当前位置:文档之家› 中衡V带传动电算哈工大机械【设计明细】

中衡V带传动电算哈工大机械【设计明细】

中衡V带传动电算哈工大机械【设计明细】
中衡V带传动电算哈工大机械【设计明细】

Harbin Institute of Technology

大作业设计说明书

课程名称:机械设计

设计题目:V带传动电算

院系:机电学院

班级:1208106

设计者:张文奇

学号:1120810610

指导老师:张锋

设计时间:2014.10.24

哈尔滨工业大学

目录

一、普通V带传动的内容和任务..............................

二、变量标识符 ...........................................

三、程序框图 .............................................

四、V带设计程序...........................................

五、程序运行截图..........................................

六、设计总结..............................................

七、参考文献..............................................

一、普通V带传动的内容和任务

1、普通V带传动设计内容:

给定原始数据:传递的功率P,小带轮转速 n1 传动比i及工作条件

设计内容:带型号,基准长度Ld,根数Z,传动中心距a,带轮基准直径dd1、dd2,带轮轮缘宽度B,初拉力F0和压轴力Q

2、CAD任务:

①编制V带传动设计程序框图;

②编制V带传动设计源程序;

③按习题或作业中数据运行程序,要求对每一组数据各按三种V带型号计算,对每一种带型号选三种小带轮直径进行计算并输出所有结果;

④比较结果,从9种方案中选择一个最佳方案并按照此方案提供的几何和结构参数利用AutoCAD软件绘制大带轮零件工作图。

3、设计思路

输入原始数据:P,n1,i ,包括已给定和人为假定的数据。人为给定的一些条件代号,如Z、A、B、C、D、E六种带型号可使用变量TYPE来表示,TYPE=1—6分别对应六种型号。然后通过编程计算得出其余参数的标识符及合理数值。

二、变量标识符

为了使程序具有较好的可读性易用性,应采用统一的变量标识符,如表1所示。表1变量标识符表

表1 变量标识符表

三、程序框图

四、V带设计程序

#include

#include

#include

#define PAI 3.14

int TYPE_TO_NUM(char type);

float Select_Ki(float i);

float Select_KA(float H,int GZJ,int YDJ);

float Select_KL(float Ld,int TYPE);

float Select_M(int TYPE);

float Select_dd1(int TYPE);

float Select_dd2(int dd1,float i);

float Compute_P0(float V,int TYPE,float dd1);

float Compute_DIFP0(int TYPE,float Ki,int n1);

float Compute_VMAX(int TYPE);

float Compute_KALF(float ALF1);

float Compute_B(int TYPE,int z);

float* Compute_LAK(float dd1,float dd2,int TYPE);

main()

{

float P,H,i,n1,KA,Ki,dd1,dd2,V,P0,DIFP0,Pd,VMAX,*LAK,m,Ld,KALF,a,KL,z,F0,ALF1,Q,B;

int YDJ,GZJ,TYPE,ANS;

char type,ans;

START: printf(" 欢迎使用普通V带传动设计电算软件\n");

printf(" 机械设计电算\n 张文奇1120810610 \n

V带传动设计程序\n");

printf("\n");

printf(" 请输入各项原始参数\n");

printf("1.传递功率P(单位KW):");

printf("\n");

scanf("%f",&P);

IF5: if(P>10)

{

printf("警告:传递功率过大,请重新输入\n");

printf("1.传递功率P(单位KW):");

printf("\n");

scanf("%f",&P);

goto IF5;

}

printf("\n");

printf("2.小带轮转速n1(单位r/min):");

printf("\n");

scanf("%f",&n1);

IF4: if(n1>10000)

{

printf("警告:输入转速达到高速带传动,请降低转速并重新输入\n");

printf("2.小带轮转速n1(单位r/min):");

printf("\n");

scanf("%f",&n1);

goto IF4;

}

printf("\n");

printf("3.传动比i:");

printf("\n");

scanf("%f",&i);

IF6: if(i>4)

{

printf("警告:输入传动比过高,请重新输入\n");

printf("3.传动比i:");

printf("\n");

scanf("%f",&i);

goto IF6;

}

printf("\n");

printf("4.原动机类型(I(1)或II(2)):\n说明:I类-普通鼠笼式电机、同步电机、直流电机(并激),n>600r/min内燃机\n II类-交流电动机、直流电动机、单缸发动机、n<600r/min 内燃机\n");

scanf("%d",&YDJ);

IF1: if(YDJ!=2 && YDJ!=1)

{

printf("输入错误!请重新输入!\n");

printf("4.原动机类型(I(1)或II(2)):\n说明:I类-普通鼠笼式电机、同步电机、直流电机(并激),n>600r/min内燃机\n II类-交流电动机、直流电动机、单缸发动机、n<600r/min内燃机\n");

scanf("%d",&YDJ);

goto IF1;

}

printf("\n");

printf("5.载荷类型:\n0:载荷平稳\n1:载荷变动较小\n2:载荷变动较大\n3:载荷变动很大\n");

scanf("%d",&GZJ);

IF2: if(GZJ!=0 && GZJ!=1 && GZJ!=2 && GZJ!=3)

{

printf("输入错误!请重新输入!\n");

printf("5.载荷类型:\n0:载荷平稳\n1:载荷变动较小\n2:载荷变动较大\n3:载荷变动很大\n");

scanf("%d",&GZJ);

goto IF2;

}

printf("\n");

printf("6.每天的工作时间:\n0:<10h(一班制)\n1:10h~16h(两班制)\n2:>16h(三班制)\n");

scanf("%f",&H);

IF3: if(H!=0 && H!=1 && H!=2)

{

printf("输入错误!请重新输入!\n");

printf("6.每天的工作时间:\n0:<10h(一班制)\n1:10h~16h(两班制)\n2:>16h(三班制)\n");

scanf("%f",&H);

goto IF3;

}

printf("\n");

DX: printf("7.请选择V带带型(Z、A、B、C、D、E):\n");

scanf(" %c",&type);

TYPE=TYPE_TO_NUM(type);

KA= Select_KA(H,GZJ,YDJ);

Pd=KA*P;

VMAX=Compute_VMAX(TYPE);

DD1:dd1=Select_dd1(TYPE);

V=PAI*dd1*n1/60000;

while(V>VMAX)

{

printf("\n");

printf("警告:所选小轮基准直径过小!请重新选择!\n");

dd1=Select_dd1(TYPE);

V=PAI*dd1*n1/60000;

}

dd2=Select_dd2(dd1,i);

P0=Compute_P0(V,TYPE,dd1);

Ki=Select_Ki(i);

DIFP0=Compute_DIFP0(TYPE,Ki,n1);

LAK=Compute_LAK(dd1,dd2,TYPE);

Ld=LAK[0];

a=LAK[1];

KL=LAK[2];

ALF1=180-57.3*(dd2-dd1)/a;

KALF=Compute_KALF(ALF1);

z=ceil(Pd/(KALF*KL*(P0+DIFP0)));

if(z>=10)

goto DX;

m=Select_M(TYPE);

F0=500*Pd*(2.5-KALF)/(z*V*KALF)+m*V*V;

Q=2*z*F0*sin(ALF1*PAI/360);

