示反应,m表示1mol反应.含义为标准态下进行一摩尔反应的焓变) 熵熵 shāng entropy 物理意义:物质微观热运动时,混乱程度的标志。热力学中表征物质状态的参量之一,通常用符号S表示。在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量;下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。单位质量物质的熵称为比熵,记为s。熵最初是根据热力学

焓和熵,你必须掌握的知识学习资料

焓和熵, 你必须 掌握的 知识

焓和熵,你必须掌握的知识 焓h印 英语为:enthalpy 在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律: 1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。 在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。 既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义, 宏观:表示物体的冷热程度)o

分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0 使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0 时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。 物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能。热力学能与动能、势能一样,是物体的一个状态量。 初中我们学过,改变物体内能的方式有两个:做功和热传递。一个物体,如果它跟外界不发生热交换,也就是它既没有吸收热量也没有放出热量,则外界对其做功等于其热力学能的增量: AJ仁W 如果物体对外界做功,则W为负值,热力学能增加量△ U1也为负值,表示热力学能减少。 如果外界既没有对物体做功,物体也没有对外界做功,那么物体吸收的热量等于其热力学能的增量: AJ2=Q 如果物体放热,则Q为负值,热力学能增加量△ U2也为负值,表示热力学能减少。 一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么物体热力学能的增量等于外界对物体做功加上物体从外界吸收的热量,即: AJ= AJ1+ AJ2=Q+W 因为热力学能U 是状态量,所以: AJ= AJ末态-A U初态=Q+W 上式即热力学第一定律的表达式。

关于焓和熵的概念

熵和焓的概念 (2008-11-22 15:23:21) 转载 标签: 杂谈 解释 1、焓是物体的一个热力学能状态函数。在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律: 1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有

焓和熵,你必须掌握的知识

焓和熵,你必须掌握的知识 焓hán 英语为:enthalpy 在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律: 1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。 在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。 既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。 分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。 物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能。热力学能与动能、势能一样,是物体的一个状态量。 初中我们学过,改变物体内能的方式有两个:做功和热传递。 一个物体,如果它跟外界不发生热交换,也就是它既没有吸收热量也没有放出热量,则外界对其做功等于其热力学能的增量: ΔU1=W 如果物体对外界做功,则W为负值,热力学能增加量ΔU1也为负值,表示热力学能减少。 如果外界既没有对物体做功,物体也没有对外界做功,那么物体吸收的热量等于其热力学能的增量: ΔU2=Q 如果物体放热,则Q为负值,热力学能增加量ΔU2也为负值,表示热力学能减少。 一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么物体热力学能的增量等于外界对物体做功加上物体从外界吸收的热量,即: ΔU=ΔU1+ΔU2=Q+W 因为热力学能U是状态量,所以: ΔU=ΔU末态-ΔU初态=Q+W 上式即热力学第一定律的表达式。 化学反应都是在一定条件下进行的,其中以恒容与恒压最为普遍和重要。 在密闭容器内的化学反应就是恒容过程。因为系统体积不变,而且只做体积功(即通过

焓和熵,你必须掌握的知识学习资料

焓和熵,你必须掌握的 知识

焓和熵,你必须掌握的知识 焓hán 英语为:enthalpy 在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律: 1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。 在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。 既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。

分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。 物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能。热力学能与动能、势能一样,是物体的一个状态量。 初中我们学过,改变物体内能的方式有两个:做功和热传递。 一个物体,如果它跟外界不发生热交换,也就是它既没有吸收热量也没有放出热量,则外界对其做功等于其热力学能的增量: ΔU1=W 如果物体对外界做功,则W为负值,热力学能增加量ΔU1也为负值,表示热力学能减少。 如果外界既没有对物体做功,物体也没有对外界做功,那么物体吸收的热量等于其热力学能的增量: ΔU2=Q 如果物体放热,则Q为负值,热力学能增加量ΔU2也为负值,表示热力学能减少。 一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么物体热力学能的增量等于外界对物体做功加上物体从外界吸收的热量,即:

关于焓和熵的理解

关于焓和熵的理解 熵:物理学上指热能除以温度所得的商,标志热量转化为功的程度。表示物质系统状态的一个物理量(记为S),它表示该状态可能出现的程度。在热力学中,是用以说明热学过程不可逆性的一个比较抽象的物理量。孤立体系中实际发生的过程必然要使它的熵增加。熵的单位就是焦耳每开尔文,即J/K。熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不)热力学能与动能、势能一样,是物体的一个状态量。能可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作“熵”(entropy),entropy一诩源于希腊

语,本意是“弄清”或“查明”,但是这与克劳修斯所谈话的内容似乎没有什么联系。热力学第二定律宣布宇宙的熵永远在增加着。然而,随着类星体以及宇宙中其他神秘能源的发现,天文学家们现在已经在怀疑:热力学第二定律是否果真在任何地方任何条件下都成立熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例如,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,要将它们分离则必须消耗功。混合前后虽然温度、压力不变,但是两种状态是不同的,单用温度与压力不能说明它的状态。两个温度不同的物体相互接触时,高温物体会自发地将热传给低温物体,最后两个物体温度达到相等。但是,相反的过程不会自发地发生。上述现象说明,自然界发生的一些过程是有一定的方向性的,这种过程叫不可逆过程。过程前后的两个状态是不等价的。用什么物理量来度量这种不等价性呢?通过研究,找到了“熵”这个物理量。有些过程在理想情况下有可能是可逆的,例如气缸中气体膨胀时举起一个重物做了功,当重物下落时有可能将气体又压缩到原先的状态。根据熵的定义,熵在一个可逆绝热过程的前后是不变的。而对于不可逆的绝热过程,则过程朝熵增大的方向进行。或者说,熵这个物理量可以表示过程的方向性,自然界自发进行的过程总是朝着总熵增加的方向进行,理想的可逆过程总熵保持不变。对上述的两个不可逆过程,

相关主题
文本预览
相关文档 最新文档