B= Compute_B(TYPE,z);

printf("\n");

printf(" 计算结果\n");

printf("\n");

printf("小轮直径:%f mm\n\n大轮直径:%f mm\n\n中心距:%f mm\n\n带长:%f mm\n\n带宽:%f mm\n\n带的根数:%f\n\n初拉力:%f N\n\n轴压力:%f N\n\n",dd1,dd2,a,Ld,B,z,F0,Q);

printf("\n");

X: printf("请选择:\nY:计算下一组带轮\nS:重新开始\nN:结束\n");

scanf(" %c",&ans);

ANS=TYPE_TO_NUM(ans);

if(ANS==6)

goto DD1;

else if(ANS==7)

goto START;

else if(ANS==8)

printf("程序结束");

else

{

printf("输入错误,请重新输入");

goto X;

}

}

/*工作情况系数选择*/

float Select_KA(float H,int GZJ,int YDJ)

{

/*表5.7工作情况系数KA*/

float ka1[4][3]={{1.0,1.1,1.2},{1.1,1.2,1.3},{1.2,1.3,1.4},{1.3,1.4,1.5}};

float ka2[4][3]={{1.1,1.2,1.3},{1.2,1.3,1.4},{1.4,1.5,1.6},{1.5,1.6,1.8}};

float KA;

if(YDJ==1)

{

if(H==0)

KA=ka1[GZJ][0];

else if(H==2)

KA=ka1[GZJ][2];

else

KA=ka1[GZJ][1];

}

if(YDJ==2)

{

if(H==0)

KA=ka2[GZJ][0];

else if(H==2)

KA=ka2[GZJ][2];

else

KA=ka2[GZJ][1];

}

return KA;

}

/*传动比系数*/

float Select_Ki(float i)

{

float m;

/*表5.6传动比系数Ki*/

float Ki[10]={1.0000,1.0136,1.0276,1.0419,1.0567,1.0719,1.0875,1.1036,1.1202,1.1373};

float I[10]={1.00,1.02,1.05,1.09,1.13,1.19,1.25,1.35,1.52,2.00};

int j=9;

for(j=9;j>=0;j--)

{

m=i-I[j];

if(m>=0)

break;

}

return Ki[j];

}

/*确定选择带型*/

int TYPE_TO_NUM(char type)

{

int x;

if(type<91)

{

type+=32;

}

switch(type)

{

case 'z':

x=0;

break;

case 'a':

x=1;

break;

case 'b':

x=2;

break;

case 'c':

x=3;

break;

case 'd':

x=4;

break;

case 'e':

x=5;

break;

case 'y':

x=6;

break;

case 's':

x=7;

break;

case 'n':

x=8;

break;

}

return x;

}

/*计算额定功率*/

float Compute_P0(float V,int TYPE,float dd1)

{

float P0;

float K1[6]={0.246,0.449,0.794,1.48,3.15,4.57};

float K2[6]={7.44,19.02,50.6,143.2,507.3,951.5};

float K3[6]={0.441e-4,0.765e-4,1.31e-4,2.34e-4,4.77e-4,7.06e-4};

P0=(K1[TYPE]*pow(V,-0.09)-K2[TYPE]/dd1-K3[TYPE]*V*V)*V;

return P0;

}

/*表5.5弯曲影响系数Kb*/

float Compute_DIFP0(int TYPE,float Ki,int n1)

{

float Kb,DIFP0;

float KB[6]={0.2925e-3,0.7725e-3,1.9875e-3,5.625e-3,19.95e-3,37.35e-3};

Kb=KB[TYPE];

DIFP0=Kb*n1*(1-1/Ki);

return DIFP0;

}

/*小带轮基准直径*/

float Select_dd1(int TYPE)

{

int i;

float dd1;

float DD1[6][4]={{50.0,63.0,71.0,80.0},{75.0,90.0,100.0,125.0},{125.0,140.0,160.0,180.0},

{200.0,250.0,315.0,400.0},{355.0,400.0,450.0,500.0},{500.0,560.0,630.0,710.0}};

printf("\n");

printf("所选型号小带轮系列直径有(mm):\n");

for(i=0;i<4;i++)

{

printf("%f ",DD1[TYPE][i]);

}

printf("\n8.请选择输入小带轮基准直径dd1:");

scanf("%f",&dd1);

IF12: i f(dd1!=DD1[TYPE][0] && dd1!=DD1[TYPE][1] && dd1!=DD1[TYPE][2] && dd1!=DD1[TYPE][3])

{

printf("警告:未输入有效数据,请重新输入");

printf("\n8.请选择输入小带轮基准直径dd1:");

scanf("%f",&dd1);

goto IF12;

}

return dd1;

}

/*大带轮基准直径*/

float Select_dd2(int dd1,float i)

{

float DD2[]={50,56,63,71,80,90,100,112,125,140,150,160,180,200,224,

250,280,315,355,400,425,450,500,560,600,630,710,800};

float dd2,temp,t;

int j=0;

temp=i*dd1;

for(j=0;j<28;j++)

{

t=temp-DD2[j];

if(t<=0)

break;

}

if((DD2[j]-temp)<(temp-DD2[j-1]))

dd2=DD2[j];

else

dd2=DD2[j-1];

return dd2;

}

/*估计中心距*/

float* Compute_LAK(float dd1,float dd2,int TYPE)

{

int j=0;

float a1,a2,a0,Ld0,temp,KALF,Ld,a,KL;

float LAK[3];

float kl[23][6]={{400,0.87},{450,0.89},{500,0.91},

{560,0.94},{630,0.96,0.81},{710,0.99,0.83},{800,1.00,0.85,0.82},{900,1.03,0.87,0.84,0.83},{1 000,1.06,0.89,0.86,0.86,0.83},

{1120,1.08,0.91,0.88,0.88,0.86},{1250,1.10,0.93,0.90,0.91,0.89},{1400,1.14,0.96,0.92,0.93,0. 91},{1600,1.16,0.99,0.95,0.95,0.93},

{1800,1.18,1.01,0.98,0.97,0.96},{2000,0,1.03,1.00,0.99,0.98},{2240,0,1.06,1.03,1.02,1.00},{2 500,0,1.09,1.05,1.04,1.03},

{2800,0,1.11,1.07,1.07,1.06},{3150,0,1.13,1.09,1.09,1.08},{3550,0,1.17,1.13,1.12,1.11},{4000 ,0,1.19,1.15,1.15,1.14},{4500,0,0,1.18,1.18,1.17},{5000,0,0,0,1.21,1.20}};

a1=0.7*(dd1+dd2);

a2=2*(dd1+dd2);

printf("\n");

printf("9.请选择输入初估中心距a0(范围为%.2fmm~%.2fmm):",a1,a2);

scanf("%f",&a0);

IF11: i f(a0a2)

{

printf("输入中心距超出范围,请重新输入\n");

printf("9.请选择输入初估中心距a0(范围为%.2fmm~%.2fmm):",a1,a2);

scanf("%f",&a0);

goto IF11;

}

Ld0=2*a0+(dd1+dd2)*PAI/2+(dd2-dd1)*(dd2-dd1)/a0/4;

for(j=0;j<23;j++)

{

temp=Ld0-kl[j][0];

if(temp<=0)

break;

}

if((Ld0-kl[j-1][0])>(kl[j][0]-Ld0))

{ Ld=kl[j][0];

KL=kl[j][TYPE+1];

}

else

{ Ld=kl[j-1][0];

KL=kl[j-1][TYPE+1];

}

a=a0+(Ld-Ld0)/2;

LAK[0]=Ld;

LAK[1]=a;

LAK[2]=KL;

return LAK;

}

/*最大带速*/

float Compute_VMAX(int TYPE)

{

float VMAX;

switch(TYPE)

{

case 0:

case 1:

case 2:

case 3:

VMAX=25;

break;

case 4:

case 5:

VMAX=30;

break;

}

return VMAX;

}

float Select_M(int TYPE)

{

float m;

float M[6]={0.06,0.1,0.17,0.3,0.6,0.9};

m=M[TYPE];

return m;

}

float Compute_B(int TYPE,int z)

{

float f[6]={8,10,12.5,17,23,29};

float e[6]={12,15,19,25.5,37,44.5};

float B;

B=(z-1)*e[TYPE]+2*f[TYPE];

return B;

}

float Compute_KALF(float ALF1)

{

float

kalf[2][14]={220,210,200,190,180,170,160,150,140,130,120,110,100,90,1.20,1.15,1.10,1.05,1.00, 0.98,0.95,0.92,

0.89,0.86,0.82,0.78,0.73,0.68},KALF;

int i;

for(i=0;i<14;i++)

{

if(ALF1kalf[0][i+1])

{

KALF=kalf[1][i]+(kalf[1][i]-kalf[1][i+1])*(ALF1-kalf[0][i])/10;

break;

}

}

return KALF;

}

五、程序运行截图

合理运行结果:

输入中心距350mm,选择小带轮直径75mm,输出结果

六、设计总结

通过这段时间的V带传动设计电算上机,一方面我对V带传动设计过程有了更深的了解,另一方面也让我对程序设计的一般过程与规范以及注意事项有了一定的认识。同时在程序设计的过程中,我对这款软件有了一定的了解,学习了一些基本的应用。通过这次设计,锻炼了我们各方面的能力,使我们受益匪浅!

七、参考文献

【1】宋宝玉王黎钦《机械设计》————高等教育出版社 2010.5

【2】王连明宋宝玉《机械课程设计》——哈尔滨工业大学出版社 2010.1

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:能源学院 班级: 1302402 设计者:黄建青 学号: 1130240222 指导教师:焦映厚陈照波 设计时间: 2015年06月23日

凸轮机构设计说明书 1. 设计题目 设计直动从动件盘形凸轮机构,机构运动简图如图1,机构的原始参数如表1所示。 图1 机构运动简图 表1 凸轮机构原始参数

计算流程框图: 2. 凸轮推杆升程,回程运动方程及推杆位移、速度、加速度线图 2.1 确定凸轮机构推杆升程、回程运动方程 设定角速度为ω=1 rad/s (1) 升程:0°<φ<50° 由公式可得 )]cos(1[20 ?π Φh s -=

)sin( 20 1 ?π ωπΦΦh v = )cos(20 2 2 12?π ωπΦΦh a = (2) 远休止:50°<φ<150° 由公式可得 s = 45 v = 0 a = 0 (3) 回程:150°<φ<240° 由公式得: ()()22 0000200000002200000 0,2(1)(1)1,12(1)(1),2(1)s s s s s s s s s Φhn s h ΦΦΦΦΦΦn Φn ΦΦn h n s h ΦΦΦΦΦΦn Φn n ΦΦΦn hn s ΦΦΦΦΦn Φn ??????'?=---+<≤++?'-? ???''-? =----++ <≤++???'-??? ?'---?'=-++<≤++'-?? 201 00000010002001 000 00n (),(1)(1)n ,(1)(1)n (1),(1)s s s s s s s s Φh v ΦΦΦΦΦΦn Φn ΦΦn h v ΦΦΦΦn Φn n ΦΦΦn h v ΦΦΦΦΦn ΦΦn ω??ω??ω??'=- --+<≤++?'-? ?''-? =- ++<≤++?'-? ?'---'?=--++<≤++''-??

Harbin Institute of Technology 机械原理课程设计说明书 课程名称:机械原理 设计题目:产品包装生产线(方案1) 院系:机电学院 班级: 设计者: 学号: 指导教师: 设计时间:

一、绪论 机械原理课程设计是在我们学习了机械原理之后的实践项目,通过老师和书本的传授,我们了解了机构的结构,掌握了机构的简化方式与运动规律,理论知识需要与实践相结合,这便是课程设计的重要性。我们每个人都需要独立完成一个简单机构的设计,计算各机构的尺寸,同时还需要编写符合规范的设计说明书,正确绘制相关图纸。 通过这个项目,我们应学会如何收集与分析资料,如何正确阅读与书写说明书,如何利用现代化的设备辅助工作。这种真正动手动脑的设计有效的增强我们对该课程的理解与领会,同时培养了我们的创新能力,为以后机械设计课程打下了坚实的基础。 二、设计题目 产品包装生产线使用功能描述 图中所示,输送线1上为小包装产品,其尺寸为长?宽?高=600?200?200,小包装产品送至A处达到2包时,被送到下一个工位进行包装。原动机转速为1430rpm,每分钟向下一工位可以分别输送14,22,30件小包装产品。 产品包装生产线(方案一)功能简图 三、设计机械系统运动循环图 由设计题目可以看出,推动产品在输送线1上运动的是执行构件1,在A处把产品推到下一工位的是执行构件2,这两个执行构件的运动协调关系如图所示。 ?1?1 执行构件一 执行构件二 ?01?02 运动循环图

图中?1 是执行构件1的工作周期,?01 是执行构件2的工作周期,?02是执行构件2的动作周期。因此,执行构件1是做连续往复运动,执行构件2是间歇运动,执行构件2的工作周期?01 是执行构件1的工作周期T1的2倍。执行构件2的动作周期?02则只有执行构件1的工作周期T1的二分之一左右。 四、 设计机械系统运动功能系统图 根据分析,驱动执行构件1工作的执行机构应该具有的运动功能如图所示。运动功能单元把一个连续的单向传动转换为连续的往复运动,主动件每转动一周,从动件(执行构件1)往复运动一次,主动件转速分别为14,22,30rpm 14,22,30rpm 执行机构1的运动功能 由于电动机的转速为1430rpm ,为了在执行机构1的主动件上分别得到14、22、30rpm 的转速,则由电动机到执行机构1之间的总传动比i z 有3种,分别为 i z1= 141430 =102.14 i z2=221430=65.00 i z3=30 1430=47.67 总传动比由定传动比i c 和变传动比i v 两部分构成,即 i z1=i c i v1 i z2=i c i v2 i z3=i c i v3 3种总传动比中i z1最大,i z3最小。由于定传动比i c 是常数,因此,3种变传动比中i v1最大,i v3最小。为满足最大传动比不超过4,选择i v1 =4 。 定传动比为 i c = v1 z1i i =4102.14=25.54 变传动比为 i v2= c z2i i =54.2565=2.55 i v3= c z3i i =54 .2547.67=1.87 传动系统的有级变速功能单元如图所示。 i=4,2.55,1.87 有级变速运动功能单元

班 级 姓 名 题号 一 二 三 四 五 六 七 八 九 十 总分 分数 一、 填空题(共24 分,每空1分) 1)按照两表面间的润滑状况,可将摩擦分为 干摩擦 、 边界摩擦 、 流体摩擦 和 混合摩擦 。 2)当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常装拆时,往往采用螺纹联接中的 螺钉 联接。 3)带传动中,带在带轮上即将打滑而尚未打滑的临界状态下,紧边拉力F 1与松边拉力F 2之间的关系为 112f F F e α=? 。 4)滚动轴承的基本额定寿命L ,是指一批相同的轴承,在相同的条件 下运转,其中 90% 的轴承在疲劳点蚀前所能转过的总转数,单位为106r 。 5)非液体摩擦滑动轴承限制pv 值,主要是为了防止轴瓦 胶合 失效。 6)弹簧指数C= D/d ,C 越大,弹簧刚度越 小 。 7)当机构处于死点位置时,机构的压力角为 90° 。 8)有一紧螺栓连接,已知预紧力'F =1500N ,轴向工作载荷F =1000N ,螺栓的刚度C b =2000N/mm ,被连接件的刚度C m =8000N/mm ,则螺栓所受的总拉力F 0= 1700 N ,剩余预紧力''F = 700 N ,保证结合面不出现缝隙的最大轴向工作载荷F max = 1875 N 。 9)对于软齿面闭式齿轮传动,通常先按 齿面接触疲劳 强度进行设计,然后校核 齿根弯曲疲劳 强度。 10)蜗杆传动的失效形式主要是 齿面点蚀 、 齿面胶合 和 齿面磨损 ,而且失效通常发生在 蜗轮轮齿上 。 哈工大2005 年秋季学期 机械设计基础(80学时)试题答案

11)在凸轮机构的几种基本的从动件运动规律中,等速运动规律使凸轮机构产生刚性冲击,正弦加速度运动规律则没有冲击,等加速等减速、余弦加速度运动规律产生柔性冲击。 二、选择题(共11分,每小题1分) 1)一阀门螺旋弹簧,弹簧丝直径d=2.5mm,因环境条件限制,其弹簧外径D2不得大于17.5mm,则弹簧指数不应超过c) 。 a) 5 ; b) 6.5 ; c) 6 ; d) 7 。 2)平键的剖面尺寸b×h是根据d) 从标准中查取。 a) 传递转矩的大小; b) 载荷特性; c) 键的材料; d) 轴的直径。 3)带传动采用张紧轮的目的是d) 。 a)减轻带的弹性滑动; b) 提高带的寿命; c) 改变带的运动方向; d) 调节带的初拉力。 4)润滑良好的闭式软齿面齿轮传动最常见的失效形式为b) 。 a) 齿面磨损; b) 齿面疲劳点蚀; c) 齿面胶合; d) 齿面塑性变形。 5)在V带传动设计中,取小带轮基准直径d d1≥d dmin,主要是为了考虑 a) 对传动带疲劳强度的影响 a) 弯曲应力; b) 离心拉应力; c) 小带轮包角; d) 初拉力。 6)蜗杆传动中,当其它条件相同时,增加蜗杆的头数,则传动效率 b) 。 a) 降低; b) 提高;c) 不变;d)可能提高,可能降低。 7)工作时只承受弯矩,不传递转矩的轴,称为a) 。 a) 心轴; b) 传动轴; c) 转轴; d) 曲轴。 8)半圆键连接的主要优点是c) 。 a) 对轴的强度削弱较轻; b) 键槽的应力集中较小; c) 适于锥形轴端的连接。

机械设计基础大作业计算说明书 题目:朱自发 学院:航天学院 班号:1418201班 姓名:朱自发 日期:2016.12.05 哈尔滨工业大学

机械设计基础 大作业任务书题目:轴系部件设计 设计原始数据及要求:

目录 1.设计题目 (4) 2.设计原始数据 (4) 3.设计计算说明书 (5) 3.1 轴的结构设计 (5) 3.1.1 轴材料的选取 (5) 3.1.2初步计算轴径 (5) 3.1.3结构设计 (6) 3.2 校核计算 (8) 3.2.1轴的受力分析 (8) 3.2.2校核轴的强度 (10) 3.2.3校核键的强度 (11) 3.2.4校核轴承的寿命 (11) 4. 参考文献 (12)

1.设计题目 斜齿圆柱齿轮减速器轴系部件设计2.设计原始数据

3.设计计算说明书 3.1 轴的结构设计 3.1.1 轴材料的选取 大、小齿轮均选用45号钢,调制处理,采用软齿面,大小齿面硬度为241~286HBW ,平均硬度264HBW ;齿轮为8级精度。 因轴传递功率不大,对重量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。 3.1.2初步计算轴径 按照扭矩初算轴径: 6 3 39.55100.2[]P P n d n τ?≥ =式中: d ——轴的直径,mm ;

τ——轴剖面中最大扭转剪应力,MPa ; P ——轴传递的功率,kW ; n ——轴的转速,r /min ; []τ——许用扭转剪应力,MPa ; C ——由许用扭转剪应力确定的系数; 根据参考文献查得106~97C =,取106C = 故 10635.0mm d ≥== 本方案中,轴颈上有一个键槽,应将轴径增大5%,即 35(15%)36.75mm d ≥?+= 取圆整,38d mm =。 3.1.3结构设计 (1)轴承部件的支承结构形式 减速器的机体采用剖分式结构。轴承部件采用两端固定方式。 (2)轴承润滑方式 螺旋角: 12() arccos =162n m z z a β+= 齿轮线速度: -338310175 2.37/6060cos 60cos16n m zn dn v m s πππ β???==== 因3/v m s <, 故轴承用油润滑。

一、填空题:(每空1分,计32分) 1. 按表面间摩擦状态不同,滑动轴承可分为 液体摩擦 滑动轴承和 非液体摩擦 滑动轴承 2. 普通螺栓连接的凸缘联轴器是通过 摩擦力矩 传递转矩的;铰制孔螺栓连接的凸缘联轴器是通过 剪切与挤压 传递转矩的。 3. 三角形螺纹的牙型角为 60度 ,因其具有较好的 自锁 性能,所以通常用于 连接 。 4. 滑动轴承轴瓦上浇铸轴承衬的目的是 提高轴瓦的减磨耐磨性能 写出一种常用轴承衬材料的名称 轴承合金 。 5. 普通平键的工作面是 两侧面 ,其主要失效形式为 平键被压溃 ,其剖面尺寸b*h 是根据 轴的直径 来选择的。 6. 轮齿折断一般发生在 齿根 部位,为防止轮齿折断,应进行 齿根弯曲疲劳 强度计算。 7. 滚动轴承的基本额定寿命是指一批轴承,在相同运转条件下,其中 90 %的轴承不发生 疲劳点蚀 前所运转的总转数。 8. 按工作原理不同,螺纹连接的防松方法有 摩擦防松 、 机械防松 和 破坏螺纹副防松 。 9.转速与当量动载荷一定的球轴承,若基本额定动载荷增加一倍,其寿命为原来寿命的 8 倍。 10.蜗杆传动中,蜗杆分度圆柱上的螺旋线升角应等于蜗轮分度圆上的螺旋角,且两螺旋线方向应 相同 。 11.机构具有确定运动的条件是(1) 机构自由度大于零 (2) 原动件数等于自由度数 。 12.曲柄摇杆机构中,当 曲柄 与 机架 处于两次共线位置之一时,出现最小传动角。 13.圆柱螺旋弹簧的特性线是表示弹簧 受力与变形 之间的关系曲线;弹簧受轴向工作载荷时,其簧丝横截面上的应力最大点在 簧丝内侧点 ; 哈工大2004年秋季学期 机械设计基础(80学时) 试题答案

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤ ≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,6 50π =Φ带入正弦加速度运动规律的升程段方程式中得: ??? ?? ???? ??-=512sin 215650?ππ?S ;

?? ? ?????? ??-= 512cos 1601ππωv ; ?? ? ??= 512sin 1442 1?π ωa ; 2、凸轮推杆推程远休止角运动方程( π?π ≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(9 14π ?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,9 5'0π= Φ,6 s π = Φ带入余弦加速度运动规律的回程段方程式中得: ?? ? ???-+=)(59cos 125π?s ; ()π?ω--=59 sin 451v ; ()π?ω-=59 cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π 29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

2016年哈工大考研《机械设计基础》真题回忆版 填空题 题目很多,我记不太清了,但是有很多选①②③④这种填空格式的选择题,有几道确定是单选,还有几道我不确定,但是选的一个。考的还是五花八门,大概得认真把机械设计整本书背下来才能打高分。 简答题 第一道问张紧轮怎么布置 第二道是给出两个图问你哪个可以形成油膜,其实是考液体动压润滑的三个必要条件 第三道是给出一个高转速轴,一个低速重载轴,问都应该装哪种轴承 第四道问轴上装两个平键,考虑强度因素,问为什么两轴要呈180度放置 第五道说的是大批量生产一个直径280mm的齿轮套在直径50mm的轴上,问选用哪种结构,轮坯用哪种方式制造 第三题 计算自由度,机构蛮复杂的,但是这种题再难也难不到哪里去啦 第四题 是考虑摩擦圆摩擦角,让你对一个机构受力分析,然后第一问求某滑块速度,第二问求机构的效率。机构挺复杂的,有两个移动副和三个杆件,我时间不够这题没怎么做,大概觉得需要用到考虑摩擦圆摩擦角之后的受力分析,速度瞬心法求速度,还有效率的计算公式。←_←这题14分,特别值钱,但是又难又花时间第五题 凸轮,考对心直动从动件,理论轮廓是圆的一部分,考从动件位移,压力角计算

第六题 齿轮,考齿条刀具加工某齿轮,第一问加工标准的,第二问加工变位的,直接套公式就ok 第七题 轮系,两个周转和一个定轴的组合,问传动比 第八题 等效和速度波动调节,第一问求最大盈亏功,第二问求最大速度最小速度,第三问求它们出现的时间。唔,问题很常规,M-φ曲线比较新鲜,但总体还是很简单第九题 第一道,考的是铰制孔用螺栓,第一问求失效形式,第二问求设计最优结构,第三问求螺栓剪切力并根据校核条件设计直径。 考了十几年的普通螺栓今年突然就出了铰制了! 第二道,给的图是传送带加斜齿轮,直齿轮的三级传dong装置。在安装小齿轮的高速轴上,装了一对圆锥滚子轴承,给了小齿轮的Fa Fr Ft,传送带对该轴的压li,小齿轮转速,问小齿轮左旋还是右旋对轴承寿命有什么影响 第十题作图题 第一问是让你画联轴器和唇形密封圈,题目没直接提唇形,问的比较隐晦。 第二个题是轴系改错,轴承奇葩了点,是左边一个右边一对儿,不过常考的点还是那些

一.填空题(本大题共7小题,每空1分, 共15分) 1. 按照两连架杆可否作整周回转,平面连杆机构分为 、 和 。 2. 平面连杆机构的 角越大,机构的传力性能越好。 3. 运动副按接触形式的不同,分为 和 。 4.直齿圆柱齿轮正确啮合条件是两齿轮的 和 分别相等。 5. 凸轮从动件按其端部的形状可分为 从动件、 从动件和 从动件动件。 6. 机构具有确定运动的条件是: 。 7.通过将铰链四杆机构的转动副之一转化为移动副时,则可得到具有移动副的 机构、 机构、摇块机构和 机构。 二.选择题(本大题共15小题,每小题1分,共15分) 1. 要实现两相交轴之间的传动,可采用 传动。 A .直齿圆柱齿轮 B .斜齿圆柱齿轮 C .直齿锥齿轮 D .蜗杆蜗轮 2. 我国标准规定,对于标准直齿圆柱齿轮,其ha*= 。 A .1 B .0.25 C .0.2 D .0.8 3. 在机械传动中,若要得到大的传动比,则应采用 传动。 A. 圆锥齿轮 B. 圆柱齿轮 C. 蜗杆 D. 螺旋齿轮 4. 当四杆机构处于死点位置时,机构的压力角为 。 A .0° B .90° C .45° D .15° 5. 一般情况凸轮机构是由凸轮、从动件和机架三个基本构件组成的 机构。 A .转动副 B .移动副 C .高副 D .空间副 6. 齿轮的渐开线形状取决于它的 直径。 A .齿顶圆 B .分度圆 C .基圆 D .齿根圆 7. 对于滚子从动件盘形凸轮机构,滚子半径 理论轮廓曲线外凸部分的最小曲率半径。 A .必须小于 B .必须大于 C .可以等于 D .与构件尺寸无关 8. 渐开线直齿圆柱齿轮中,齿距p ,法向齿距n p ,基圆齿距b p 三者之间的关系为 。 A.p p p n b <= B.p p p n b << C.p p p n b >> D. p p p n b => 9. 轻工机械中常需从动件作单向间歇运动,下列机构中不能实现该要求的是 。 A.棘轮机构 B.凸轮机构 C.槽轮机构 D.摆动导杆机构 10. 生产工艺要求某机构将输入的匀速单向转动,转变为按正弦规律变化的移动输出,一种可供选择的机构是 。

2012哈工大机械设计基础真题回忆版上一年考前两个月因为没有找到2011年真题而很惘然的时候,我找到了某人士的热心回忆版。今年终于到我考完了,感觉还不错,是时候让我回馈这个网站了,现呈上我的2012的回忆版,考完这晚就默写出来,大概有个百分之八九十吧。希望能给有志考上哈工大的你们一点点鼓励。 一、填空题: 1.规定涡轮加工刀具的原因。 2.梯形螺纹的牙型角 3.齿面接触应力是否每处接触点都一样? 4.滚动轴承的寿命计算及定义 5.多级减速箱输出轴按高速还是低速计算? 6.提高螺纹连接刚度的措施:(减少)螺栓刚度,举例 7.轴承部件轴向固定的三种方式 二、简答题 1.齿轮传动的载荷系数的组成及其分别影响系数 2.软齿面闭式齿轮传动设计准则,怎么选择M和Z? 3.非液体摩擦滑动轴承设计校核准则? 4.图1中带受应力最大为何处?应力组成。

三、计算题(8题) 1.自由度计算,问某一杆为主动件,机构运动是否确定,一般题。《机械原 理试题精选与解答》里面的会做,这个也没问题的 2.刨床刨削机构。在《机械原理试题精选与解答》P39例2.19的基础上加了 几个问:1.摆杆摆角大少?2.知AD尺寸,求其他杆尺寸3.标出曲柄AB 运动方向4.什么位置CD角速度最大? 3.(1)画出该位置凸轮转角,推杆位移,压力角。(2)推程角,远休止角, 回程角,近休止角的计算数值。(3)若推程时压力角最大为45°,问a 的取值。(两轮大小相同为R) 4.加工齿轮及变位。P85例4.17,(1)(2)问。跟03到05中的某一年的真 题基本是一样的。第三个问特别点:求变位后da(齿顶圆直径),rb(基圆半径)

1分,共30分) 本题分数 1. 机构具有确定运动的条件是机构的自由度大于零且机构的原动件数等于机构的自由度。 2. 在凸轮机构四种常用的推杆运动规律中,等速运动规律运动规律有刚性冲击;等加速等减速运动规律和余弦加速度运动规律有柔性冲击; 正弦加速度运动规律无冲击。 3. 带传动工作时,最大应力发生在在紧边进入小带轮处,带传动的主要失效形式是打滑和疲劳破坏。 4. 一对渐开线直齿圆柱齿轮正确啮合条件为:模数相等和压力角相等,齿轮连续啮合传动条件为:重合度大于1 。 5. 在齿轮传动设计时,软齿面闭式传动常因_ _齿面点蚀而失效,故通常先按齿面接触疲劳强度设计公式确定传动的尺寸,然后验算齿轮的齿根弯曲疲劳强度。 6. 齿轮传动以及蜗杆传动的效率均包括:(1)轮齿啮合效率η1、 (2)搅油效率η2、(3)轴承效率η3;总的传动效率为:η=η1η2η3。

7.在矩形螺纹、梯形螺纹、锯齿形螺纹和三角形螺纹四种螺纹中,传动效率最高的是矩形螺纹;双向自锁性最好的是三角形螺纹;只能用于单向传动的是锯齿形螺纹。 8. 普通平键的工作面是两侧面;楔键的工作面为键的__上下_____面,平 键的剖面尺寸b×h按轴径d 来查取。 9. 代号为72308的滚动轴承,其类型名称为角接触球轴承,内径为 40 mm,2 为宽度系列代号, 3 为直径系列代号。 10. 圆柱螺旋压缩弹簧在工作时最大应力发生在弹簧丝内侧。 (每题4分,共20分) 答:速度瞬心定义为:互相作平面相对运动的两构件上在任一瞬时其相对速度为零的重合点。或说是作平面相对运动的两构件上在任一瞬时其速度相等的重合点(即等速重合点)。 三心定理:作平面运动的三个构件共有三个瞬心,他们位于同一直线上。 2.带传动中的弹性滑动与打滑有什么区别? 答:弹性滑动和打滑是两个截然不同的概念。打滑是指由于过载引起的全面滑动,是一种传动失效的表现,应当避免。弹性滑动是由带材料的弹性和紧边、松边的拉力差引起的。只要带传动具有承载能力,出现紧边和松边,就一定会发生弹性滑动,所以弹性滑动是不可以避免的。 3.按轴工作时所受载荷不同,可把轴分成那几类?如何分类? 答: 转轴,心轴,传动轴。 转轴既传递转矩又承受弯矩。 传动轴只传递转矩而不承受弯矩或承受弯矩很小。 心轴则承受弯矩而不传递转矩。

大作业计算说明书 题目:平面连杆机构设计 学院:英才学院 班号:1236405班 学号:6121820510 姓名:林海奇 日期:2014年9月27日 哈尔滨工业大学

大作业任务书 题目:平面连杆机构设计 设计原始数据及要求: l为70mm,摆角ψ为35°,摇杆行程速比系设计一曲柄摇杆机构。已知摇杆长度 3 ∠,值数K为1.2,摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为CDA 为50°,试用图解法设计其余三杆的长度,并检验(测量或计算)机构的最小传动角γ。

目录 1.设计原始数据及要求 (1) 2.设计过程 (1) 2.1计算极位夹角θ 2.2绘制机架位置线及摇杆的两个极限位置 2.3确定曲柄回转中心 2.4确定各赶长度 2.5验算最小传动角γ 3.参考文献 (2)

1. 设计原始数据及要求 设计一曲柄摇杆机构。已知摇杆长度3l 为70mm ,摆角ψ 为35°,摇杆行程速比系数K 为1.2,摇杆CD 靠近曲柄回转中心A 一侧的极限位置与机架间的夹角为CDA ∠ ,值为50°,试用图解法[1]设计其余三杆的长度,并检验(测量或计算)机构的最小传动角γ 。 2.设计过程 2.1计算极位夹角θ 1 1.21 18018016.361 1.21 K K θ--=? =??=?++ 式中,θ ——极位夹角; K ——摇杆行程速比系数。 2.2绘制机架位置线及摇杆的两个极限位置 平面上任取一点D ,作一水平线AD 作为机架位置线,由∠CDA=50°和50ψ=? 确定CD 杆的两个极限位置。并作CD=70mm 。如图1所示: 2.3确定曲柄回转中心 曲柄的回转中心必在A ,C1,C2所在的圆上,只要确定该圆即可作出A 的位置。由 16.36θ=? 得出12C C 所对圆心角为∠C 1OC 2=32.72°,则∠OC 1C2=∠OC 2C 1=73.64°, 作出该两角,即可确定圆心O 的位置。作出圆O ,与机架位置线的左侧交点即为A 。如图2所示

第一章绪论 1. 机器人学(Robotics)它包括有基础研究和应用研究两个方面,主要研究内容有:(1) 机械手设计;(2) 机器人运动学、动力学和控制;(3) 轨迹设计和路径规划;(4) 传感器(包括内部传感器和外部传感器);(5) 机器人视觉;(6) 机器人语言;(7) 装置与系统结构;(8) 机器人智能等。 2. 机器人学三原则:(1)机器人不得伤害人(2)机器人应执行人们的命令,除非这些命令与第一原则相矛盾(3)机器人应能保护自己的生存,只要这种保护行为不与第一第二原则相矛盾。 3. 6种型式的机器人: (1) 手动操纵器:人操纵的机械手,缺乏独立性; (2) 固定程序机器人:缺乏通用性; (3) 可编程机器人:非伺服控制; (4) 示教再现机器人:通用工业机器人; (5) 数控机器人:由计算机控制的机器人; (6) 智能机器人:具有智能行为的自律型机器人。 4. 按以下特征来描述机器人: (1)机器人的动作机构具有类似于人或其他生物体某些器官 ( 如肢体、感官等 ) 的功能; (2)机器人具有通用性,工作种类多样,动作程序灵活易变,是柔性加工主要组成部分; (3)机器人具有不同程度的智能,如记忆、感知、推理、决策、学习等;(4)机器人具有独立性,完整的机器人系统,在工作中可以不依赖于人的干预。 5. 机器人主要由执行机构、驱动和传动装置、传感器和控制器四大部分构成 6. 控制方式主要有示教再现、可编程控制、遥控和自主控制等多种方式。 7. 示教-再现即分为示教-存储-再现-操作四步进行。 8. 控制信息顺序信息:位置信息:时间信息: 9. 位置控制点位控制-PTP(Point to Point): 连续路径控制-CP(Continuous Path): 10. 操纵机器人可分为两种类型:能力扩大式机器人:遥控机器人: 11. 第三代智能机器人应具备以下四种机能:运动机能感知机能: 思维能力:人-机对话机能: 智能机器人是一种“认知-适应"的工作方式。 12.目前我国机器人的发展正朝着实用化、智能化和特种机器人的方向发展。

哈工大 2006 年 春 季学期 机械设计基础 试 题 答案 一、 填空题(每空1分,共24分) .两构件通过 点 或 线 接触组成的运动副称为高副。 2.连杆机构在运动过程中只要存在_极位夹___角,该机构就具有急回作用,其急回程度用 行程速比 _系数表示。 3.标准外啮合斜齿轮传动的正确啮合条件是:两齿轮的 模数 和 压力角 都相等,齿轮的 螺旋 角相等而旋向 相反 。 4. V 带传动的主要失效形式是 打滑 和 疲劳破坏 。 5. 在凸轮机构四种常用的推杆运动规律中, 等速 运动规律有刚性冲 击; 等加速等减速 运动规律和 余弦加速度 运动规律有柔性冲击; 正弦加速度 运动规律无冲击。 6. 代号为31308的滚动轴承,其名称为 圆锥滚子轴承 ,内径为____40____mm , 直径系列代号为____3____,宽度系列代号为____1___。 7.按受载类型,轴可分为转轴、___心____轴和____传动____轴;转轴所受载荷为 转矩和弯矩 。自行车前轴属__心___轴。 8. 滑动轴承轴瓦上浇铸轴承衬的目的是 节省贵重材料 和 增加强度 。

(共16分) 1. 简述带传动中弹性滑动和打滑的概念,两者有何不同?(4分) 答:弹性滑动是由于带的弹性变形引起的带与轮之间的相对滑动,是带传动固有的特性,是不可避免的。打滑是当传递的有效拉力大于极限摩擦力时,带与轮间的全面滑动。打滑将造成带的严重磨损并使从动轮的转速急剧降低,致使传动失效,应该避免。 2. 什么是曲柄摇杆机构的死点位置?(4分) 答:曲柄摇杆机构中,当曲柄与连杆共线时,若摇杆为原动件,则机构出现卡死或运动不确定现象,称为死点位置。 3. 轴的当量弯矩公式22)(T M M e α+=中系数α的含义是什么?如何取值?(4分) 答: α是考虑转矩与弯矩产生的应力性质不同而引入的应力校正系数。 对于不变的转矩,取α=0.3; 对于脉动循环的转矩,取α=0.6; 对于对称循环的转矩,取α=1。 4.试述形成液体动压油膜的必要条件是什么?(4分) 答: 1、相对滑动表面之间必须形成收敛形间隙; 2、要有一定的相对滑动速度,并使润滑油从大口流入,从小口流出; 3、间隙间要充满具有一定粘度的润滑油。

哈工大机械原理课程—产品包装线方案9

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:机械原理课程设计 设计题目:产品包装生产线(方案9) 院系:机电工程学院 班级: 设计者: 学号: 指导教师:陈明 设计时间:2013.07.01-2013.07.05

哈尔滨工业大学 目录 一.题目要求 (3) 二.题目解答 1.工艺方法分析 (3) 2.运动功能分析及图示 (4) 3.系统运动方案的拟定 (8) 4.系统运动方案设计 (13) 5.运动方案执行构件的运动时序分析 (19) 6.运动循环图 (21)

产品包装生产线(方案9) 1.题目要求 如图1所示,输送线1上为小包装产品,其尺寸为长*宽*高=500*200*200,采取步进式输送方式,将第一包和第二包产品送至托盘A上(托盘A上平面与输送线1的上平面同高),每送一包产品至托盘A上,托盘A下降200mm。当第三包产品送到托盘A上后,托盘A上升405mm、顺时针旋转90°,把产品推入输送线2。然后,托盘A逆时针回转90°、下降5mm恢复至原始位置。原动机转速为1430rpm,产品输送量分三档可调,每分钟向输送线2分别输送6、12、18件小包装产品。 图1功能简图

2.题目解答 (1)工艺方法分析 由题目和功能简图可以看出,推动产品在输送线1上运动的是执行机构1,在A处使产品上升、转位的是执行构件2,在A处把产品推到下一个工位的是执行构件3,三个执行构件的运动协调关系如图所示。 下图中T1为执行构件1的工作周期,T2是执行构件2的工作周期,T3是执行构件3的工作周期,T3’是执行构件3的动作周期。由图2可以看出,执行构件1是作连续往复移动的,而执行构件2则有一个间歇往复运动和一个间歇转动,执行构件3作一个间歇往复运动。三个执行构件的工作周期关系为:3T1= T2= T3。执行构件3的动作周期为其工作周期的1/20。 图2 运动循环图 (2)运动功能分析及运动功能系统图 根据前面的分析可知,驱动执行构件1工作的执行机构应该具有运动功能如

连杆的运动的分析 一.连杆运动分析题目 图1-13 连杆机构简图 二.机构的结构分析及基本杆组划分 1.。结构分析与自由度计算 机构各构件都在同一平面内活动,活动构件数n=5, PL=7,分布在A、B、C、E、F。没有高副,则机构的自由度为 F=3n-2PL-PH=3*5-2*7-0=1 2.基本杆组划分 图1-13中1为原动件,先移除,之后按拆杆组法进行拆分,即可得到由杆3和滑块2组成的RPR II级杆组,杆4和滑块5组成的RRP II级杆组。机构分解图如下:

图二 图一 图三 三.各基本杆组的运动分析数学模型 图一为一级杆组, ? c o s l A B x B =, ? sin lAB y B = 图二为RPR II 杆组, C B C B j j B E j B E y y B x x A A B S l C E y x S l C E x x -=-==-+=-+=0000 )/a r c t a n (s i n )(c o s )(?? ? 由此可求得E 点坐标,进而求得F 点坐标。 图三为RRP II 级杆组, B i i E F i E F y H H A l E F A l E F y y l E F x x --==+=+=111)/a r c s i n (s i n c o s ??? 对其求一阶导数为速度,求二阶导数为加速度。

lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0; yC=-350; A0=xB-xC; B0=yB-yC; S=sqrt(A0.^2+B0.^2); zj=atan(B0/A0); xE=xB+(lCE-S)*cos(zj); yE=yB+(lCE-S)*sin(zj); a=0:0.0001:20/255; Xe=subs(xE,t,a); Ye=subs(yE,t,a); A1=H-H1-yB; zi=asin(A1/lEF); xF=xE+lEF*cos(zi); vF=diff(xF,t); aF=diff(xF,t,2); m=0:0.001:120/255; xF=subs(xF,t,m); vF=subs(vF,t,m); aF=subs(aF,t,m); plot(m,xF) title('位移随时间变化图像') xlabel('t(s)'),ylabel(' x') lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0;

第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随 机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 1

若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 2

3 定义6:逆事件/对立事件 称事件“A 不发生”为事件A 的逆事件,记为ā 。A 与ā满足:A ∪ā= S,且A ā=Φ。 运算律: 设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B ∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A ∩B)∪(A ∩C)= AB ∪AC (4)德摩根律: 小结: 事件的关系、运算和运算法则可概括为 四种关系:包含、相等、对立、互不相容; B A B A =B A B A =

哈工大机械原理大作业——凸轮——11号

H a r b i n I n s t i t u t e o f T e c h n o l o g y 大作业设计说明书 课程名称:机械原理 设计题目:凸轮机构 院系:机电工程学院 班级: 设计者: 学号: 指导教师: 设计时间:

哈尔滨工业大学 一、 设计题目 图 1 () 二、 推杆升程,回程运动方程 1. 推杆升程方程(式中0 0?φ≤≤) 0012sin()2s h ?π?φπφ?? =-?? ?? 10021cos()h v ωπ?φφ??= -???? 2 12 00 22sin( )h a πωπ ?φφ=

2. 推杆回程方程(式中' 00s s φ φ?φφφ+≤≤++) ()3 4 5 110156s h T T T ??=--+?? 221 ' 30(12) h v T T T ωφ =- -+ 2 21'20 60(132) h a T T T ωφ =- -+ 其中90h mm =,0 2 π φ= ,1118 s φπ= ,'0 49 φ π=。 并且取1 ω=1 三、 推杆的位移、速度和加速度图像 (1)推杆位移图 图 2 (2)推杆速度图 图 3 (3)推杆加速度图

图4 三、确定凸轮基圆半径和偏距 (1)凸轮机构的ds s d? -线图 图 5 (2)确定凸轮的基圆半径r0和偏距e ①理论依据 设以从动件的位移s为纵坐标(相当于从动件 运动导路),以类速度ds d? 为横坐标。当给定一系列的凸轮转角?,则根据已知的运动规律,可以 求得s和ds d?的值,从而作出() ds s d ? ? -曲线。由于题 目为左偏置凸轮机构,故推程在s轴左边,回程

班级 试题答案 姓名 题号一二三四五六七总分 分数 一、填空题(共26 分,每空1分) 1)代号为7210 C/P5/DF轴承的内径为50mm。 2)当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常装拆时, 往往采用螺纹联接中的螺钉联接。 3)齿轮传动的主要失效形式有轮齿折断、齿面点蚀、 齿面磨损、齿面胶合和轮齿塑性变形。 4)凸轮机构从动件常用运动规律有等速运动规律、 等加速等减速运动规律、余弦加速度(简谐)运动规律 和正弦加速度(摆线)运动规律。 5)机构具有确定运动的条件是:机构的自由度F大于0 、 机构的原动件数等于机构的自由度F。 6)机械系统通常由原动机、传动装置、工作机等部 分组成。 7)对于软齿面闭式齿轮传动,通常先按齿面接触疲劳强度进行设计, 然后校核齿根弯曲疲劳强度。 8)滚动轴承的基本额定寿命L,是指一批相同的轴承,在相同的条件下 运转,其中90% 的轴承在疲劳点蚀前所能转过的总转速,单位 为106 r。 9)四杆机构的急回运动特性可以由行程速度变化系数K和极位夹角θ表

征,极位夹角θ越大,急回运动的性质越显著。 10)凸轮的基圆半径越小,机构的压力角越大,机构的传力性能越差。 11)在蜗杆传动中,当需要自锁时,应使蜗杆导程角≤当量摩擦角。 12)轮系可分为三种类型,即定轴轮系、周转轮系和混合轮系。 二、选择题(共7分,每小题1分) 1)一阀门螺旋弹簧,弹簧丝直径d=2.5mm,因环境条件限制,其弹簧外径D2不得大于17.5mm,则弹簧指数不应超过c) 。 a) 5 ; b) 6.5 ; c) 6 ; d) 7 。 2)平键的剖面尺寸b×h是根据d) 从标准中查取。 a) 传递转矩的大小; b) 载荷特性; c) 键的材料; d) 轴的直径。3)带传动的主要失效形式为d) 。 a)带的颤动和弹性滑动; b) 带的松弛和弹性滑动; c) 带的弹性滑动和打滑; d) 带的疲劳破坏和打滑。 4)在V带设计中,取d d1≥d dmin,主要是为了考虑a) 的影响a) 弯曲应力; b) 离心拉应力; c) 小带轮包角; d) 初拉力。 5)角接触球轴承承受轴向载荷的能力,随着接触角的增大而a) 。 a) 增大; b) 减小;c) 不变。 6)工作时既承受弯矩又承受扭矩的轴是c) 。 a) 心轴; b) 传动轴; c) 转轴; d) 挠性轴。 7)对于要求有综合位移,外廓尺寸紧凑,传递转矩较大,启动频繁,经常正反转的重型机械常用d) 联轴器。 a) 十字滑块; b) 凸缘; c) 轮胎; d) 齿轮。

机械原理大作业(一) 作业名称:机械原理 设计题目:连杆机构运动分析 院系:机电工程学院 班级: 设计者: 学号: 指导教师: 设计时间: 2014年6月3日 哈尔滨工业大学机械设计

连杆机构运动分析 (12)题:图1-12所示的六连杆机构中,各构件尺寸分别为:AB l =200mm ,BC l =500mm ,CD l =800mm ,F x =400mm ,D x =350mm , D y =350mm ,1 =100rad/s ,求构件5上的F 点的位移、速度和加速度。 1.建立直角坐标系 以F 点为直角坐标系的原点建立直角坐标系X-Y ,如下图所示。

2.机构结构分析 该机构由I级杆组RR(原动件AB)、II级杆组RRR(杆2、3)、II级杆组PRP(杆5、滑块4)组成。 3.各基本杆组运动分析 1.I级杆组RR(原动件AB) 已知原动件AB的转角 ?2 π = ~ 原动件AB的角速度 ω = 10 rad/ s

原动件AB 的角加速度 =α 运动副A 的位置 0,400=-=A A y x 运动副A 的速度 0,0==A A v v 运动副A 的加速度 0,0==A A a a 可得: )cos(?AB A B l x x += )sin(?AB A B l y y += 速度和加速度分析: )sin(???-=AB xA xB l w v v ) sin(???+=AB yA yB l w v v )sin()cos(2??AB AB xA xB el l w a a --= )()s i n (2??c o a el l w a a AB AB yA yB +-= 2.II 级杆组RRR (杆2、3) 杆2的角位置、角速度、角加速度

例2-10 在例2-10图所示中,已知各构件的尺寸及机构的位置,各转动副处的摩擦圆如图 中虚线圆,移动副及凸轮高副处的摩擦角为?,凸轮顺时针转动,作用在构件4上的工作阻力为Q 。试求该图示位置: 1. 各运动副的反力(各构件的重力和惯性力均忽略不计); 2. 需施加于凸轮1上的驱动力矩1M ; 3. 机构在图示位置的机械效率η。 例2-10 解题要点: 考虑摩擦时进行机构力的分析,关键是确定运动副中总反力的方向。为了确定总反力的方向,应先分析各运动副元素之间的相对运动,并标出它们相对运动的方向;然后再进行各构件的受力分析,先从二力构件开始,在分析三力构件。 解:选取长度比例尺l μ(m/mm)作机构运动简图。 1. 确定各运动副中总反力的方向。如例2-10(a)图,根据机构的运动情况和力的平衡条件,先确定凸轮高副处的总反力12R 的方向,该力方向与接触点B 处的相对速度21 B B v 的方向成 90?+角。再由51R 应切于运动副A 处的摩擦圆,且对A 之矩的方向与1ω方向相反,同 时与12R 组成一力偶与1M 平衡,由此定出51R 的方向;由于连杆3为二力构件,其在D ,E 两转动副受两力23R 及43R 应切于该两处摩擦圆,且大小相等方向相反并共线,可确定出23R 及43R 的作用线,也即已知32R 及34R 的方向线;总反力52R ,应切于运动副C 处的摩擦圆,且对C 之矩的方向应与25ω方向相反,同时构件2受到12R ,52R 及32R 三个力,且应汇交于一点,由此可确定出52R 的方向线;滑块4所受总反力54R 应与45v 的方向成0 90 ?+角, 同时又受到34R ,54R 及Q 三个力,也应汇交于一点,由此可确定出54R 的方向线。 2. 求各运动副中总反力的大小。 分别取构件2,4为分离体,列出力平衡方程式 构件2 1232520R R R ++= 构件4 34540R R Q ++=

相关主题
文本预览
相关文档 最新文档